Ontology, Data, and the Tower of Babel Problem Andrew J

Total Page:16

File Type:pdf, Size:1020Kb

Ontology, Data, and the Tower of Babel Problem Andrew J Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations 4-2016 A black art: Ontology, data, and the Tower of Babel problem Andrew J. Iliadis Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Communication Commons, Library and Information Science Commons, and the Metaphysics Commons Recommended Citation Iliadis, Andrew J., "A black art: Ontology, data, and the Tower of Babel problem" (2016). Open Access Dissertations. 663. https://docs.lib.purdue.edu/open_access_dissertations/663 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. i A BLACK ART: ONTOLOGY, DATA, AND THE TOWER OF BABEL PROBLEM A Dissertation Submitted to the Faculty of Purdue University by Andrew J Iliadis In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2016 Purdue University West Lafayette, Indiana ii For my parents iii ACKNOWLEDGEMENTS I would like to acknowledge the support of the Brian Lamb School of Communication and the Department of Philosophy at Purdue University. I would also like to thank my co- advisors and committee members, including Dr. Ashley R. Kelly, Dr. Daniel W. Smith, Dr. Sorin A. Matei, and Dr. Daniel R. Kelly. A special thank you to my parents, Cathy and Jim, and to my brother, Michael. I could not have done this without your support. iv TABLE OF CONTENTS Page LIST OF TABLES ............................................................................................................. vi LIST OF FIGURES .......................................................................................................... vii LIST OF ABBREVIATIONS ............................................................................................ ix ABSTRACT ........................................................................................................................ x CHAPTER 1. THE TOWER OF BABEL PROBLEM .................................................... 1 1.1 Introduction ............................................................................................................... 1 1.2 Philosophical and Computational Ontology ............................................................. 5 1.3 Ontology as Communication ................................................................................... 11 1.4 Ontologies of Life and Death .................................................................................. 14 1.5 A Theory of Informational Ontology and Technologies of Individuation .............. 18 1.6 The Tower of Babel Problem .................................................................................. 23 1.7 Computational Ontology and Science and Technology Studies ............................. 29 1.8 Informational Ontology as a Realism of Relations ................................................. 36 1.9 Method and Framework .......................................................................................... 50 CHAPTER 2. PHILOSOPHICAL ONTOLOGY .......................................................... 52 2.1 Chapter Summary .................................................................................................... 52 2.2 Philosophy’s Influence on Applied Ontology ......................................................... 52 2.3 Realism, Conceptualism, Nominalism .................................................................... 57 2.4 Realism-Based Applied Ontology is a Method ....................................................... 60 2.5 Aristotle’s Ontological Square ................................................................................ 61 2.6 Husserl’s Formal Ontology – Formal Logic Distinction ........................................ 65 2.7 Ingarden’s Ontological Essence of Time ................................................................ 70 2.8 Ontological Realism in Modern Applied Ontology ................................................ 74 v Page CHAPTER 3. SCIENTIFIC ONTOLOGY AS COMMUNICATION .......................... 78 3.1 Chapter Summary .................................................................................................... 78 3.2 Ontology as a Community Practice ......................................................................... 78 3.3 Realism-Based Ontology Groups and their Institutions .......................................... 82 3.4 The Data Smiths ...................................................................................................... 87 3.5 Communities in Ontology History: Conferences, Email Lists, Organizations ....... 96 CHAPTER 4. BASIC FORMAL ONTOLOGY AND THE FOUNDRY ................... 104 4.1 Chapter Summary .................................................................................................. 104 4.2 The Basic Formal Ontology Discuss Group ......................................................... 105 4.3 I’d Rather Share My Toothbrush (Referent Tracking) .......................................... 115 4.4 The Method of Individuation: SNAP and SPAN .................................................. 121 4.5 Basic Formal Ontology, Upper Ontologies, and Domain Ontologies ................... 128 4.6 The Open Biological and Biomedical Ontologies Foundry .................................. 146 CHAPTER 5. CRITICAL DATA STUDIES, ONTOLOGY, AND ETHICS ............. 152 5.1 Chapter Summary .................................................................................................. 152 5.2 Critical Data Studies .............................................................................................. 153 5.3 Ontology in Context and Social Ontology ............................................................ 162 5.4 Military Ontology .................................................................................................. 167 5.5 Virtual Science ...................................................................................................... 175 5.6 Final Remarks ....................................................................................................... 178 REFERENCES ............................................................................................................... 180 APPENDICES Appendix A Interview Questions .................................................................................... 200 Appendix B BFO Ontologies and their Contexts............................................................ 202 VITA ............................................................................................................................... 209 PUBLICATIONS ............................................................................................................ 224 vi LIST OF TABLES Table .............................................................................................................................. Page 1 Ethics Matrix ................................................................................................................ 161 Appendix Table BFO Ontologies and their Contexts ................................................................................ 202 vii LIST OF FIGURES Figure ............................................................................................................................. Page 1.1 Tagged Scientific Article ............................................................................................ 22 1.2 Google Ngram Search Results for “Ontology” ........................................................... 33 1.3 Ontology as a Specification of a Conceptualization ................................................... 37 1.4 Example of Referent Tracking Confusion .................................................................. 39 1.5 Floridi’s SLMS Scheme with Ontological Commitment............................................ 46 1.6 Floridi’s SLMS Scheme with Ordered Ontological Commitment ............................. 48 1.7 Transparent Partitions of One and the Same Reality .................................................. 49 2.1 Aristotle’s Ontological Square .................................................................................... 63 2.2 Poli’s Logical-Formal and Ontological-Formal Concepts .......................................... 68 2.3 First-Order Logic with Universal Terms .................................................................... 76 3.1 Ontology vs. Controlled Vocabulary in PubMed/MEDLINE .................................... 81 4.1 BFO Discuss – the Basic Formal Ontology Google Group ...................................... 107 4.2 Debate in the BFO Discuss Google Group ............................................................... 112 4.3 Military Referent Tracking ....................................................................................... 119 4.4 SPAN and SPAN Entities ......................................................................................... 124 4.5 Cuts of Meat and a Map of the United States ........................................................... 126 4.6 Taxonomy of Fiat and Bona Fide Entities ................................................................ 127 4.7 Blood Ontology Website........................................................................................... 131 4.8 Basic Formal Ontology Website ............................................................................... 133 4.9 Information Artifact Ontology
Recommended publications
  • Functions in Basic Formal Ontology
    Applied Ontology 11 (2016) 103–128 103 DOI 10.3233/AO-160164 IOS Press Functions in Basic Formal Ontology Andrew D. Spear a,∗, Werner Ceusters b and Barry Smith c a Philosophy Department, Grand Valley State University, 1 Campus Drive, Allendale, MI 49401, USA Tel.: +1 616 331 2847; Fax: +1 616 331 2601; E-mail: [email protected] b Departments of Biomedical Informatics and Psychiatry, University at Buffalo, 77 Goodell street, Buffalo, NY 14203, USA E-mail: [email protected] c Department of Philosophy, University at Buffalo, 135 Park Hall, Buffalo, NY 14260, USA E-mail: [email protected] Abstract. The notion of function is indispensable to our understanding of distinctions such as that between being broken and being in working order (for artifacts) and between being diseased and being healthy (for organisms). A clear account of the ontology of functions and functioning is thus an important desideratum for any top-level ontology intended for application to domains such as engineering or medicine. The benefit of using top-level ontologies in applied ontology can only be realized when each of the categories identified and defined by a top-level ontology is integrated with the others in a coherent fashion. Basic Formal Ontology (BFO) has from the beginning included function as one of its categories, exploiting a version of the etiological account of function that is framed at a level of generality sufficient to accommodate both biological and artifactual functions. This account has been subjected to a series of criticisms and refinements. We here articulate BFO’s account of function, provide some reasons for favoring it over competing views, and defend it against objections.
    [Show full text]
  • A Definition of Ontological Category
    Two Demarcation Problems In Ontology Pawel Garbacz Department of Philosophy John Paul II Catholic University of Lublin, Poland Abstract his or her research interests. Or if not, then everything goes into the scope. In this paper I will attempt to characterise the difference be- This paper is then about the proper subject matter of ap- tween ontological and non-ontological categories for the sake of a better understanding of the subject matter of ontology. plied ontology. I will attempt to draw a demarcation line My account of ontological categories defines them as equiva- between ontological and non-ontological categories. To this lence classes of a certain family of equivalence relations that end I will search for the proper level of generality of the lat- are determined by ontological relations. As a result, the de- ter by looking at how philosophical ontology defines its sub- marcation problem for ontological categories turns out to be ject matter. I will discuss a number of attempts to capture the dependent on the demarcation problem for ontological rela- specific nature of the ontological categories, as they are used tions. in philosophy, and on the basis of this survey I outline my own proposal. The main point of my contribution is the idea Introduction that ontological categories are the most general categories that cut the reality at its joints, where cutting is provided There are a lot of ontologies out there. (Ding et al., 2005) by ontological relations. In consequence it will turn out that claim to harvest from the Internet more than 300 000 Se- this account depends on how one can draw a demarcation mantic Web documents, of which 1.5% may be unique on- line between ontological and non-ontological relations.
    [Show full text]
  • Automated Ontology Creation Using XML Schema Elements
    Automated Ontology Creation using XML Schema Elements Samuel Suhas Singapogu, Paulo C. G. Costa, J. Mark Pullen C4I center, George Mason University Fairfax, VA, USA [ssingapo,pcosta,mpullen]@c4i.gmu.edu Abstract—Ontologies are commonly used to represent formal semantics in a computer system, usually capturing them in the Although ontologies are valuable assets in system model- form of concepts, relationships and axioms. Axioms convey ing, testing and analysis, the process of manually creating an asserted knowledge and support inferring new knowledge ontology for a complex system is inherently tedious and through logical reasoning. For complex systems, the process of error prone. Existing methods of knowledge discovery and creating ontologies manually can be tedious and error-prone. ontology creation usually are based on text mining of a data Many automated methods of knowledge discovery are based on mining domain text corpus, but current state-of-the-art meth- corpus for that domain. XML-based systems capture the ods using this approach fail to consider properly semantic data structure and syntax of all necessary and meaningful ele- embedded in XML schemata in complex systems. This paper ments in a XML schema, which therefore is a useful starting proposes a mapping method for identifying relevant semantic point for semantic analysis. In such systems, XML schemata data in XML schemata, automatically structuring and repre- have been shown to be a valuable resource of semantic data senting it in the form of a draft ontology. Concepts, concept [2]. Command and Control systems in the military context hierarchy and domain relationships from XML schema are support various functions, including commanding of forces mapped to relevant parts of an OWL ontology.
    [Show full text]
  • GMS 6805: Introduction to Applied Ontology Location
    GMS 6805: Introduction to Applied Ontology Location: Online, TBA Class Hours: Wednesdays 1:55-3:50 pm Instructor: Mathias Brochhausen, PhD Office: 3226, Clinical and Translational Science Building Email: [email protected] Phone: 501-831-3119 Office Hours: By Appointment Course Description: Applied ontology is a sub-discipline of knowledge representation that develops resources that make the meaning of terms processable by computers to improve interoperability of data and to support reasoning with digital knowledge bases. This course introduces students to the fundamentals of applied ontology and its role in biomedical informatics. Students will learn what ontologies are, how they differ from similar resources and how they are implemented in knowledge management environments. Course Prerequisites: None, but PHI 6105: Seminar in Logic, or experience with symbolic logic, is an asset. Course Objectives: • Describe the need for semantic integration of biomedical data • Identify the components of the Semantic Web technology and the goals of Semantic Web Technologies • Describe how ontologies fit into the Semantic Web paradigm and the role of Applied Ontology within in • Understand the computational principles behind ontology development and implementation • Describe how ontological artifacts differ terminologies and other semantic resources • Articulate standards and criteria for good ontologies and evaluate ontologies in light of these criteria • Illustrate common pitfalls of ontology development • Create a domain ontology in an ontology editor such as Protégé • Construct queries that demonstrate an understanding of the logical principles of ontologies and the Semantic Web Course Texts: Required Tests: Antoniou, G. (2012). A Semantic Web Primer. Cambridge, MA: The MIT Press. Arp, R. et al.
    [Show full text]
  • Ontology, Ontologies, and Science
    Ontology, Ontologies, and Science Gary H. Merrill This is the “final accepted version” of the manuscript, made publicly available in accord with the policies of SpringerNature. The final publication in the journal Topoi (April 2011, Volume 30, Issue 1, pp 71–83) is available via http://dx.doi.org/10.1007/s11245-011-9091-x ABSTRACT Philosophers frequently struggle with the relation of metaphysics to the everyday world, with its practical value, and with its relation to empirical science. This paper distinguishes several different models of the relation between philosophical ontology and applied (scientific) ontology that have been advanced in the history of philosophy. Adoption of a strong participation model for the philosophical ontologist in science is urged, and requirements and consequences of the participation model are explored. This approach provides both a principled view and justification of the role of the philosophical ontologist in contemporary empirical science as well as guidelines for integrating philosophers and philosophical contributions into the practice of science. Introduction Metaphysicians, when explaining or justifying their calling, tend to be a mournful and defensive lot while at the same time extolling the intellectual, moral, and spiritual virtues of metaphysics and its practice. A classic example is found in Russell's The Problems of Philosophy where he argues that philosophy as a discipline is not quite as fruitless as it may appear: Philosophy, like all other studies, aims primarily at knowledge.... But it cannot be maintained that philosophy has had any very great measure of success in its attempts to provide definite answers to its questions.... It is true that this is partly accounted for by the fact that as soon as definite knowledge concerning any subject becomes possible, this subject ceases to be called philosophy, and becomes a separate science...
    [Show full text]
  • Ontology-Based Approach for Structural Design Considering Low Embodied Energy and Carbon
    This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: http://orca.cf.ac.uk/73163/ This is the author’s version of a work that was submitted to / accepted for publication. Citation for final published version: Hou, Shangjie, Li, Haijiang and Rezgui, Yacine 2015. Ontology-based approach for structural design considering low embodied energy and carbon. Energy and Buildings 102 , pp. 75-90. 10.1016/j.enbuild.2015.04.051 file Publishers page: http://dx.doi.org/10.1016/j.enbuild.2015.04.051 <http://dx.doi.org/10.1016/j.enbuild.2015.04.051> Please note: Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper. This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders. Accepted Manuscript Title: Ontology-based approach for structural design considering low embodied energy and carbon Author: Shangjie Hou Haijiang Li Yacine Rezgui PII: S0378-7788(15)00350-3 DOI: http://dx.doi.org/doi:10.1016/j.enbuild.2015.04.051 Reference: ENB 5843 To appear in: ENB Received date: 14-11-2014 Revised date: 21-4-2015 Accepted date: 28-4-2015 Please cite this article as: S.
    [Show full text]
  • Introduction to Applied Ontology and Ontological Analysis
    First Interdisciplinary Summer School on Ontological Analysis Introduction to Applied Ontology and Ontological Analysis Nicola Guarino National Research Council, Institute for Cognitive Science and Technologies (ISTC-CNR) Laboratory for Applied Ontology (LOA) www.loa.istc.cnr.it Applied Ontology: an emerging interdisciplinary area • Applied Ontology builds on philosophy, cognitive science, linguistics and logic with the purpose of understanding, clarifying, making explicit and communicating people's assumptions about the nature and structure of the world. • This orientation towards helping people understanding each other distinguishes applied ontology from philosophical ontology, and motivates its unavoidable interdisciplinary nature. ontological analysis: study of content (of these assumptions) as such (independently of their representation) 4 Ontological analysis and conceptual modeling Conceptual modeling is the activity of formally describing some aspects of the physical and social world around us for the purposes of understanding and communication (John Mylopoulos) Focusing on content Do we know what to REpresent? • First analysis, • THEN representation… Unfortunately, this is not the current practice… • Computer scientists have focused on the structure of representations and the nature of reasoning more than on the content of such representations Essential ontological promiscuity of AI: any agent creates its own ontology based on its usefulness for the task at hand (Genesereth and Nilsson 1987) No representation without ontological
    [Show full text]
  • God, Approximately, by Brian Cantwell Smith
    God, Approximately • 4 Brian Cantwell Smith* Preamble Consider the rise of the religious right: Muslim and Hindu fundamentalism, right-wing Zionism, the Christian moral majority. These movements are re- sponding to—and exploiting—a widespread social hunger: a sense that reign- ing secular, scientific, and capitalist world views don’t supply what matters: ways to tell right from wrong, guidance to anchor individual lives and give them meaning, the wherewithal to resolve ethical dilemmas. I find many of the fundamentalists’ answers appalling: bigoted, mean- spirited, scary. But what are those of us on the left—we scientists, we intellec- tuals, we in the academy—doing about this heartfelt lack? If we don’t recog- nise (and respond to) the yearning—if, willfully or unwittingly, we remain blind to the hunger—then we have no leg to stand on, in criticising others' replies. What we need are better answers: frameworks to stir compassion, give meaning to lives, combat prejudice, secure a modicum of economic well- being, preserve the planet. These frameworks must be global; it is too late for parochial sectarianism. And they must build on the best in science. We need to move forwards, not back. This talk is offered as a step in that direction. (A note to those who are allergic to religious language: you have my sympathy. In fact you almost have my company. But I have come to believe that the questions *Cognitive Science, Computer Science, and Philosophy Comments welcome Indiana University, Bloomington, in 47405 use [email protected] Copyright © 1998 Brian Cantwell Smith Version of November 24, 1998 Note: Several different versions of this paper—or rather, different papers with the title “God, Approximately”—have been presented over the past year.
    [Show full text]
  • The Foundations of Computing
    Draft: version 0,94 (b) Not for distribution, citation, or … Comments welcome The Foundations of Computing Brian Cantwell Smith* Computer and Cognitive Science Departments Indiana University, Bloomington, in 47405 usa Will computers ever be conscious? Is it appro- 1. Empirical: It must do justice to computa- priate—correct, illuminating, ethical—to un- tional practice (e.g., be capable of explaining derstand people in computational terms? Will Microsoft Word: the program, its construc- quantum, dna, or nanocomputers radically alter tion, maintenance, and use); our conception of computation? How will com- 2. Conceptual: It must discharge all intellectual puting affect science, the arts, intellectual his- debts (e.g., to semantics), so that we can un- tory? derstand what it says, where it comes from, I have never known how to answer these what it costs; and questions, because I have never been sure what computation is. More than twenty-five years 3. Cognitive: It must provide a tenable founda- ago, this uncertainty led me to undertake a tion for the computational theory of long-term investigation of the foundations of mind—the thesis, sometimes known as “cog- computer science and artificial intelligence. nitivism,” that underlies artificial intelligence That study is now largely complete. My aim in and cognitive science. this paper is to summarise some of the results.1 The first, empirical, requirement, of doing jus- tice to practice, helps to keep the analysis 1. Project grounded in real-world examples. It is hum- bling, too, since the computer revolution so reli- The overall goal has been to develop a compre- ably adapts, expands, dodges expectations, and hensive theory of computation.
    [Show full text]
  • Transforming Recursive Relationships to OWL2 Components
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 10, No. 10, 2019 Ontology Learning from Relational Databases: Transforming Recursive Relationships to OWL2 Components 1 Mohammed Reda CHBIHI LOUHDI Hicham BEHJA2 Research Laboratory on computer science innovation (LRII) LRI - Laboratory Faculty of Science Aïn Chock Casablanca ENSEM, Hassan II University Hassan II University, Casablanca, Morocco Casablanca, Morocco Abstract—Relational databases (RDB) are widely used as a ontologies provide classes, properties, individuals, and data backend for information systems, and contain interesting values and are stored as Semantic Web documents [3]. structured data (schema and data). In the case of ontology learning, RDB can be used as knowledge source. Multiple There are many approaches that transform a RDB to an approaches exist for building ontologies from RDB. They mainly ontology. Three main techniques are used: (1) Reverse use schema mapping to transform RDB components to Engineering, to convert the relational model to the conceptual ontologies. Most existing approaches do not deal with recursive model (which is considered as semantically richer than the relationships that can encapsulate good semantics. In this paper, relational model) or to retrieve lost information during the two technics are proposed for transforming recursive transformation of the conceptual model to the relational model, relationships to OWL2 components: (1) Transitivity mechanism (2) Schema Mapping, to convert relational model components and (2) Concept Hierarchy. The main objective of this work is to to ontology components, through the use of transformation build richer ontologies with deep taxonomies from RDB. rules and (3) Data Mining to analyze stored data in order to enrich the ontology.
    [Show full text]
  • Ontology Life Cycle: a Survey on the Ontology and Its Development Steps
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 Ontology Life Cycle: A Survey on the Ontology and its Development Steps Eiman Alsiddig Altayeb Ibrahim1, Mohammed Awad Mohammed Ataelfadiel2 1Sudan University of Science and Technology, College of Computer Science and Information Technology, Khartoum – Sudan 2Computer Science dept. AL-Imam MuhommedIbn Saud Islamic University, AL-Ahsa, Kingdom of Saudi Arabia Abstract: In the last decades, the turnout has become great for the use of ontology in various fields, such as web technologies, database integration, multi agent systems, natural language processing, etc... The main goal of this paper is to answer generic questions about ontologies, such as: What is the ontology? Which are the different Types of ontologies? What is the purpose of the use of ontologies in an application? Which methods can I use to build ontology? During the paper we discussed the definition of Ontology, types of ontologies (Formal and Informal ontology) and its Component.Also, highlighted some of the languages used in the construction of the Ontologies beside the ontology Building Tools. In addition, we listed the agreed steps for building the Ontology. In conclusion, we did not overlook to mention some of the Ontology projects specifically in Holy Quran Domain. Keywords: Ontology Definition, Ontology Types, Ontology Building Tools, Ontology languages, Ontology components, Ontology Engineering 1. Introduction 2. Ontology Definition Historically, ontologies arise out of the branch of philosophy There are many interpretations about what ontology is. In fact, known as metaphysics, which deals with the nature of reality – hot discussions are often done in many meetings on ontology.
    [Show full text]
  • An Approach to Formalizing Ontology Driven Semantic Integration: Concepts, Dimensions and Framework Wenlong Gao
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2012 An Approach to Formalizing Ontology Driven Semantic Integration: Concepts, Dimensions and Framework Wenlong Gao Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF COMMUNICATION AND INFORMATION AN APPROACH TO FORMALIZING ONTOLOGY DRIVEN SEMANTIC INTEGRATION: CONCEPTS, DIMENSIONS AND FRAMEWORK By WENLONG GAO A Dissertation submitted to the School of Library and Information Studies In partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Spring Semester, 2012 Wenlong Gao defended this dissertation on December 9, 2011 The members of the supervisory committee were: Corinne Jörgensen Professor Directing Dissertation Daniel Schwartz University Representative Ian Douglas Committee Member Besiki Stvilia Committee Member The Graduate School has verified and approved the above-named committee members and certifies that the dissertation has been approved in accordance with university requirements. ii For my parents, I could not have done this without you. iii ACKNOWLEDGEMENTS This dissertation could not have been completed without the tremendous support and help of my dissertation committee, friends and family. First, I would like to thank Dr. Corinne Jörgensen, my dissertation chair and mentor. You supported me through this entire process, and encouraged me whenever I encountered challenges. I will always appreciate the trust and confidence you placed in me. It has been an honor and privilege to be your doctoral student. Second, I am thankful for other committee members, Dr. Ian Douglas, Dr. Besiki Stvilia, Dr. Daniel Schwartz, who inspired me not only throughout the dissertation development but also though my personal academic development.
    [Show full text]