Characterization of Cyclic Adenosine Monophosphate/Protein Kinase a Signalling Networks in Blood Platelets. Zaher Raslan a Thesi

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Cyclic Adenosine Monophosphate/Protein Kinase a Signalling Networks in Blood Platelets. Zaher Raslan a Thesi Characterization of Cyclic Adenosine Monophosphate/Protein Kinase A Signalling Networks in Blood Platelets. Zaher Raslan A thesis submitted for the degree of Doctor of Philosophy in Medical Sciences The University of Hull and the University of York Hull York Medical School (HYMS) September 2012 III Abstract Platelet activation is a critical physiological event, whose main role is to prevent excessive blood loss and repair vessel wall injuries. However, platelet activation must be controlled to prevent unwanted and exaggerated responses leading to the occlusion of the blood vessel. The endothelial-derived inhibitors prostacyclin (PGI2) and nitric oxide (NO) are known to play a critical role in the control of platelet activity, although the mechanism underlying their actions remains unclear beyond the triggering of cyclic nucleotides signaling pathways. The aim of this study was to improve our understanding of platelet regulation by cAMP signaling networks. We observed differences in cAMP signaling depending on the agonists used. Using phosphorylation of PKA substrates as a marker of PKA activity, it was observed that PKA substrates were phosphorylated and dephosphorylated at different time points in a unique temporal pattern. Consistent with this observation we found that individual PKA isoforms, PKA I and II, were localized in distinct subcellular compartments, with PKA I being identified as a lipid raft protein. Our experimental data suggest that the localization of PKA I to lipid rafts is mediated by interaction with A-kinase anchoring proteins (AKAPs). Additionally, PKA signaling events were reversed when potential PKA type I interactions with AKAPs were disrupted with competitive peptides. Using this approach we found that the redistribution of PKA I to lipid rafts facilitated the phosphorylation of GPIbβ and the inhibition of von- Willebrand factor-mediated aggregation. Our data also demonstrated for the first time that the chemical disruption of lipid rafts increased platelet sensitivity to PGI2, through increased cAMP production and IV PKA activity. The mechanism by which this occurs may involve sequestering a population of adenylyl cyclase 5/6 to a location remote from Gαs. In conclusion, data presented in this thesis suggest differential roles of PKA subtypes in the regulation of platelet activity. This involves, at least in part, the localisation of PKA I into specific subcellular compartments through an interaction with AKAPs. The potential presence of PKAII-AKAP interactions and the identification of specific AKAPs will be the main aim of future work. V Publications Oral Presentation The role of A-Kinase Anchoring Proteins in mediating the inhibitory effect of Protein Kinase A in blood platelets. 12th UK Platelet Meeting, Nottingham, UK (2010). (Winner of best oral presentation award). Poster presentations Raslan, Z., Aburima, A.A., Magwenzi, S.G., Tasken, K. & Naseem, K.M. Targeting of Type I Protein Kinase A to lipid rafts is required for platelet inhibition by the cAMP- signaling pathway. 4th British Pharmacological Society (BPS) Focussed Meeting on Cell Signalling. Leicester, UK (2012). Raslan, Z. & Naseem, K.M. The role of lipid rafts in the compartmentalisation of cAMP/PKA signalling in blood platelets. 13th UK Platelet Meeting. Cardiff, UK (2011). Raslan, Z. & Naseem, K.M. The role of lipid rafts in the compartmentalisation of cAMP/PKA signalling in blood platelets. Northern Cardiovascular Research Group (NCRG) meeting, Hull, UK (2011). VI Table of Contents Abstract .............................................................................................................. III Publications ......................................................................................................... V Table of Contents ............................................................................................... VI Abbreviations .................................................................................................... XV List of tables ..................................................................................................... XIX List of Figures .................................................................................................... XX Acknowledgment ............................................................................................ XXVI Author’s declaration ..................................................................................... XXVIII Chapter 1: General Introduction .......................................................................... 1 1.1 Introduction ............................................................................................... 1 1.2 Platelet formation ...................................................................................... 2 1.3 Platelet structure ....................................................................................... 3 1.3.1 Platelet membrane .............................................................................. 5 1.3.2 Platelet cytoskeleton ........................................................................... 5 1.3.3 Platelet organelles. .............................................................................. 6 1.4 Platelet activation ...................................................................................... 8 1.4.1 Platelet adhesion to the vessel wall ................................................... 10 1.4.2 Platelet signal transduction ................................................................ 14 1.4.3 Amplification of platelet activation .................................................... 20 VII 1.4.4 Platelet aggregation ........................................................................... 22 1.5 Platelet regulation by the endothelium .................................................... 25 1.5.1 The regulation of platelet function by nitric oxide .............................. 25 1.5.2 The regulation of platelet function by prostacyclin ............................. 27 1.6 Platelet inhibition by cAMP/PKA signalling pathway ................................. 35 1.6.1 cAMP synthesis by adenylyl cyclase in blood platelets ........................ 38 1.6.2 cAMP degradation by phosphodiesterases in blood platelets ............. 42 1.6.3 Protein kinase A in platelets ............................................................... 44 1.6.4 Protein kinase A structure and activation ........................................... 47 1.6.5 Protein kinase A substrates in blood platelets .................................... 51 1.7 Compartmentalisation of cAMP/PKA signalling in platelets and other cell types ............................................................................................................. 58 1.8 A-Kinase Anchoring Proteins ..................................................................... 62 1.9 Aims of this study ..................................................................................... 68 Chapter 2: Materials and methods ..................................................................... 70 2.1 Materials .................................................................................................. 70 2.2 Methodologies used in the preparation of human blood platelets. ........... 70 2.2.1 Procurement of human blood: ........................................................... 70 2.2.2 Isolation of platelets from whole blood by lowering of blood pH. ....... 71 2.2.3 Quantification of platelet numbers. ................................................... 72 VIII 2.3 Assessment of platelet functions .............................................................. 74 2.3.1 Platelet aggregation ........................................................................... 74 2.3.2 Measurement of platelet dense granule secretion .............................. 77 2.4 Methodologies used in the analysis of platelet proteins ............................ 78 2.4.1. Immunoprecipitation ........................................................................ 78 2.4.2 Sodium dodecyl sulphate -polyacrylamide gel electrophoresis (SDS- PAGE) ......................................................................................................... 81 2.4.3 Immunoblotting ................................................................................. 85 2.5 Isolation of platelet lipid rafts ................................................................... 89 2.5.1 Lipid raft isolation by sucrose ultracentrifugation. .............................. 90 2.6 Determination of cAMP levels ...................................................................... 92 2.6.1 Sample preparation for cAMP EIA ...................................................... 94 2.7 Determination of cholesterol concentrations ............................................ 95 2.8 Investigation of potential AKAP-PKA interactions in platelets. .................. 96 2.8.1 R-I Anchoring Disruptor (RIAD) synthesis and determination of loading conditions .................................................................................................. 96 2.8.2 RIAD-Arg11 conjugation with fluorescein ............................................ 98 2.9 Data representation and statistical analysis .............................................. 99 2.10 Supplementary methods ...................................................................... 100 2.10.1 Visualization of RIAD uptake by adhered platelets .......................... 100 IX 2.10.2 Platelet aggregation under flow
Recommended publications
  • The Hypotensive Effect of Activated Apelin Receptor Is Correlated with Β
    This is the accepted (postprint) version of the following article: Besserer-Offroy É, et al. (2018), Pharmacol Res. doi: 10.1016/j.phrs.2018.02.032, which has been accepted and published in its final form at https://www.sciencedirect.com/science/article/pii/S1043661817313804 The hypotensive effect of activated apelin receptor is correlated with β-arrestin recruitment Élie Besserer-Offroya,c,ORCID ID, Patrick Bérubéa,c, Jérôme Côtéa,c, Alexandre Murzaa,c, Jean-Michel Longpréa,c, Robert Dumainea, Olivier Lesurb,c, Mannix Auger-Messierb,ORCID ID, Richard Leduca,c,ORCID ID, Éric Marsaulta,c,*,ORCID ID, Philippe Sarreta,c* Affiliations a Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, CANADA J1H 5N4 b Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, CANADA J1H 5N4 c Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, CANADA J1H 5N4 e-mail addresses [email protected] (ÉBO); [email protected] (PB); [email protected] (JC); [email protected] (AM); Jean- [email protected] (JML); [email protected] (RD); [email protected] (OL); [email protected] (MAM); [email protected] (RL); [email protected] (EM); [email protected] (PS) © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This is the accepted (postprint) version of the following article: Besserer-Offroy É, et al. (2018), Pharmacol Res. doi: 10.1016/j.phrs.2018.02.032, which has been accepted and published in its final form at https://www.sciencedirect.com/science/article/pii/S1043661817313804 Corresponding Authors *To whom correspondence should be addressed: Philippe Sarret, Ph.D.; [email protected]; Tel.
    [Show full text]
  • Cox Inhibitors and Thromboregulation
    CLINICAL IMPLICATIONS OF BASIC RESEARCH Clinical Implications shown the importance of eicosanoids in preserving of Basic Research the dynamic balance among thrombosis, hemostasis, and the fluidity of blood. Recently, Cheng et al.1 presented compelling evi- dence that cell–cell interactions, principally between platelets and endothelial cells, that are mediated by ei- COX INHIBITORS cosanoids have a role in thrombosis. Using genetical- AND THROMBOREGULATION ly engineered mice that either overexpressed or lacked essential components of the eicosanoid pathway — ROM a historical perspective, there is perhaps no namely, receptors for prostacyclin (a platelet inhibitor Fmore interesting therapeutic saga than that of as- and vasodilator) or thromboxane A2 (a platelet agonist pirin, which began as a folk remedy, distilled from wil- and vasoconstrictor) — they found that the response low bark, and became a lifesaving preventive treatment of the intima of carotid vessels to mechanical injury is for ischemic cardiovascular disease. Aspirin primarily exuberant and leads to obstruction in mice lacking the inhibits the cyclooxygenase (COX)-dependent synthe- prostacyclin receptor. However, this response is muted sis of eicosanoids, which are the end products of me- in mice lacking the thromboxane A2 receptor or both tabolism of essential fatty acids and include prosta- receptors. In mice lacking the prostacyclin receptor cyclin and thromboxane A2. Numerous studies have (a defect that mimics the effects of COX-2–selective Endothelial cell Resting platelet Thromboxane A2 Soluble Stimulation CD39 Arachidonic acid Stimulated platelet COX inhibitor ATP and ADP Prostacyclin Nitric oxide AMP Carbon monoxide CD39 Resting platelet Figure 1. Effect on Platelet Reactivity of the Eicosanoids Thromboxane A2 and Prostacyclin, the Biologic Gases Nitric Oxide and Carbon Monoxide, and the Ectonucleotidase CD39.
    [Show full text]
  • GPCR Regulation of ATP Efflux from Astrocytes
    G PROTEIN-COUPLED RECEPTOR REGULATION OF ATP RELEASE FROM ASTROCYTES by ANDREW EDWARD BLUM Thesis advisor: Dr. George R. Dubyak Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Department of Physiology and Biophysics CASE WESTERN RESERVE UNIVERSITY May, 2010 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________ candidate for the ______________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Dedication I am greatly indebted to my thesis advisor Dr. George Dubyak. Without his support, patience, and advice this work would not have been possible. I would also like to acknowledge Dr. Robert Schleimer and Dr. Walter Hubbard for their encouragement as I began my research career. My current and past thesis committee members Dr. Matthias Buck, Dr. Cathleen Carlin, Dr. Edward Greenfield, Dr. Ulrich Hopfer, Dr. Gary Landreth, Dr. Corey Smith, Dr. Jerry Silver have provided invaluable guidance and advice for which I am very grateful. A special thanks to all of the past and present
    [Show full text]
  • Dissection of Gtpase-Activating Proteins Reveals Functional Asymmetry in the COPI Coat of Budding Yeast Eric C
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs232124. doi:10.1242/jcs.232124 RESEARCH ARTICLE Dissection of GTPase-activating proteins reveals functional asymmetry in the COPI coat of budding yeast Eric C. Arakel1, Martina Huranova2,3,*, Alejandro F. Estrada2,*, E-Ming Rau2, Anne Spang2,‡ and Blanche Schwappach1,4,‡ ABSTRACT The COPI coat is formed by an obligate heptamer – also termed – α β′ ε β γ δ ζ The Arf GTPase controls formation of the COPI vesicle coat. Recent coatomer consisting of , , , , , and subunits, and is recruited structural models of COPI revealed the positioning of two Arf1 en bloc to membranes (Hara-Kuge et al., 1994). Fundamentally, the molecules in contrasting molecular environments. Each of these COPI coat mediates the retrograde trafficking of proteins and lipids pockets for Arf1 is expected to also accommodate an Arf GTPase- from the Golgi to the ER, and within intra-Golgi compartments activating protein (ArfGAP). Structural evidence and protein (Arakel et al., 2016; Beck et al., 2009; Pellett et al., 2013; Spang and interactions observed between isolated domains indirectly suggest Schekman, 1998). Several reports have also implicated COPI in that each niche preferentially recruits one of the two ArfGAPs known endosomal recycling and regulation of lipid droplet homeostasis to affect COPI, i.e. Gcs1/ArfGAP1 and Glo3/ArfGAP2/3, although (Aniento et al., 1996; Beller et al., 2008; Xu et al., 2017). only partial structures are available. The functional role of the unique Activation of the small GTPase Arf1 and its subsequent non-catalytic domain of either ArfGAP has not been integrated into membrane anchoring by exchanging GDP with GTP through a the current COPI structural model.
    [Show full text]
  • Allosteric Activation of the Nitric Oxide Receptor Soluble Guanylate Cyclase
    RESEARCH ARTICLE Allosteric activation of the nitric oxide receptor soluble guanylate cyclase mapped by cryo-electron microscopy Benjamin G Horst1†, Adam L Yokom2,3†, Daniel J Rosenberg4,5, Kyle L Morris2,3‡, Michal Hammel4, James H Hurley2,3,4,5*, Michael A Marletta1,2,3* 1Department of Chemistry, University of California, Berkeley, Berkeley, United States; 2Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States; 3Graduate Group in Biophysics, University of California, Berkeley, Berkeley, United States; 4Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, United States; 5California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States Abstract Soluble guanylate cyclase (sGC) is the primary receptor for nitric oxide (NO) in mammalian nitric oxide signaling. We determined structures of full-length Manduca sexta sGC in both inactive and active states using cryo-electron microscopy. NO and the sGC-specific stimulator YC-1 induce a 71˚ rotation of the heme-binding b H-NOX and PAS domains. Repositioning of the b *For correspondence: H-NOX domain leads to a straightening of the coiled-coil domains, which, in turn, use the motion to [email protected] (JHH); move the catalytic domains into an active conformation. YC-1 binds directly between the b H-NOX [email protected] (MAM) domain and the two CC domains. The structural elongation of the particle observed in cryo-EM was †These authors contributed corroborated in solution using small angle X-ray scattering (SAXS). These structures delineate the equally to this work endpoints of the allosteric transition responsible for the major cyclic GMP-dependent physiological Present address: ‡MRC London effects of NO.
    [Show full text]
  • Rhodopsin-Cyclases for Photocontrol of Cgmp/Camp and 2.3 Å Structure of the Adenylyl Cyclase Domain
    ARTICLE DOI: 10.1038/s41467-018-04428-w OPEN Rhodopsin-cyclases for photocontrol of cGMP/cAMP and 2.3 Å structure of the adenylyl cyclase domain Ulrike Scheib1, Matthias Broser1, Oana M. Constantin 2, Shang Yang3, Shiqiang Gao3 Shatanik Mukherjee1, Katja Stehfest1, Georg Nagel3, Christine E. Gee 2 & Peter Hegemann1 1234567890():,; The cyclic nucleotides cAMP and cGMP are important second messengers that orchestrate fundamental cellular responses. Here, we present the characterization of the rhodopsin- guanylyl cyclase from Catenaria anguillulae (CaRhGC), which produces cGMP in response to green light with a light to dark activity ratio >1000. After light excitation the putative signaling state forms with τ = 31 ms and decays with τ = 570 ms. Mutations (up to 6) within the nucleotide binding site generate rhodopsin-adenylyl cyclases (CaRhACs) of which the double mutated YFP-CaRhAC (E497K/C566D) is the most suitable for rapid cAMP production in neurons. Furthermore, the crystal structure of the ligand-bound AC domain (2.25 Å) reveals detailed information about the nucleotide binding mode within this recently discovered class of enzyme rhodopsin. Both YFP-CaRhGC and YFP-CaRhAC are favorable optogenetic tools for non-invasive, cell-selective, and spatio-temporally precise modulation of cAMP/cGMP with light. 1 Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115 Berlin, Germany. 2 Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany. 3 Department of Biology, Institute for Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-University of Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany. These authors contributed equally: Christine E.
    [Show full text]
  • The ATP-Releasing Maxi-Cl Channel: Its Identity, Molecular Partners, and Physiological/Pathophysiological Implications
    life Review The ATP-Releasing Maxi-Cl Channel: Its Identity, Molecular Partners, and Physiological/Pathophysiological Implications Ravshan Z. Sabirov 1,2,*, Md. Rafiqul Islam 1,3, Toshiaki Okada 1,4, Petr G. Merzlyak 1,2 , Ranokhon S. Kurbannazarova 1,2, Nargiza A. Tsiferova 1,2 and Yasunobu Okada 1,5,6,* 1 Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; rafi[email protected] (M.R.I.); [email protected] (T.O.); [email protected] (P.G.M.); [email protected] (R.S.K.); [email protected] (N.A.T.) 2 Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan 3 Department of Biochemistry and Molecular Biology, Jagannath University, Dhaka 1100, Bangladesh 4 Veneno Technologies Co. Ltd., Tsukuba 305-0031, Japan 5 Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan 6 Department of Physiology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Japan * Correspondence: [email protected] (R.Z.S.); [email protected] (Y.O.); Tel.: +81-46-858-1501 (Y.O.); Fax: +81-46-858-1542 (Y.O.) Abstract: The Maxi-Cl phenotype accounts for the majority (app. 60%) of reports on the large- conductance maxi-anion channels (MACs) and has been detected in almost every type of cell, including placenta, endothelium, lymphocyte, cardiac myocyte, neuron, and glial cells, and in cells originating from humans to frogs. A unitary conductance of 300–400 pS, linear current-to- Citation: Sabirov, R.Z.; Islam, M..R.; voltage relationship, relatively high anion-to-cation selectivity, bell-shaped voltage dependency, Okada, T.; Merzlyak, P.G.; and sensitivity to extracellular gadolinium are biophysical and pharmacological hallmarks of the Kurbannazarova, R.S.; Tsiferova, Maxi-Cl channel.
    [Show full text]
  • Ablation of XP-V Gene Causes Adipose Tissue Senescence and Metabolic Abnormalities
    Ablation of XP-V gene causes adipose tissue PNAS PLUS senescence and metabolic abnormalities Yih-Wen Chena, Robert A. Harrisb, Zafer Hatahetc, and Kai-ming Choua,1 aDepartment of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202; bRichard Roudebush Veterans Affairs Medical Center and the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202; and cDepartment of Biological and Physical Sciences, Northwestern State University of Louisiana, Natchitoches, LA 71497 Edited by James E. Cleaver, University of California, San Francisco, CA, and approved June 26, 2015 (received for review April 12, 2015) Obesity and the metabolic syndrome have evolved to be major DNA polymerase η (pol η) is a specialized lesion bypass poly- health issues throughout the world. Whether loss of genome merase that faithfully replicates across UV-induced cyclobutane integrity contributes to this epidemic is an open question. DNA pyrimidine dimers (9) to rescue stalled DNA replication forks polymerase η (pol η), encoded by the xeroderma pigmentosum from potential breakages and mutations. Defects in the gene (XP-V) gene, plays an essential role in preventing cutaneous cancer encoding pol η produce a variant form of the autosomal recessive caused by UV radiation-induced DNA damage. Herein, we demon- disease xeroderma pigmentosum (XP-V) (9). Patients with XP-V strate that pol η deficiency in mice (pol η−/−) causes obesity with are highly sensitive to sunlight and prone to cutaneous cancer (9). visceral fat accumulation, hepatic steatosis, hyperleptinemia, In addition to skin, pol η is expressed in most tissues (10). The hyperinsulinemia, and glucose intolerance.
    [Show full text]
  • Glycylglycine Plays Critical Roles in the Proliferation of Spermatogonial Stem Cells
    3802 MOLECULAR MEDICINE REPORTS 20: 3802-3810, 2019 Glycylglycine plays critical roles in the proliferation of spermatogonial stem cells BO XU1,2*, XIANG WEI1*, MINJIAN CHEN1,2*, KAIPENG XIE3,4, YUQING ZHANG1,2, ZHENYAO HUANG1,2, TIANYU DONG1,2, WEIYUE HU1,2, KUN ZHOU1,2, XIUMEI HAN1,2, XIN WU1 and YANKAI XIA1,2 1State Key Laboratory of Reproductive Medicine, Institute of Toxicology; 2Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166; 3Nanjing Maternity and Child Health Care Institute, 4Department of Women Health Care, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China Received May 9, 2018; Accepted July 9, 2019 DOI: 10.3892/mmr.2019.10609 Abstract. Glial cell line-derived neurotrophic factor (GDNF) properties that distinguish stem cells from somatic cells, is critical for the proliferation of spermatogonial stem cells and SSCs are the only germline stem cells that can undergo (SSCs), but the underlying mechanisms remain poorly under- self-renewal division (1). The balance between proliferation stood. In this study, an unbiased metabolomic analysis was and differentiation is therefore essential to the normal function performed to examine the metabolic modifications in SSCs of SSCs and to maintain male fertility (2). following GDNF deprivation, and 11 metabolites were observed Glial cell line-derived neurotrophic factor (GDNF) is to decrease while three increased. Of the 11 decreased metab- secreted by Sertoli cells, and is an important factor in the olites identified, glycylglycine was observed to significantly cell fate determination of SSCs, which was identified in rescue the proliferation of the impaired SSCs, while no such the year 2000 (3).
    [Show full text]
  • The Role of the Chaperone CCT in Assembling Cell Signaling Complexes
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2020-07-21 The Role of the Chaperone CCT in Assembling Cell Signaling Complexes Nicole C. Tensmeyer Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Physical Sciences and Mathematics Commons BYU ScholarsArchive Citation Tensmeyer, Nicole C., "The Role of the Chaperone CCT in Assembling Cell Signaling Complexes" (2020). Theses and Dissertations. 9192. https://scholarsarchive.byu.edu/etd/9192 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected]. The Role of the Molecular Chaperone CCT in Assembling Cell Signaling Complexes Nicole C. Tensmeyer A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Barry M. Willardson, Chair Josh L. Andersen John C. Price Pam Van Ry Department of Chemistry and Biochemistry Brigham Young University Copyright © 2020 Nicole C. Tensmeyer All Rights Reserved ABSTRACT The Role of the Molecular Chaperone CCT in the Assembly of Signaling Complexes Nicole C. Tensmeyer Department of Chemistry and Biochemistry, BYU Doctor of Philosophy In order to function, proteins must be folded into their native shape. While this can sometimes occur spontaneously, the process can be hindered by thermodynamic barriers, trapped intermediates, and aggregation prone hydrophobic interactions. Molecular chaperones are proteins that help client proteins or substrates overcome these barriers so that they can be folded properly.
    [Show full text]
  • Rho Family Gtpases and Rho Gefs in Glucose Homeostasis
    cells Review Rho Family GTPases and Rho GEFs in Glucose Homeostasis Polly A. Machin 1, Elpida Tsonou 1,2, David C. Hornigold 2 and Heidi C. E. Welch 1,* 1 Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; [email protected] (P.A.M.); [email protected] (E.T.) 2 Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge CB22 3AT, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)1223-496-596 Abstract: Dysregulation of glucose homeostasis leading to metabolic syndrome and type 2 diabetes is the cause of an increasing world health crisis. New intriguing roles have emerged for Rho family GTPases and their Rho guanine nucleotide exchange factor (GEF) activators in the regulation of glucose homeostasis. This review summates the current knowledge, focusing in particular on the roles of Rho GEFs in the processes of glucose-stimulated insulin secretion by pancreatic β cells and insulin-stimulated glucose uptake into skeletal muscle and adipose tissues. We discuss the ten Rho GEFs that are known so far to regulate glucose homeostasis, nine of which are in mammals, and one is in yeast. Among the mammalian Rho GEFs, P-Rex1, Vav2, Vav3, Tiam1, Kalirin and Plekhg4 were shown to mediate the insulin-stimulated translocation of the glucose transporter GLUT4 to the plasma membrane and/or insulin-stimulated glucose uptake in skeletal muscle or adipose tissue. The Rho GEFs P-Rex1, Vav2, Tiam1 and β-PIX were found to control the glucose-stimulated release of insulin by pancreatic β cells.
    [Show full text]
  • Platelets and Anti-Platelet Therapy
    J Pharmacol Sci 93, 381 – 396 (2003) Journal of Pharmacological Sciences ©2003 The Japanese Pharmacological Society Critical Review Platelets and Anti-platelet Therapy Archibald McNicol1,2,* and Sara J. Israels3,4 Departments of 1Oral Biology, 2Pharmacology & Therapeutics, 3Pediatrics & Child Health and 4The Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, R3E OW2, Canada Received September 21, 2003 Abstract. Platelets play a central role in the hemostatic process and consequently are similarly involved in the pathological counterpart, thrombosis. They adhere to various subendothelial proteins, exposed either by injury or disease, and subsequently become activated by the thrombo- genic surface or locally produced agonists. These activated platelets aggregate to form a platelet plug, release agonists which recruit more platelets to the growing thrombus, and provide a catalytic surface for thrombin generation and fibrin formation. These platelet-rich thrombi are responsible for the acute occlusion of stenotic vessels and ischemic injury to heart and brain. A range of anti-platelet drugs are currently used, both prophylactically and therapeutically, in regimens to manage thrombo-embolic disorders. These include inhibitors of the generation, or effects, of locally produced agonists; several large clinical trials have supported roles for cyclooxygenase inhibitors, which prevent thromboxane generation, and thienopyridine deriva- tives, which antagonize ADP receptors. Similarly intravenous IIb3 antagonists have been shown to be effective anti-thrombotics, albeit in highly selective situations; in contrast, to date studies with their oral counterparts have been disappointing. Recent advances in understanding of platelet physiology have suggested several novel, if yet untested, targets for anti-platelet therapy. These include the thrombin receptor, the serotonin handling system, and the leptin receptor.
    [Show full text]