University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2012 Higher-Order Chromatin Organization in Hematopoietic Transcription Wulan Deng University of Pennsylvania,
[email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biology Commons, Genetics Commons, and the Molecular Biology Commons Recommended Citation Deng, Wulan, "Higher-Order Chromatin Organization in Hematopoietic Transcription" (2012). Publicly Accessible Penn Dissertations. 627. https://repository.upenn.edu/edissertations/627 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/627 For more information, please contact
[email protected]. Higher-Order Chromatin Organization in Hematopoietic Transcription Abstract Coordinated transcriptional networks underlie complex developmental processes. Transcription factors play central roles in such networks by binding to core promoters and regulatory elements and thereby controlling transcription activities and chromatin states in the genome. GATA1 is a hematopoietic transcription factor that controls multiple hematopoietic lineages by activating and repressing gene expression, yet the in vivo mechanisms that specify these opposing activities are unknown. By examining the composition of GATA1 associated protein complexes in a genetic complementary erythroid cell system as well as through the use of tiling arrays, we found that a multi-protein complex containing SCL/ TAL1, LMO2, Ldb1, and E2A (the SCL complex thereafter) is present at most sites where GATA1 functions as an activator but depleted at most repressive GATA1 sites. Functional interference of the SCL complex selectively impairs activation but not repression by GATA1. These results identify the SCL complex as a critical and consistent determinant of positive GATA1 activity. The SCL complex and GATA1 co-occupy the active &beta-globin promoter and the distant locus control region (LCR), which are juxtaposed into close proximity by chromatin looping.