The Concise Guide to PHARMACOLOGY 2015/16

Total Page:16

File Type:pdf, Size:1020Kb

The Concise Guide to PHARMACOLOGY 2015/16 Edinburgh Research Explorer The Concise Guide to PHARMACOLOGY 2015/16 Citation for published version: Alexander, SP, Davenport, AP, Kelly, E, Marrion, N, Peters, JA, Benson, HE, Faccenda, E, Pawson, AJ, Sharman, JL, Southan, C, Davies, JA & Collaborators, C 2015, 'The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors', British Journal of Pharmacology, vol. 172, no. 24, pp. 5744-5869. https://doi.org/10.1111/bph.13348 Digital Object Identifier (DOI): 10.1111/bph.13348 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: British Journal of Pharmacology General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates. Conflict of interest The authors state that there are no conflicts of interest to declare. ­c 2015 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Overview: G protein-coupled receptors (GPCRs) are the largest loops (ICL1-ICL3). About 800 GPCRs have been identified in vided them, on the basic of sequence homology, into six classes. class of membrane proteins in the human genome. The term man, of which about half have sensory functions, mediating ol- These classes and their prototype members were as follows: Class "7TM receptor" is commonly used interchangeably with "GPCR", faction ( 400), taste (33), light perception (10) and pheromone A (rhodopsin-like), Class B (secretin receptor family), Class C although there are some receptors with seven transmembrane signalling (5) [1309]. The remaining 350 non-sensory GPCRs (metabotropic glutamate), Class D (fungal mating pheromone domains that do not signal through G proteins. GPCRs share mediate intersignalling by ligands that range in size from small receptors), Class E (cyclic AMP receptors) and Class F (friz- a common architecture, each consisting of a single polypeptide molecules to peptide to large proteins; they are the targets for zled/smoothened). Of these, classes D and E are not found in with an extracellular N-terminus, an intracellular C-terminus and the majority of drugs in clinical usage [1451, 1560], although vertebrates. An alternative classification scheme "GRAFS" [1666] seven hydrophobic transmembrane domains (TM1-TM7) linked only a minority of these receptors are exploited therapeutically. divides vertebrate GPCRs into five classes, overlapping with the by three extracellular loops (ECL1-ECL3) and three intracellular The first classification scheme to be proposed for GPCRs [984] di- A-F nomenclature, viz: Searchable database: http://www.guidetopharmacology.org/index.jsp G-Protein-coupled receptors 5744 Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.13348/full S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 Glutamate family (class C), which includes metabotropic glutamate receptors, a calcium-sensing receptor and GABAB receptors, as well as three taste type 1 receptors [class C list] and a family of pheromone receptors (V2 receptors) that are abundant in rodents but absent in man [1309]. Rhodopsin family (class A), which includes receptors for a wide variety of small molecules, neurotransmitters, peptides and hormones, together with olfactory receptors, visual pigments, taste type 2 receptors and five pheromone receptors (V1 receptors). [Class A list] Adhesion family GPCRs are phylogenetically related to class B receptors, from which they differ by possessing large extracellular N-termini that are autoproteolytically cleaved from their 7TM domains at a conserved "GPCR proteolysis site" (GPS) which lies within a much larger ( 320 residue) "GPCR autoproteolysis-inducing" (GAIN) domain, an evolutionary ancient mofif also found in polycystic kidney disease 1 (PKD1)-like proteins, which has been suggested to be both required and sufficient for autoproteolysis [1538]. [Adhesion family list]. Frizzled family (class F) consists of 10 Frizzled proteins (FZD(1-10)) and Smoothened (SMO). [Frizzled family list]. The FZDs are activated by secreted lipoglycoproteins of the WNT family, whereas SMO is indirectly activated by the Hedgehog (HH) family of proteins acting on the transmembrane protein Patched (PTCH). Secretin family (class B), encoded by 15 genes in humans. The ligands for receptors in this family are polypeptide hormones of 27-141 amino-acid residues; nine of the mammalian receptors respond to ligands that are structurally related to one another (glucagon, glucagon-like peptides (GLP-1, GLP-2), glucose-dependent insulinotropic polypeptide (GIP), secretin, vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating polypeptide (PACAP) and growth-hormone-releasing hormone (GHRH) [703]. GPCR families Family ClassA ClassB(Secretin) ClassC(Glutamate) Adhesion Frizzled Receptors with known ligands 197a 15 12 0 11 Orphans 87 (54)a - 8 (1)a 26 (6)a 0 Sensory (olfaction) 390b,c - - -- Sensory (vision) 10d opsins - - - - Sensory (taste) 30c taste 2 - 3c taste 1 - - Sensory (pheromone) 5c vomeronasal 1 - - - - Total 719 15 22 33 11 aNumbers in brackets refer to orphan receptors for which an endogenous ligand has been proposed in at least one publication, see [396]; b[1443]; c[1309]; d[1866]. Much of our current understanding of the structure and function of GPCRs is the result of pioneering work on the visual pigment rhodopsin and on the β2 adrenoceptor, the latter culminating in the award of the 2012 Nobel Prize in chemistry to Robert Lefkowitz and Brian Kobilka [975, 1073]. Family structure 5746 Orphan and other 7TM receptors 5780 Bradykinin receptors 5803 GABAB receptors 5746 Class A Orphans 5781 Calcitonin receptors 5805 Galanin receptors 5756 Class C Orphans 5783 Calcium-sensing receptors 5806 Ghrelin receptor 5756 Taste 1 receptors 5784 Cannabinoid receptors 5807 Glucagon receptor family 5757 Taste 2 receptors 5785 Chemerin receptor 5809 Glycoprotein hormone receptors 5758 Other 7TM proteins 5785 Chemokine receptors 5810 Gonadotrophin-releasing hormone receptors 5759 5-Hydroxytryptamine receptors 5791 Cholecystokinin receptors
Recommended publications
  • GPR139, an Orphan Receptor Highly Enriched in the Habenula and Septum, Is Activated by the Essential Amino Acids S L-Tryptophan and L-Phenylalanine
    Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2015/09/08/mol.115.100412.DC1 1521-0111/88/5/911–925$25.00 http://dx.doi.org/10.1124/mol.115.100412 MOLECULAR PHARMACOLOGY Mol Pharmacol 88:911–925, November 2015 Copyright ª 2015 by The American Society for Pharmacology and Experimental Therapeutics GPR139, an Orphan Receptor Highly Enriched in the Habenula and Septum, Is Activated by the Essential Amino Acids s L-Tryptophan and L-Phenylalanine Changlu Liu, Pascal Bonaventure, Grace Lee, Diane Nepomuceno, Chester Kuei, Jiejun Wu, Qingqin Li, Victory Joseph, Steven W. Sutton, William Eckert, Xiang Yao, Lynn Yieh, Curt Dvorak, Nicholas Carruthers, Heather Coate, Sujin Yun, Christine Dugovic, Anthony Harrington, and Timothy W. Lovenberg Downloaded from Janssen Research & Development LLC, San Diego, California Received June 18, 2015; accepted September 4, 2015 ABSTRACT GPR139 is an orphan G-protein–coupled receptor expressed in a high-throughput screening campaign led to the identification of molpharm.aspetjournals.org the central nervous system. To identify its physiologic ligand, we a selective small-molecule agonist [JNJ-63533054, (S)-3-chloro- measured GPR139 receptor activity from recombinant cells after N-(2-oxo-2-((1-phenylethyl)amino)ethyl) benzamide]. The tritium- treatment with amino acids, orphan ligands, serum, and tissue labeled JNJ-63533054 bound to cell membranes expressing extracts. GPR139 activity was measured using guanosine 59-O- GPR139 and could be specifically displaced by L-Trp and L-Phe. (3-[35S]thio)-triphosphate binding, calcium mobilization, and ex- Sequence alignment revealed that GPR139 is highly conserved tracellular signal–regulated kinases phosphorylation assays.
    [Show full text]
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • International Union of Pharmacology. XXXV. the Glucagon Receptor Family
    0031-6997/03/5501-167–194$7.00 PHARMACOLOGICAL REVIEWS Vol. 55, No. 1 Copyright © 2003 by The American Society for Pharmacology and Experimental Therapeutics 30106/1047548 Pharmacol Rev 55:167–194, 2003 Printed in U.S.A International Union of Pharmacology. XXXV. The Glucagon Receptor Family KELLY E. MAYO, LAURENCE J. MILLER, DOMINIQUE BATAILLE, STEPHANE´ DALLE, BURKHARD GO¨ KE, BERNARD THORENS, AND DANIEL J. DRUCKER Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois (K.E.M.); Mayo Clinic and Foundation, Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, Minnesota (L.J.M.); INSERM U 376, Montpellier, France (D.B., S.D.); Department of Medicine II, Grosshadern, Klinikum der Ludwig-Maximilians, University of Munich, Germany (B.G.); Institute of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland (B.T.); and Banting and Best Diabetes Centre, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada (D.J.D.) Abstract .............................................................................. 168 I. Introduction ........................................................................... 168 II. Secretin receptor....................................................................... 169 A. Molecular basis for receptor nomenclature ............................................ 169 B. Endogenous agonist................................................................. 169 C. Receptor structure .................................................................
    [Show full text]
  • Monitoring Nociception by Analyzing Gene Expression Changes in the Central Nervous System of Mice
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2010 Monitoring nociception by analyzing gene expression changes in the central nervous system of mice Asner, I N Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-46678 Dissertation Originally published at: Asner, I N. Monitoring nociception by analyzing gene expression changes in the central nervous system of mice. 2010, University of Zurich, Vetsuisse Faculty. Monitoring Nociception by Analyzing Gene Expression Changes in the Central Nervous System of Mice Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Igor Asner von St. Cergue VD Promotionskomitee Prof. Dr. Peter Sonderegger Prof. Dr. Kurt Bürki Prof. Dr. Hanns Ulrich Zeilhofer Dr. Paolo Cinelli (Leitung der Dissertation) Zürich, 2010 Table of contents Table of content Curriculum vitae 6 Publications 9 Summary 11 Zusammenfassung 14 1. Introduction 17 1.1. Pain and nociception 17 1.1.1 Nociceptive neurons and Mechanoceptors 18 1.1.2 Activation of the nociceptive neurons at the periphery 21 1.1.2.1 Response to noxious heat 22 1.1.2.2 Response to noxious cold 23 1.1.2.3 Response to mechanical stress 24 1.1.3 Nociceptive message processing in the Spinal Cord 25 1.1.3.1 The lamina I and the ascending pathways 25 1.1.3.2 The lamina II and the descending pathways 26 1.1.4 Pain processing and integration in the brain 27 1.1.4.1 The Pain Matrix 27 1.1.4.2 Activation of the descending pathways 29 1.1.5 Inflammatory Pain 31 1.2.
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION GPR12 (C-Term) Polyclonal Antibody Item No. 14266 Overview and Properties Contents: This vial contains peptide affinity-purified polyclonal antibody Synonyms: G Protein-Coupled Receptor 12 Immunogen: Synthetic peptide from the C-terminal region of human GPR12 Species Reactivity: (+) Human, other species not tested Uniprot No.: P47775 Form: Lyophilized Storage: -20°C (as supplied) Stability: ≥ 2 Years Storage Buffer: TBS, pH 7.4 when reconstituted in 500 µl deionized water Host: Rabbit Applications: Flow cytometry (FC) and immunocytochemistry (ICC); the recommended starting dilution for FC is 1:200 and 1:100 for ICC. Other applications were not attempted and therefore optimal working dilutions should be determined empirically. Image Black: Blank Red: Normal Rabbit IgG-FITC (0.01 µg/ml) Blue: GPR12 C-Term (1 µg/ml) Yellow: GPR12 C-Term (5 µg/ml) A549 cells were fixed with cytospin soluǗon (methanol and carbowax), blocked with 5% normal goat serum, and washed between steps. Samples were gated to exclude debris. FITC was detected in the FL1 channel of an Accuri C6 flow cytometer. Immune complexes were detected with Goat anǗ-rabbit FITC at 1:200. Description WARNING CAYMAN CHEMICAL THIS PRODUCT IS FOR RESEARCH ONLY - NOT FOR HUMAN OR VETERINARY DIAGNOSTIC OR THERAPEUTIC USE. 1180 EAST ELLSWORTH RD SAFETY DATA ANN ARBOR, MI 48108 · USA This material should be considered hazardous until further information becomes available. Do not ingest, inhale, get in eyes, on skin, or on clothing. Wash thoroughly after handling. Before use, the user must review the complete Safety Data Sheet, which has been sent via email to your institution.
    [Show full text]
  • GPR142 Agonists Stimulate Glucose-Dependent Insulin Secretion Via Gq-Dependent Signaling
    RESEARCH ARTICLE GPR142 Agonists Stimulate Glucose- Dependent Insulin Secretion via Gq- Dependent Signaling Jingru Wang1, Juan J. Carrillo2, Hua V. Lin1* 1 Lilly China Research and Development Center (LCRDC), Eli Lilly & Company, Shanghai, China, 2 Lilly Research Laboratories, Lilly Corporate Center (LCC), Eli Lilly & Company, Indianapolis, IN, United States of America a11111 * [email protected] Abstract GPR142 is an islet-enriched G protein-coupled receptor that has been investigated as a novel therapeutic target for the treatment of type 2 diabetes by virtue of its insulin secreta- OPEN ACCESS gogue activity. However, the signaling pathways downstream of GPR142 and whether its Citation: Wang J, Carrillo JJ, Lin HV (2016) GPR142 stimulation of insulin release is glucose-dependent remain poorly characterized. In this Agonists Stimulate Glucose-Dependent Insulin study, we show that both native and synthetic GPR142 agonists can activate Gq as well as Secretion via Gq-Dependent Signaling. PLoS ONE 11(4): e0154452. doi:10.1371/journal.pone.0154452 Gi signaling when GPR142 is recombinantly expressed in HEK293 cells. However, in pri- mary pancreatic islets, a native cellular system, the insulin secretagogue activity of Editor: Tao Cai, NIDCR/NIH, UNITED STATES GPR142 agonists only requires Gq activation. In addition, our results show that stimulation Received: February 1, 2016 of insulin secretion by GPR142 in pancreatic islets is strictly glucose-dependent. Accepted: April 13, 2016 Published: April 22, 2016 Copyright: © 2016 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits Introduction unrestricted use, distribution, and reproduction in any medium, provided the original author and source are G protein-coupled receptors (GPCRs) are important cell surface mediators of signal transduc- credited.
    [Show full text]
  • A Comprehensive Network and Pathway Analysis of Human Deafness Genes
    Otology & Neurotology 34:961Y970 Ó 2013, Otology & Neurotology, Inc. A Comprehensive Network and Pathway Analysis of Human Deafness Genes *Georgios A. Stamatiou and †Konstantina M. Stankovic *Department of Otolaryngology, Hippokration General Hospital, University of Athens, Athens, Greece; and ÞDepartment of Otology and Laryngology, Harvard Medical School and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, U.S.A. Objective: To perform comprehensive network and pathway factor beta1 (TGFB1) for Group 1, MAPK3/MAPK1 MAP kinase analyses of the genes known to cause genetic hearing loss. (ERK 1/2) and the G protein coupled receptors (GPCR) for Study Design: In silico analysis of deafness genes using inge- Group 2, and TGFB1 and hepatocyte nuclear factor 4 alpha (HNF4A) nuity pathway analysis (IPA). for Group 3. The nodal molecules included not only those known Methods: Genes relevant for hearing and deafness were iden- to be associated with deafness (GPCR), or with predisposition to tified through PubMed literature searches and the Hereditary otosclerosis (TGFB1), but also novel genes that have not been Hearing Loss Homepage. The genes were assembled into 3 groups: described in the cochlea (HNF4A) and signaling kinases (ERK 1/2). 63 genes that cause nonsyndromic deafness, 107 genes that cause Conclusion: A number of molecules that are likely to be key nonsyndromic or syndromic sensorineural deafness, and 112 genes mediators of genetic hearing loss were identified through three associated with otic capsule development and malformations. Each different network and pathway analyses. The molecules included group of genes was analyzed using IPA to discover the most new candidate genes for deafness.
    [Show full text]
  • An Overview on G Protein-Coupled Receptor-Induced Signal Transduction in Acute Myeloid Leukemia
    An overview on G protein-coupled receptor-induced signal transduction in Acute Myeloid Leukemia 1* 1,3 4,5,6 2* Frode Selheim , Elise Aasebø , Catalina Ribas and Anna M. Aragay 1The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020 Bergen, Norway; 3 Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway; [email protected]. 2Departamento de Biologia Celular. Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Spanish National Research Council (CSIC), Baldiri i Reixac, 15, 08028 Barcelona, Spain; [email protected]. 4Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), 28049 Madrid, Spain; 5Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain; 6CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029 Madrid, Spain, [email protected] * Corresponding authors: Frode Selheim Adr: Jonas Lies vei 91, 5020 Bergen, Norway Email: [email protected], Tel:+4755586091 Anna M. Aragay Adr: Baldiri i Reixac, 15, 08028 Barcelona. Spain. E-mail: [email protected]; Tel.: +934098671 1 Abstract Background: Acute myeloid leukemia (AML) is a genetically heterogeneous disease characterized by uncontrolled proliferation of precursor myeloid-lineage cells in the bone marrow. AML is also characterized with patients with poor long-term survival outcomes due to relapse. Many efforts have been made to understand the biological heterogeneity of AML and the challenges to develop new therapies are therefore enormous. G protein-coupled receptors (GPCRs) are a large attractive drug targeted family of transmembrane proteins, and aberrant GPCR expression and GPCR-mediated signaling have been implicated in leukemogenesis of AML.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
    Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners.
    [Show full text]
  • 1 Supplemental Material Maresin 1 Activates LGR6 Receptor
    Supplemental Material Maresin 1 Activates LGR6 Receptor Promoting Phagocyte Immunoresolvent Functions Nan Chiang, Stephania Libreros, Paul C. Norris, Xavier de la Rosa, Charles N. Serhan Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. 1 Supplemental Table 1. Screening of orphan GPCRs with MaR1 Vehicle Vehicle MaR1 MaR1 mean RLU > GPCR ID SD % Activity Mean RLU Mean RLU + 2 SD Mean RLU Vehicle mean RLU+2 SD? ADMR 930920 33283 997486.5381 863760 -7% BAI1 172580 18362 209304.1828 176160 2% BAI2 26390 1354 29097.71737 26240 -1% BAI3 18040 758 19555.07976 18460 2% CCRL2 15090 402 15893.6583 13840 -8% CMKLR2 30080 1744 33568.954 28240 -6% DARC 119110 4817 128743.8016 126260 6% EBI2 101200 6004 113207.8197 105640 4% GHSR1B 3940 203 4345.298244 3700 -6% GPR101 41740 1593 44926.97349 41580 0% GPR103 21413 1484 24381.25067 23920 12% NO GPR107 366800 11007 388814.4922 360020 -2% GPR12 77980 1563 81105.4653 76260 -2% GPR123 1485190 46446 1578081.986 1342640 -10% GPR132 860940 17473 895885.901 826560 -4% GPR135 18720 1656 22032.6827 17540 -6% GPR137 40973 2285 45544.0809 39140 -4% GPR139 438280 16736 471751.0542 413120 -6% GPR141 30180 2080 34339.2307 29020 -4% GPR142 105250 12089 129427.069 101020 -4% GPR143 89390 5260 99910.40557 89380 0% GPR146 16860 551 17961.75617 16240 -4% GPR148 6160 484 7128.848113 7520 22% YES GPR149 50140 934 52008.76073 49720 -1% GPR15 10110 1086 12282.67884
    [Show full text]