Jennifer Elliott Phd Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Jennifer Elliott Phd Thesis STUDIES ON THE PRESERVATION OF FLOWERS Jennifer Elliott A Thesis Submitted for the Degree of PhD at the University of St. Andrews 2002 Full metadata for this item is available in Research@StAndrews:FullText at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/2693 This item is protected by original copyright This item is licensed under a Creative Commons License Studies on the Preservation of Flowers By Jennifer Elliott A thesis submitted for the degree of Doctor of Philosophy in the Faculty of Science at the University of St.Andrews October 2001 Abstract A known method for the preservation of green foliage was adapted in order to preserve floral tissues, retaining the colour and texture, thereby providing a method suitable for the preservation of whole flowers. Initially, the effects of the existing foliage preservation process on floral tissues were studied and the resulting problems of limp sticky petals and colour loss were identified. Subsequently, with a knowledge of basic plant anatomy and of the properties of the main floral pigments, the anthocyanins, a series of experiments on petals and whole flowers were carried out in an attempt to rectify these problems and to incorporate the remedies into a method for preserving whole flowers. The problem of improving the texture and firmness of flower heads was tackled by investigating the effects of adding bulking or setting ingredients to the process fluid and establishing their optimum concentrations. In the case of flower colour, the addition of acid was required in order to maintain the bright anthocyanin colours and a range of acids was investigated. Furthermore, since it is known that in nature the anthocyanin pigments are stabilised by metal ions and copigments, the use of these agents in the preservation process was also considered. This empirical work was then validated by confmning the identity of the main pigments involved and by studying various aspects of the new 11 preservation process. Factors examined included acid concentration, temperature, solvent composition and the addition of metal ions and copigments to solutions of petal extracts containing anthocyanin pigments. Physical changes resulting from processing, including process fluid content and the moisture absorption properties of processed petals were also measured. Finally, the application of a selection of coating materials was assessed in an attempt to increase the life span of the processed flowers by providing extra protection against environmental stresses. m Declaration I, Jennifer Elliott, hereby certify that this thesis, which is approximately 40,000 words in length, has been written by me, that is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree. date ~ ~: .1.9:.9.! .. signature of candidate IV Declaration I was admitted as a research student in March 1998 and as a candidate for the degree of the degree of Doctor of Philosophy in June 1999; the higher study for which this is a record was carried out in the University ofSt.Andrews between 1998 and 2001. date.~ ~L !.9:.9.L signature of candidate v Declaration I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of Doctor of Philosophy in the University of St.Andrews and that the candidate is qualified to submit this thesis in application for that degree. signature of supervisor VI Copyright In submitting this thesis to the University of St.Andrews I wish access to it to be subject to the following conditions: for a period of 5 years from the date of submission, the thesis shall be withheld from use; I, understand, however, that the title and abstract of the thesis will be published during this period of restricted access; and that after the expiry of this period the thesis will be made available for use in accordance with the regulations of the University Library for the time being in force, subject to any copyright in the work not being affected thereby, and a copy of the work may be made and supplied to any bona fide library or research worker. 2Cf'{O'O { d at e ... '" .. , , .. ... signature of "-'UJ.JlU.l\.J.U.L"-' va To my family (including Lizzie) and friends. Vlll Contents Title page 1 Abstract 11 Declarations IV Copyright VB Dedication Vlll Contents IX Abbreviations XXI Chapter 1 Introduction 1 1.1 Background 2 1.2 Aim 4 1.3 Thesis 5 1.4 References 6 Chapter 2 The anatomy of flower bearing plants 7 2.1 Introduction 8 2.2 General structure of the plant 8 2.3 The cell 9 2.3.1 General structure 9 2.3.2 Plastids 10 2.3.3 Vacuoles 10 2.3.4 The cell wall 12 2.4 The leaf 14 2.4.1 General structure 14 2.4.2 The epidermis 15 2.4.3 The mesophyll 16 2.4.4 The vascular tissues 16 IX 2.5 The flower 16 2.5.1 General structure 16 2.5.2 Histology ofsepals and petals 17 2.6 Implications 19 2.7 References 20 Chapter 3 Plant pigments 21 3.1 Introduction 22 3.2 ChlorophyUs 22 3.3 Carotenoids 24 3.4 Flavonoids 26 3.5 The anthocyanins 29 3.5.1 Structure 29 3.5.2 Synthesis 30 3.5.3 Reactions ofjlavylium salts 31 3.5.3.1 General 31 3.5.3.2 Effect of changes in pH 32 3.5.3.3 Sulphite bleaching 34 3.5.3.4 Thermal decomposition 35 3.5.3.5 Photochemical degradation 36 3.5.3.6 Enzymatic degradation 36 3.5.3.7 Oxidative deterioration 37 3.5.3.8 Condensation reactions 38 3.6 Stabilisation of anthocyanins 39 3.6.1 General 39 3.6.2 Molecular association complexes 39 3.6.3 Self-association 42 3.6.4 Intramolecular copigmentation 42 3.6.5 Intermolecular copigmentation 44 3.6.6 Interaction with metals 46 x 3.7 Contribution of anthocyanins to flower colour 47 3.7.1 General 47 3.7.2 Hydroxylation 47 3.7.3 Methylation 48 3.7.4 Glycosylation 49 3.7.5 Concentration 49 3.7.6 Copigmentation 50 3.7.7 Metal complexing 50 3.7.8 Effect ofpH 51 3.7.9 Histological and structural effects 51 3.8 Implications 52 3.9 References 53 Chapter 4 Process development (a qualitative approach) 56 4.1 Introduction 57 4.2 Equipment and materials 57 4.2.1 Heating 57 4.2.2 pH 58 4.2.3 Light exposure 58 4.2.4 Chemicals 58 4.3 The effects of the foliage preservation process on whole flowers 59 4.3.1 General 59 4.3.2 Experimental 60 4.3.3 Results and discussion 60 4.4 The effects of temperature, process time and fluid composition on 60 on the processing of red petals 4.4.1 General 60 4.4.2 Experimental 61 4.4.2.1 Temperature 61 4.4.2.2 Time 61 4.4.2.3 Composition 61 Xl 4.4.3 Results and discussion 62 4.4.3.1 Temperature 62 4.4.3.2 Time 63 4.4.3.3 Composition 64 4.5 The effects of acidification 65 4.5.1 General 65 4.5.2 Experimental 66 4.5.2.1 Addition of acid to a processed petal 66 4.5.2.2 Acidification ofthe process solution with HCI 66 4.5.2.3 Assessment of alternative acids 66 4.5.3 Results and discussion 67 4.5.3.1 Addition of acid to a processed petal 67 4.5.3.2 Acidification ofthe process solution with HCI 68 4.5.3.3 Assessment of alternative acids 68 4.6 Processing of flower heads 70 4.6.1 General 70 4.6.2 Experimental 70 4.6.3 Results and discussion 71 4.7 Two-stage processing of whole flowers 71 4.7.1 General 71 4.7.2 Experimental 72 4.7.3 Results and discussion 72 4.8 One-stage processing of whole flowers 72 4.8.1 General 72 4.8.2 Experimental 73 4.8.2.1 Acidification with HCI 73 4.8.2.2 Acidification with p-toluenesulphonic acid and reduction 73 ofbutan-l,4-diol content 4.8.3 Results and discussion 74 4.8.3.1 Acidification with HCI 74 4.8.3.2 Acidification with p-toluenesulphonic acid and reduction 75 ofbutan-l,4-diol content xu 4.9 The use of propan-2-01 in the final rinse 75 4.9.1 General 75 4.9.2 Experimental 76 4.9.3 Results and discussion 76 4.10 The effects of higher molecular weight diols 76 4.10.1 General 76 4.10.2 Experimental 77 4.10.3 Results and discussion 77 4.11 Processing of whole roses using hexan-l,6-diol as an ingredient 78 4.1l.1 General 78 4.11.2 Experimental 78 4.11.3 Results and discussion 79 4.12 Prevention of growth of hexan-l,6-diol crystals 80 4.12.1 General 80 4.12.2 Experimental 81 4.12.2.1 The use of glycerol in the process solution 81 4.12.2.2 The use of polyethylene glycols in the process solution 82 4.12.2.3 The use ofPolidene coatings 82 4.12.3 Results and Discussion 83 4.12.3.1 The use of glycerol in the process solution 83 4.12.3.2 The use of polyethylene glycols in the process solution 83 4.12.3.3 The use ofPolidene coatings 83 4.13 The effects of adding alternative ingredients to hexan-l,6-diol 84 4.13.1 General 84 4.13.2 Experimental 85 4.13.2.1 Polyethylene glycols as replacements for hexan-1,6-diol 85 4.13.2.2 Sugars as replacements for hexan-l,6-diol 85 4.13.2.3 Polymeric materials as replacements for hexan-l,6-diol 85 4.13.2.4 Polysaccharides as replacements for hexan-I,6-diol 86 4.13.3 Results and discussion 86 4.13.3.1 Polyethylene glycols as replacements for hexan-l,6-diol 86 4.13.3.2 Sugars as replacements for hexan-l,6-diol 87 4.13.3.3 Polymeric materials as replacements for hexan-1,6-diol 88 Xlll 4.13.3.4 Poysaccharides as replacements for hexan-1,6-diol 88 4.14 Reduction of hexan-1,6-diol content 89 4.14.1 General 89 4.14.2 Experimental 89 4.14.3 Results and discussion 89 4.15 The effects of various combinations of acid, copper salt and 90 chlorophyll on the processing of dark and pale coloured flowers 4.15.1 General 90 4.15.2 Experimental 90 4.15.3 Results and discussion 91 4.16 The effects of copper sulphate concentration on the processing of red roses 93 4.16.1 General 93 4.16.2 Experimental 94 4.16.
Recommended publications
  • Graphical Abstract Circular Dichroism of Anthocyanidin 3-Glucoside Self
    Graphical abstract Circular dichroism of anthocyanidin 3-glucoside self-aggregates Raquel Gavara, Vesselin Petrov, Alexandre Quintas, Fernando Pina * The circular dichroism spectra of the six most common anthocyanidin 3-glucoside show the formation of left handed aggregates compatible with dimers. The absorption bands of the monomer split by increasing concentration according to the formation of H and J aggregates. The angle and distance between the transition moments of the two monomers in the dimer was calculated from the splitting of the 0–0 absorption band. While the angle is similar for the series the distance changes dramatically. The intensity of the CD signal is proportional to the inverse of the square of the distance. Highlights Q10 " The circular dichroism spectra of six common anthocyanins 3-glucosides was obtained. " Like 3,5-diglucoside analogous they exhibit left- handed CD signals. " J and H aggregates are formed by concentration increasing. " The distance of the transition moments correlate with the intensity of the CD signal. 1 1 2 Circular dichroism of anthocyanidin 3-glucoside self-aggregates a a b a,⇑ 3 Q1 Raquel Gavara , Vesselin Petrov , Alexandre Quintas , Fernando Pina 4 a REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829516 Monte de Caparica, Portugal 5 b Instituto Superior de Ciencias da Saude Egas Moniz, Centro de Investigação Interdisciplinar Egas Moniz, P-2829511 Monte de Caparica, Caparica, Portugal 6 7 article info a b s t r a c t 1 9 10 Self-association constants for the flavylium cations of the six most common anthocyanidin 3-glucosides 20 11 were determined by circular dichroism (CD) and UV–Vis spectroscopy.
    [Show full text]
  • Overexpression of Thmyc4e Enhances Anthocyanin Biosynthesis in Common Wheat
    International Journal of Molecular Sciences Article Overexpression of ThMYC4E Enhances Anthocyanin Biosynthesis in Common Wheat 1,2,3, 1,2,3, 1,2,3 1,2 1,2,3 1,2,4, Shuo Zhao y, Xingyuan Xi y, Yuan Zong , Shiming Li , Yun Li , Dong Cao * and Baolong Liu 1,2,3,4,* 1 Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; [email protected] (S.Z.); [email protected] (X.X.); [email protected] (Y.Z.); [email protected] (S.L.); [email protected] (Y.L.) 2 Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China 3 College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 4 The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining 810008, China * Correspondence: [email protected] (D.C.); [email protected] (B.L.) These authors contributed equally to this work. y Received: 28 November 2019; Accepted: 23 December 2019; Published: 24 December 2019 Abstract: The basic helix-loop helix (bHLH) transcription factor has been inferred to play an important role in blue and purple grain traits in common wheat, but to date, its overexpression has not been reported. In this study, the bHLH transcription factor ThMYC4E, the candidate gene controlling the blue grain trait from Th. Ponticum, was transferred to the common wheat JW1. The positive transgenic lines displayed higher levels of purple anthocyanin pigments in their grains, leaves and glumes.
    [Show full text]
  • Chemistry and Pharmacology of Kinkéliba (Combretum
    CHEMISTRY AND PHARMACOLOGY OF KINKÉLIBA (COMBRETUM MICRANTHUM), A WEST AFRICAN MEDICINAL PLANT By CARA RENAE WELCH A Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Medicinal Chemistry written under the direction of Dr. James E. Simon and approved by ______________________________ ______________________________ ______________________________ ______________________________ New Brunswick, New Jersey January, 2010 ABSTRACT OF THE DISSERTATION Chemistry and Pharmacology of Kinkéliba (Combretum micranthum), a West African Medicinal Plant by CARA RENAE WELCH Dissertation Director: James E. Simon Kinkéliba (Combretum micranthum, Fam. Combretaceae) is an undomesticated shrub species of western Africa and is one of the most popular traditional bush teas of Senegal. The herbal beverage is traditionally used for weight loss, digestion, as a diuretic and mild antibiotic, and to relieve pain. The fresh leaves are used to treat malarial fever. Leaf extracts, the most biologically active plant tissue relative to stem, bark and roots, were screened for antioxidant capacity, measuring the removal of a radical by UV/VIS spectrophotometry, anti-inflammatory activity, measuring inducible nitric oxide synthase (iNOS) in RAW 264.7 macrophage cells, and glucose-lowering activity, measuring phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression in an H4IIE rat hepatoma cell line. Radical oxygen scavenging activity, or antioxidant capacity, was utilized for initially directing the fractionation; highlighted subfractions and isolated compounds were subsequently tested for anti-inflammatory and glucose-lowering activities. The ethyl acetate and n-butanol fractions of the crude leaf extract were fractionated leading to the isolation and identification of a number of polyphenolic ii compounds.
    [Show full text]
  • Alteration of Anthocyanin Glycosylation in Cranberry Through Interspecific Hybridization
    J. AMER. Soc. HORT. Sci. 130(5):711-715. 2005. Alteration of Anthocyanin Glycosylation in Cranberry Through Interspecific Hybridization Nicholi Vorsa Philip E. Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers University, 125A Lake Oswego Road, Chatsworth, NJ 08019 James J. Polashock1 USDA—ARS Fruit Lab, 125A Lake Oswego Road, Chatsworth, NJ 08019 ADDITIONAL INDEX WORDS. Vaccinium macrocarpon, Vaccinium oxycoccus, antioxidant, bioavailability, flavonoid ABSTRACT. The flavonoids of american cranberry (Vaccinium macrocarpon Alt.) are documented to be beneficial for hu- man health. Among their benefits is a high antioxidant potential, with anthocyanin glycosides being the main contribu- tors. Flavonoid glucose conjugates are reported to be more bioavailable than those with other sugar conjugates. The anthocyanin glycosides of V. macrocarpon fruit are mainly galactosides and arabinosides of the aglycones, cyanidin and peonidin, with less than 8% glucosides. In contrast, the fruit anthocyanins of another cranberry species, V. oxycoccus L. were found to be largely glucosides of cyanidin and peonidin. Interspecific hybrids between these two species were intermediate to the parental species in the proportion of fruit anthocyanin glucosides. About half the progeny (1:1 segregation) in a backcross population (to V. macrocarpon) maintained the relatively high anthocyanin glucoside ratio. In this study, we demonstrate the genetic manipulation of anthocyanin glycosylation in cranberry using interspecific hybridization, resulting in dramatically increased glucose-conjugated anthocyanins. Flavonoids are considered to be secondary metabolites, which The cultivated american cranberry (V. macrocarpon) is recog- have been associated with roles in ultraviolet protection, plant nized for its brilliant red fruit due to an abundance of anthocyanins sexual reproduction, pollinator attraction, symbiotic plant—microbe in the fruit epidermal tissues.
    [Show full text]
  • EEE M W 24B 24A 27B 27A N Patent Application Publication Dec
    US 2009031 1494A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0311494 A1 YAMASHTA et al. (43) Pub. Date: Dec. 17, 2009 (54) RELIEF PRINTING PLATE PRECURSOR FOR (30) Foreign Application Priority Data LASER ENGRAVING, RELIEF PRINTING PLATE, AND PROCESS FOR PRODUCING Jun. 17, 2008 (JP) ................................. 2008-157907 RELEF PRINTING PLATE Feb. 10, 2009 (JP) ................................. 2009-028816 (75) Inventors: Masako YAMASHITA, Publication Classification Shizuoka-ken (JP); Atsushi (51) Int. Cl. SUGASAKI, Shizuoka-ken (JP) B32B 3/00 (2006.01) Correspondence Address: GO3F 7/20 (2006.01) Moss & Burke, PLLC GO3F 7/004 (2006.01) 401 Holland Lane, Suite 407 Alexandria, VA 22314 (US) (52) U.S. Cl. .................... 428/195.1: 430/306: 430/286.1 (73) Assignee: FUJIFILM CORPORATION, (57) ABSTRACT Tokyo (JP) A relief printing plate precursor for laser engraving, including (21) Appl. No.: 12/476,260 a relief forming layer containing (A) a polymerizable com pound having an ethylenic unsaturated bond. (B) a binder (22) Filed: Jun. 2, 2009 polymer, and (C) a compound having deodorizing ability. 11 50 FA - 42 SUB SCANNING DIRECTION -10 - 228 7.s 55 21B EEE m w 24B 24A 27B 27A N Patent Application Publication Dec. 17, 2009 US 2009/0311494 A1 F.G. 1 FA SCANNING DIRECTION 7OA a. CSy ra & 5A - 27WSNS AD 23Ar S3EEASEE21 E-25sagaa EEEEEEEEEEEEEEEEEEEEEEEEE-22s awslighlights fskillsw. 21B 2 TTT "TT". US 2009/031 1494 A1 Dec. 17, 2009 RELEF PRINTING PLATE PRECURSORFOR mask to develop and remove an uncured area, and there is LASER ENGRAVING, RELIEF PRINTING room for improvement since development treatment is nec PLATE, AND PROCESS FOR PRODUCING essary.
    [Show full text]
  • Research Article Simultaneous Extraction Optimization And
    Hindawi Publishing Corporation ISRN Biotechnology Volume 2013, Article ID 450948, 10 pages http://dx.doi.org/10.5402/2013/450948 Research Article Simultaneous Extraction Optimization and Analysis of Flavonoids from the Flowers of Tabernaemontana heyneana by High Performance Liquid Chromatography Coupled to Diode Array Detector and Electron Spray Ionization/Mass Spectrometry Thiyagarajan Sathishkumar,1 Ramakrishnan Baskar,1 Mohan Aravind,1 Suryanarayanan Tilak,1 Sri Deepthi,1 and Vellalore Maruthachalam Bharathikumar2 1 Department of Biotechnology, Kumaraguru College of Technology, Coimbatore 641049, India 2 Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5 Correspondence should be addressed to iyagarajan Sathishkumar; [email protected] Received 24 June 2012; Accepted 9 August 2012 Academic Editors: Y. H. Cheong, H. Kakeshita, W. A. Kues, and D. Pant Copyright © 2013 iyagarajan Sathishkumar et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Flavonoids are exploited as antioxidants, antimicrobial, antithrombogenic, antiviral, and antihypercholesterolemic agents. Normally, conventional extraction techniques like soxhlet or shake �ask methods provide low yield of �avonoids with structural loss, and thereby, these techniques may be considered as inefficient. In this regard, an attempt was made to optimize the �avonoid extraction using orthogonal design of experiment and subsequent structural elucidation by high-performance liquid chromatography-diode array detector-electron spray ionization/mass spectrometry (HPLC-DAD-ESI/MS) techniques. e shake �ask method of �avonoid extraction was observed to provide a yield of (mg/g tissue). With the two different solvents, namely, ethanol and ethyl acetate, tried for the extraction optimization of �avonoid, ethanol (80.1 mg/g tissue) has been proved better than ethyl acetate (20.5 mg/g tissue).
    [Show full text]
  • Transcriptomic and Metabolomic Joint Analysis Reveals Distinct Flavonoid Biosynthesis Regulation for Variegated Testa Color Deve
    Transcriptomic and metabolomic joint analysis reveals distinct flavonoid biosynthesis regulation for variegated testa color development in peanut (Arachis hypogaea L.) Mengdie Hu1,Jiawei Li1, Mingyu Hou1,Xiaoqing Liu1,Shunli Cui1,Xinlei Yang1,Lifeng Liu1,Xiaoxia Jiang2, Guojun Mu1* 1.North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China 071001. 2.Hebei Yiyuan Ecological Agriculture Technology Co, Ltd, Baoding, China 074200 [email protected] (M.H.);[email protected] (J.L.);[email protected] (M.H.);[email protected] (X.L.); [email protected] (S.C.);[email protected] (L.Y.);[email protected] (L.L.);[email protected] (X.J.) * Correspondence:[email protected];Tel:+86-1380-326-0389 Abstract: Peanut (Arachis hypogaea L.) is one of the important oil and economic crops, among which the variegated testa peanut is a unique member. But the molecular mechanisms underlying the pigment synthesis in variegated testa are still unclear. Differentially expressed genes (DEGs) in pigment metabolism pathway in colored area indicated there were 27 DEGs highly related to the synthesis of variegated testa color among 1,050 DEGs,which were 13 up-regulated and 14 down-regulated,consisting of 3 PALs, 1 C4H, 2 CHSs, 1 F3H, 1 F3'H, 2 DFRs, 2 LARs, 2 IAAs, 4 bHLHs and 9 MYBs. GO analysis indicated DEGs were similarly enriched in 3 branches.KEGG analysis suggested flavonoid biosynthesis is the most direct metabolic pathway for the synthesis of testa variegation.The liquid chromatography tandem mass spectrometry (LC-MS/MS) results showed that cyanidin and delphinidin were the main metabolites that caused the color difference between the colored area and the non-colored area.
    [Show full text]
  • Figure S1. Heat Map of R (Pearson's Correlation Coefficient)
    Figure S1. Heat map of r (Pearson’s correlation coefficient) value among different samples including replicates. The color represented the r value. Figure S2. Distributions of accumulation profiles of lipids, nucleotides, and vitamins detected by widely-targeted UPLC-MC during four fruit developmental stages. The colors indicate the proportional content of each identified metabolites as determined by the average peak response area with R scale normalization. PS1, 2, 3, and 4 represents fruit samples collected at 27, 84, 125, 165 Days After Anthesis (DAA), respectively. Three independent replicates were performed for each stages. Figure S3. Differential metabolites of PS2 vs PS1 group in flavonoid biosynthesis pathway. Figure S4. Differential metabolites of PS2 vs PS1 group in phenylpropanoid biosynthesis pathway. Figure S5. Differential metabolites of PS3 vs PS2 group in flavonoid biosynthesis pathway. Figure S6. Differential metabolites of PS3 vs PS2 group in phenylpropanoid biosynthesis pathway. Figure S7. Differential metabolites of PS4 vs PS3 group in biosynthesis of phenylpropanoids pathway. Figure S8. Differential metabolites of PS2 vs PS1 group in flavonoid biosynthesis pathway and phenylpropanoid biosynthesis pathway combined with RNA-seq results. Table S1. A total of 462 detected metabolites in this study and their peak response areas along the developmental stages of apple fruit. mix0 mix0 mix0 Index Compounds Class PS1a PS1b PS1c PS2a PS2b PS2c PS3a PS3b PS3c PS4a PS4b PS4c ID 1 2 3 Alcohols and 5.25E 7.57E 5.27E 4.24E 5.20E
    [Show full text]
  • Effects of Anthocyanins on the Ahr–CYP1A1 Signaling Pathway in Human
    Toxicology Letters 221 (2013) 1–8 Contents lists available at SciVerse ScienceDirect Toxicology Letters jou rnal homepage: www.elsevier.com/locate/toxlet Effects of anthocyanins on the AhR–CYP1A1 signaling pathway in human hepatocytes and human cancer cell lines a b c d Alzbeta Kamenickova , Eva Anzenbacherova , Petr Pavek , Anatoly A. Soshilov , d e e a,∗ Michael S. Denison , Michaela Zapletalova , Pavel Anzenbacher , Zdenek Dvorak a Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 11, 783 71 Olomouc, Czech Republic b Institute of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic c Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Heyrovskeho 1203, Hradec Kralove 50005, Czech Republic d Department of Environmental Toxicology, University of California, Meyer Hall, One Shields Avenue, Davis, CA 95616-8588, USA e Institute of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic h i g h l i g h t s • Food constituents may interact with drug metabolizing pathways. • AhR–CYP1A1 pathway is involved in drug metabolism and carcinogenesis. • We examined effects of 21 anthocyanins on AhR–CYP1A1 signaling. • Human hepatocytes and cell lines HepG2 and LS174T were used as the models. • Tested anthocyanins possess very low potential for food–drug interactions. a r t i c l e i n f o a b s t r a c t
    [Show full text]
  • Glycosides and Oligosaccharides in the L-Rhamnose Series
    [Agr. Biol. Chem., Vol. 31, No. 2, p. 133•`136, 1967] Glycosides and Oligosaccharides in the L-Rhamnose Series Part I. Enzymatic Partial Hydrolysis of Flavonoid-glycosides By Shintaro KAMIYA,Sachiko ESAKIand Misao HAMA Laboratoryof FoodChemistry, Shizuoka Women's Junior College,Shizuoka ReceivedJuly 9, 1966 Naringinase, which was induced from Aspergillus niger, consisted ƒÀ-D-glucosidase and ƒ¿-L-rhamnosidase. The former was successfully inactivated by heating the crude enzyme solution at 60•Ž and pH 6.4-,-6.8, whereas the latter was very stable under such treat ment. By using this enzyme solution flavonoid gycosides were partially hydrolyzed and prunin from naringin, isosakuranin from poncirin, hesperetin-7-ƒÀ-D-glucoside from hesperidin and neohesperidin, isoquercitrin from rutin, cosmociin from rhoifolin were obtained respec tively in good yields. Furthermore kaempherol-3-robinobioside, a new flavonol glycoside, and afzelin were obtained from robinin and kaempheritrin, respectively. INTRODUCTION components ƒÀ-D glucosidase and ƒ¿-L-rhamno The flavonoid-glycosides, which contain L- sidase. The authors have found that ƒÀ-D- rhamnose, widely occur in nature. Rhamno glucosidase was inactivated by heating at glucoside rutin, hesperidin, neohesperidin, 60•Ž pH 6.4-6.8, though the latter was very naringin, poncirin and rhoifolin are the most stable under such treatment. readily available flavonoid compounds at Furthermore partial hydrolysis of robinin present. The glucosides corresponding to the and kaempheritrin by the same enzyme gave above rhamnoglucosides, which are desired kaempherol-3-robinobioside, a new flavonoid, for biological testing have not been available. and afzelin as the result. To our knowledge, partial hydrolysis of the EXPERIMENTAL rhamnoglucosides to remove only the rham nose and leave the glucose still attached to 1) The Preparation of Enzyme Solution the flavonoid portion has been very difficult.
    [Show full text]
  • Anodic Behaviour of Flavonoids Orientin, Eriodictyol and Robinin at a Glassy Carbon Electrode
    Full Paper Anodic Behaviour of Flavonoids Orientin, Eriodictyol and Robinin at a Glassy Carbon Electrode Eric de Souza Gil,a, b Adrian Teodor Enache,a Ana Maria de Oliveira-Brett*a a Departamento de Qumica, Faculdade de CiÞncias e Tecnologia, Universidade de Coimbra, 3004–535 Coimbra, Portugal b Faculdade de Farmcia, Universidade Federal de Gois, 74605–220, Goinia, Gois, Brasil *e-mail: [email protected] Received: April 20, 2012;& Accepted: May 31, 2012 Abstract Orientin, eriodictyol and robinin are polyphenolic compounds, and their oxidation mechanism is pH-dependent, in two steps, involving a different number of electrons and protons. Orientin and eriodictyol first oxidation occurs at a lower potential, corresponding to the reversible oxidation of the catechol group, and is followed by an irreversible oxidation on the ring-A at more positive potential. Robenin oxidation is irreversible, with the formation of electro- active products, and occurs at ring-A and ring-B. The electrochemical characterization of their redox behaviour brought useful data about their chemical stability, antioxidant and pro-oxidant activity, enabling a comprehensive understanding of their redox mechanism. Keywords: Orientin, Eriodictyol, Robinin, Oxidation, Glassy carbon electrode. DOI: 10.1002/elan.201200211 1 Introduction Orientin is a flavone, found in passion flower, bamboo leaves, aÅai pulps and wardii berries [5–7]. Chemically is Flavonoids constitute, among other compounds, an impor- the 8-C glucoside of the widespread citrus flavone, luteo- tant class of antioxidants that inhibit the oxidative degra- lin [8]. dation of organic materials including a large number of Eriodictyol, 3’,4’,5,7-tetrahydroxyflavanone, is found in biological aerobic organisms and commercial products.
    [Show full text]
  • ABSTRACT YUZUAK, SEYIT. Utilizing Metabolomics and Model Systems
    ABSTRACT YUZUAK, SEYIT. Utilizing Metabolomics and Model Systems to Gain Insight into Precursors and Polymerization of Proanthocyanidins in Plants (Under the direction of Dr. De-Yu Xie). Proanthocyanidins (PAs) are oligomers or polymers of flavan-3-ols. In plants, PAs have multiple protective functions against biotic and abiotic stresses. PAs are also important nutraceuticals existing in common beverages and food products to benefit human health. To date, although the biosynthesis of PAs has been intensively studieed and fundamental progress has been made in over the past decades, many questions remain unanswered. For example, its direct precursors of extension units are unknown and their monomer structure diversity are also unclear. These questions about proanthocyanidins result from not having of model systems and effective technologies. Our laboratory has made significant progress in enhancing the understanding of these unknown and unclear points regarding proanthocyanidins. In my dissertation research reported here, I focus on two areas: testing muscadine as a crop system to develop metabolomics for studying precursor diversity and isolating enzymes from a red cell tobacco system to understand the precursors of the extension units of PA. First, I developed a metabolomics protocol to analyze anthocyanidins and anthocyanins in muscadine grape. This study demonstrated that muscadine berries can produce at least six anthocyanidins, revealing the diversity of pathway precursors for PAs. The Journal of Agriculture and Food Chemistry is reviewing this work. Second, I developed a metabolomics protocol of HPLC-qTOF-MS/MS to analyze flavan- 3-ols and dimeric PAs in muscadine grape. This study also demonstrated the high structure diversity of flavan-3-ols, particularly methylated flavan-3-ols.
    [Show full text]