Game Theory at Princeton, 1949-1955: a Personal Reminiscence Martin Shubik
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Zbwleibniz-Informationszentrum
A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Cogliano, Jonathan Working Paper An account of "the core" in economic theory CHOPE Working Paper, No. 2019-17 Provided in Cooperation with: Center for the History of Political Economy at Duke University Suggested Citation: Cogliano, Jonathan (2019) : An account of "the core" in economic theory, CHOPE Working Paper, No. 2019-17, Duke University, Center for the History of Political Economy (CHOPE), Durham, NC This Version is available at: http://hdl.handle.net/10419/204518 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu An Account of “the Core” in Economic Theory by Jonathan F. Cogliano CHOPE Working Paper No. 2019-17 September 2019 Electronic copy available at: https://ssrn.com/abstract=3454838 An Account of ‘the Core’ in Economic Theory⇤ Jonathan F. -
Introduction to Computational Social Choice
1 Introduction to Computational Social Choice Felix Brandta, Vincent Conitzerb, Ulle Endrissc, J´er^omeLangd, and Ariel D. Procacciae 1.1 Computational Social Choice at a Glance Social choice theory is the field of scientific inquiry that studies the aggregation of individual preferences towards a collective choice. For example, social choice theorists|who hail from a range of different disciplines, including mathematics, economics, and political science|are interested in the design and theoretical evalu- ation of voting rules. Questions of social choice have stimulated intellectual thought for centuries. Over time the topic has fascinated many a great mind, from the Mar- quis de Condorcet and Pierre-Simon de Laplace, through Charles Dodgson (better known as Lewis Carroll, the author of Alice in Wonderland), to Nobel Laureates such as Kenneth Arrow, Amartya Sen, and Lloyd Shapley. Computational social choice (COMSOC), by comparison, is a very young field that formed only in the early 2000s. There were, however, a few precursors. For instance, David Gale and Lloyd Shapley's algorithm for finding stable matchings between two groups of people with preferences over each other, dating back to 1962, truly had a computational flavor. And in the late 1980s, a series of papers by John Bartholdi, Craig Tovey, and Michael Trick showed that, on the one hand, computational complexity, as studied in theoretical computer science, can serve as a barrier against strategic manipulation in elections, but on the other hand, it can also prevent the efficient use of some voting rules altogether. Around the same time, a research group around Bernard Monjardet and Olivier Hudry also started to study the computational complexity of preference aggregation procedures. -
Frontiers in Applied General Equilibrium Modeling: in Honor of Herbert Scarf Edited by Timothy J
Cambridge University Press 978-0-521-82525-2 - Frontiers in Applied General Equilibrium Modeling: In Honor of Herbert Scarf Edited By Timothy J. Kehoe, T. N. Srinivasan and John Whalley Frontmatter More information FRONTIERS IN APPLIED GENERAL EQUILIBRIUM MODELING This volume brings together fifteen papers by many of the most prominent applied general equilibrium modelers to honor Herbert Scarf, the father of equilibrium computation in economics. It deals with new developments in applied general equilibrium, a field that has broadened greatly since the 1980s. The contributors discuss some traditional as well as some newer topics in the field, including nonconvexities in economy-wide models, tax policy, developmental modeling, and energy modeling. The book also covers a range of new approaches, conceptual issues, and computational algorithms, such as calibration, and new areas of application, such as the macroeconomics of real business cycles and finance. An introductory chapter written by the editors maps out issues and scenarios for the future evolution of applied general equilibrium. Timothy J. Kehoe is Distinguished McKnight University Professor at the University of Minnesota and an advisor to the Federal Reserve Bank of Minneapolis. He has previ- ously taught at Wesleyan University, the Massachusetts Institute of Technology, and the University of Cambridge. He has advised foreign firms and governments on the impact of their economic decisions. He is co-editor of Modeling North American Economic Integration, which examines the use of applied general equilibrium models to analyze the impact of the North American Free Trade Agreement. His current research focuses on the theory and application of general equilibrium models. -
Stable Matching: Theory, Evidence, and Practical Design
THE PRIZE IN ECONOMIC SCIENCES 2012 INFORMATION FOR THE PUBLIC Stable matching: Theory, evidence, and practical design This year’s Prize to Lloyd Shapley and Alvin Roth extends from abstract theory developed in the 1960s, over empirical work in the 1980s, to ongoing efforts to fnd practical solutions to real-world prob- lems. Examples include the assignment of new doctors to hospitals, students to schools, and human organs for transplant to recipients. Lloyd Shapley made the early theoretical contributions, which were unexpectedly adopted two decades later when Alvin Roth investigated the market for U.S. doctors. His fndings generated further analytical developments, as well as practical design of market institutions. Traditional economic analysis studies markets where prices adjust so that supply equals demand. Both theory and practice show that markets function well in many cases. But in some situations, the standard market mechanism encounters problems, and there are cases where prices cannot be used at all to allocate resources. For example, many schools and universities are prevented from charging tuition fees and, in the case of human organs for transplants, monetary payments are ruled out on ethical grounds. Yet, in these – and many other – cases, an allocation has to be made. How do such processes actually work, and when is the outcome efcient? Matching theory The Gale-Shapley algorithm Analysis of allocation mechanisms relies on a rather abstract idea. If rational people – who know their best interests and behave accordingly – simply engage in unrestricted mutual trade, then the outcome should be efcient. If it is not, some individuals would devise new trades that made them better of. -
The Portfolio Optimization Performance During Malaysia's
Modern Applied Science; Vol. 14, No. 4; 2020 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education The Portfolio Optimization Performance during Malaysia’s 2018 General Election by Using Noncooperative and Cooperative Game Theory Approach Muhammad Akram Ramadhan bin Ibrahim1, Pah Chin Hee1, Mohd Aminul Islam1 & Hafizah Bahaludin1 1Department of Computational and Theoretical Sciences Kulliyyah of Science International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia Correspondence: Pah Chin Hee, Department of Computational and Theoretical Sciences, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia. Received: February 10, 2020 Accepted: February 28, 2020 Online Published: March 4, 2020 doi:10.5539/mas.v14n4p1 URL: https://doi.org/10.5539/mas.v14n4p1 Abstract Game theory approach is used in this study that involves two types of games which are noncooperative and cooperative. Noncooperative game is used to get the equilibrium solutions from each payoff matrix. From the solutions, the values then be used as characteristic functions of Shapley value solution concept in cooperative game. In this paper, the sectors are divided into three groups where each sector will have three different stocks for the game. This study used the companies that listed in Bursa Malaysia and the prices of each stock listed in this research obtained from Datastream. The rate of return of stocks are considered as an input to get the payoff from each stock and its coalition sectors. The value of game for each sector is obtained using Shapley value solution concepts formula to find the optimal increase of the returns. The Shapley optimal portfolio, naive diversification portfolio and market portfolio performances have been calculated by using Sharpe ratio. -
Introduction to Computational Social Choice Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D
Introduction to Computational Social Choice Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D. Procaccia To cite this version: Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D. Procaccia. Introduction to Computational Social Choice. Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D. Procaccia, Handbook of Computational Social Choice, Cambridge University Press, pp.1-29, 2016, 9781107446984. 10.1017/CBO9781107446984. hal-01493516 HAL Id: hal-01493516 https://hal.archives-ouvertes.fr/hal-01493516 Submitted on 21 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Introduction to Computational Social Choice Felix Brandta, Vincent Conitzerb, Ulle Endrissc, J´er^omeLangd, and Ariel D. Procacciae 1.1 Computational Social Choice at a Glance Social choice theory is the field of scientific inquiry that studies the aggregation of individual preferences towards a collective choice. For example, social choice theorists|who hail from a range of different disciplines, including mathematics, economics, and political science|are interested in the design and theoretical evalu- ation of voting rules. Questions of social choice have stimulated intellectual thought for centuries. Over time the topic has fascinated many a great mind, from the Mar- quis de Condorcet and Pierre-Simon de Laplace, through Charles Dodgson (better known as Lewis Carroll, the author of Alice in Wonderland), to Nobel Laureates such as Kenneth Arrow, Amartya Sen, and Lloyd Shapley. -
ECONOMICS: the NEXT PHYSICAL SCIENCE? by J. Doyne Farmer
ECONOMICS: THE NEXT PHYSICAL SCIENCE? By J. Doyne Farmer, Martin Shubik and Eric Smith June 2005 COWLES FOUNDATION DISCUSSION PAPER NO. 1520 COWLES FOUNDATION FOR RESEARCH IN ECONOMICS YALE UNIVERSITY Box 208281 New Haven, Connecticut 06520-8281 http://cowles.econ.yale.edu/ Economics: the next physical science? J. Doyne Farmer,1 Martin Shubik,2 and Eric Smith1 1Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe NM 87501 2Economics Department, Yale University, New Haven CT (Dated: June 9, 2005) We review an emerging body of work by physicists addressing questions of economic organization and function. We suggest that, beyond simply employing models familiar from physics to economic observables, remarkable regularities in economic data may suggest parts of social order that can usefully be incorporated into, and in turn can broaden, the conceptual structure of physics. Contents physics departments specializing in econophysics. There is even a new annual research prize, titled the “Young I. Physics and economics 1 Scientist Award for Social and Econophysics”. Is this just a fad, or is there something more substantial here? II. Data analysis and the search for empirical regularitiesIf physicists2 want to do research in economics, why don’t they just get degrees in economics in the first place? Why don’t the econophysicists retool, find jobs in eco- III. Modeling the behavior of agents 4 nomics departments and publish in traditional economics journals? Perhaps this is just a temporary phenomenon, IV. The quest for simple models of non-rational choicedriven4 by a generation of physicists who made a bad ca- reer choice. Is there any reason why research in eco- nomics should be done in physics departments as an on- V. -
3 Nobel Laureates to Honor UCI's Duncan Luce
3 Nobel laureates to honor UCI’s Duncan Luce January 25th, 2008 by grobbins Three recent winners of the Nobel Prize in economics will visit UC Irvine today and Saturday to honor mathematician-psychologist Duncan Luce, who shook the economics world 50 years ago with a landmark book on game theory. Game theory is the mathematical study of conflict and interaction among people. Luce and his co-author, Howard Raiffa, laid out some of the most basic principles and insights about the field in their book, “Games and Decisions: Introductions and Critical Survey.” That book, and seminal equations Luce later wrote that helped explain and predict a wide range of human behavior, including decision-making involving risk, earned him the National Medal of Science, which he received from President Bush in 2005. (See photo.) UCI mathematican Don Saari put together a celebratory conference to honor both Luce and Raiffa, and he recruited some of the world’s best-known economic scientists. It’s one of the largest such gatherings since UCI hosted 17 Nobel laureates in October 1996. “Luce and Raiffa’s book has been tremendously influential and we wanted to honor them,” said Saari, a member of the National Academy of Sciences. Luce said Thursday night, “This is obviously very flattering, and it’s amazing that the book is sufficiently alive that people would want to honor it.” The visitors scheduled to attended the celebratory conference include: Thomas Schelling, who won the 2005 Nobel in economics for his research on game theory Roger Myerson and Eric Maskin, who shared the 2007 Nobel in economics for their work in design theory. -
Chemical Game Theory
Chemical Game Theory Jacob Kautzky Group Meeting February 26th, 2020 What is game theory? Game theory is the study of the ways in which interacting choices of rational agents produce outcomes with respect to the utilities of those agents Why do we care about game theory? 11 nobel prizes in economics 1994 – “for their pioneering analysis of equilibria in the thoery of non-cooperative games” John Nash Reinhard Selten John Harsanyi 2005 – “for having enhanced our understanding of conflict and cooperation through game-theory” Robert Aumann Thomas Schelling Why do we care about game theory? 2007 – “for having laid the foundatiouns of mechanism design theory” Leonid Hurwicz Eric Maskin Roger Myerson 2012 – “for the theory of stable allocations and the practice of market design” Alvin Roth Lloyd Shapley 2014 – “for his analysis of market power and regulation” Jean Tirole Why do we care about game theory? Mathematics Business Biology Engineering Sociology Philosophy Computer Science Political Science Chemistry Why do we care about game theory? Plato, 5th Century BCE Initial insights into game theory can be seen in Plato’s work Theories on prisoner desertions Cortez, 1517 Shakespeare’s Henry V, 1599 Hobbes’ Leviathan, 1651 Henry orders the French prisoners “burn the ships” executed infront of the French army First mathematical theory of games was published in 1944 by John von Neumann and Oskar Morgenstern Chemical Game Theory Basics of Game Theory Prisoners Dilemma Battle of the Sexes Rock Paper Scissors Centipede Game Iterated Prisoners Dilemma -
War Gaming in the Information Age—Theory and Purpose Paul Bracken
Naval War College Review Volume 54 Article 6 Number 2 Spring 2001 War Gaming in the Information Age—Theory and Purpose Paul Bracken Martin Shubik Follow this and additional works at: https://digital-commons.usnwc.edu/nwc-review Recommended Citation Bracken, Paul and Shubik, Martin (2001) "War Gaming in the Information Age—Theory and Purpose," Naval War College Review: Vol. 54 : No. 2 , Article 6. Available at: https://digital-commons.usnwc.edu/nwc-review/vol54/iss2/6 This Article is brought to you for free and open access by the Journals at U.S. Naval War College Digital Commons. It has been accepted for inclusion in Naval War College Review by an authorized editor of U.S. Naval War College Digital Commons. For more information, please contact [email protected]. Bracken and Shubik: War Gaming in the Information Age—Theory and Purpose WAR GAMING IN THE INFORMATION AGE Theory and Purpose Paul Bracken and Martin Shubik ver twenty years ago, a study was carried out under the sponsorship of the ODefense Advanced Research Projects Agency and in collaboration with the General Accounting Office to survey and critique the models, simulations, and war games then in use by the Department of Defense.1 From some points of view, twenty years ago means ancient history; changes in communication tech- nology and computers since then can be measured Paul Bracken, professor of management and of political science at Yale University, specializes in national security only in terms of orders of magnitudes. The new world and management issues. He is the author of Command of the networked battlefield, super-accurate weapons, and Control of Nuclear Forces (1983) and of Fire in the and the information technology (IT) revolution, with its East: The Rise of Asian Military Power and the Second Nuclear Age (HarperCollins, 1999). -
Chronology of Game Theory
Chronology of Game Theory http://www.econ.canterbury.ac.nz/personal_pages/paul_walker/g... Home | UC Home | Econ. Department | Chronology of Game Theory | Nobel Prize A Chronology of Game Theory by Paul Walker September 2012 | Ancient | 1700 | 1800 | 1900 | 1950 | 1960 | 1970 | 1980 | 1990 | Nobel Prize | 2nd Nobel Prize | 3rd Nobel Prize | 0-500AD The Babylonian Talmud is the compilation of ancient law and tradition set down during the first five centuries A.D. which serves as the basis of Jewish religious, criminal and civil law. One problem discussed in the Talmud is the so called marriage contract problem: a man has three wives whose marriage contracts specify that in the case of this death they receive 100, 200 and 300 respectively. The Talmud gives apparently contradictory recommendations. Where the man dies leaving an estate of only 100, the Talmud recommends equal division. However, if the estate is worth 300 it recommends proportional division (50,100,150), while for an estate of 200, its recommendation of (50,75,75) is a complete mystery. This particular Mishna has baffled Talmudic scholars for two millennia. In 1985, it was recognised that the Talmud anticipates the modern theory of cooperative games. Each solution corresponds to the nucleolus of an appropriately defined game. 1713 In a letter dated 13 November 1713 Francis Waldegrave provided the first, known, minimax mixed strategy solution to a two-person game. Waldegrave wrote the letter, about a two-person version of the card game le Her, to Pierre-Remond de Montmort who in turn wrote to Nicolas Bernoulli, including in his letter a discussion of the Waldegrave solution. -
Shapley and Scarf in 1974
Journal of Mathematical Economics 1 (1974) 23-37. 0 North-Holland Publishing Company ON CORES AND EWMSIBILITY* Lloyd SHAPLEY The Rand Corporation, Santa Monica, Cal$90406, U.S.A. and Herbert SCARF Yale University, New Haven, Conn. 06520, U.S.A. Received 11 September 1973 An economic model of trading in commodities that are inherently indivisible, like houses, is investigated from a game-theoretic point of view. The concepts of balanced game and core are developed, and a general theorem of Scarf’s is applied to prove that the market in question has a nonempty core, that is, at least one outcome that no subset of traders can improve upon. A number of examples are discussed, and the final section reviews a series of other models involving indivisible commodities, with references to the literature. 1. Introduction This paper has two purposes. To the reader interested in the mathematics of optimization, it offers an elementary introduction to n-person games, balanced sets, and the core, applying them to a simple but nontrivial trading model. To the reader interested in economics, it offers what may be a new way of looking at the difficulties that afflict the smooth functioning of an economy in the presence of commodities that come in large discrete units. The core of an economic model, or of any multilateral competitive situation, may be described as the set of outcomes that are ‘coalition optimal’, in the sense that they cannot be profitably upset by the collusive action of any subset of the participants, acting by themselves. There is no reason, a priori, that such outcomes must exist; the core may well be empty.