Ethan Nielsen Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Ethan Nielsen Dissertation EXPLOITATION OF PUMMELO (CITRUS MAXIMA (BURM.) MERRILL) THROUGH BREEDING, PLOIDY MANIPULATION, AND INTERSTOCKS FOR IMPROVEMENT OF CULTIVATED CITRUS By ETHAN RIRIE NIELSEN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2017 © 2017 Ethan Ririe Nielsen To my loving wife, Harmonie ACKNOWLEDGMENTS I would like to thank my supervisory committee chair Dr. Jude Grosser for his insights and guidance throughout this long journey towards the attainment of the highest degree in education. I admire his dedication to developing better Citrus and improving the livelihood of the growers that look to him for solutions, which he freely gives. I also want to thank my other committee members, Dr. Jose X. Chaparro who taught me many insights in perennial plant breeding, Dr. Fred Gmitter, Jr., Dr. Arnold Schumann, and Dr. Kevin Folta whose excitement for discovery through the scientific method is infectious. I want to thank my fellow Lab members: Dr. Manjul Dutt, Gary Barthe, Dr. Ahmad Omar, Dr. Miliça Ćalović, and Elaine Moreira. Thanks to my fellow graduate students Aditi Satpute and Flavia Zambon, and the other undergraduates and lab assistants who helped make this possible. Thanks to Dr. James Graham for his instructions on working with citrus canker and Kayla Gerberich who assisted with the canker inoculum preparation. Thanks to Dr. Larry Duncan and Dr. Fahiem EL-Borai Kora for the assistance with nematodes. Thanks to Dr. Timothy Ebert for assistance with statistical analyses. Thanks to my wife and children who let me pursue my dream of becoming a plant breeder. Thanks to my parents for instilling in me the values and work ethic that have helped me to succeed. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 8 LIST OF FIGURES ........................................................................................................ 10 LIST OF ABBREVIATIONS ........................................................................................... 12 ABSTRACT ................................................................................................................... 13 CHAPTER 1 INTRODUCTION .................................................................................................... 15 2 REVIEW OF LITERATURE .................................................................................... 19 History of Cultivation in Florida ............................................................................... 19 Taxonomy ............................................................................................................... 22 Genetic Variation in Citrus ...................................................................................... 23 Ancestral and Contemporary Cultivars ................................................................... 24 Pummelo (Citrus maxima (Burm.) Merrill) ........................................................ 24 Grapefruit (Citrus x paradisi Macfadyen)........................................................... 27 Oranges ............................................................................................................ 30 Citron, Lemon, and Lime .................................................................................. 32 Mandarin and Mandarin Hybrids ...................................................................... 32 Kumquats ......................................................................................................... 33 Trifoliate Orange (Poncirus trifoliata [L.] Raf.) .................................................. 34 Papedas ........................................................................................................... 35 Near Citrus Relatives ....................................................................................... 36 Rootstocks .............................................................................................................. 36 Interstocks ........................................................................................................ 39 Protein and RNA Signals .................................................................................. 40 Citrus Breeding ....................................................................................................... 40 Mutation Breeding ............................................................................................ 41 Polyploidy ......................................................................................................... 41 Protoplast Culture and Somatic Hybridization .................................................. 43 Seedless Citrus ................................................................................................ 44 Interploid Hybridization ..................................................................................... 44 Cybrids in Citrus ............................................................................................... 46 Diseases of Citrus ................................................................................................... 47 Citrus Canker ................................................................................................... 48 Citrus Canker Inoculation ................................................................................. 49 Huanglongbing ................................................................................................. 50 CLas Detection ................................................................................................. 52 Nematode Caused Diseases ............................................................................ 53 Objectives ............................................................................................................... 54 5 3 EVALUATION OF CITRUS CANKER RESISTANCE IN PUMMELO PARENT SELECTIONS ......................................................................................................... 56 Background and Objective ...................................................................................... 56 Materials and Methods ............................................................................................ 59 Material Background ........................................................................................ 59 Pummelo Candidate Selection ......................................................................... 60 Bacterial culture and inoculum preparation ...................................................... 61 Leaf Inoculation ................................................................................................ 62 Candidatus Liberibacter asiaticus Testing ........................................................ 63 Results and Discussion ........................................................................................... 64 4 INTERPLOID HYBRIDIZATION TO PRODUCE SEEDLESS TRIPLOID HYBRIDS OF PUMMELO AND GRAPEFRUIT ....................................................................... 85 Background and Objective ...................................................................................... 85 Materials and Methods ............................................................................................ 87 Easy Peel Grapefruit ........................................................................................ 90 Embryo Rescue for Interploid Crosses ............................................................. 91 Flow Cytometry for Ploidy Determination ......................................................... 91 Seedling Grafting .............................................................................................. 92 Citrus Canker Inoculations ............................................................................... 92 Results and Discussion ........................................................................................... 93 Citrus Canker Inoculation ................................................................................. 95 Preliminary Evaluation of Field trees ................................................................ 98 5 TESTING OF SELECTED PUMMELO AND HYBRID INTERSTOCKS TO MITIGATE HLB SYMPTOMS IN COMMERCIAL SWEET ORANGE/SWINGLE TREES ................................................................................................................. 119 Background and Objectives .................................................................................. 119 Materials and Methods .......................................................................................... 120 Stick Grafting .................................................................................................. 121 Control Trees .................................................................................................. 123 Rootstocks ...................................................................................................... 123 HLB Development .......................................................................................... 123 CLas Detection ............................................................................................... 124 Growth Data ..................................................................................................
Recommended publications
  • Influence of Mitochondria Origin on Fruit Quality in a Citrus Cybrid
    Influence of mitochondria origin on fruit quality ina citrus cybrid. Jean-Baptiste Bassene, Liliane Berti, Elodie Carcouet, Claudie Dhuique-Mayer, Anne-Laure Fanciullino, Jean Bouffin, Patrick Ollitrault, Yann Froelicher To cite this version: Jean-Baptiste Bassene, Liliane Berti, Elodie Carcouet, Claudie Dhuique-Mayer, Anne-Laure Fan- ciullino, et al.. Influence of mitochondria origin on fruit quality in a citrus cybrid.. Jour- nal of Agricultural and Food Chemistry, American Chemical Society, 2008, 56 (18), pp.8635-40. 10.1021/jf801233m. hal-00593592 HAL Id: hal-00593592 https://hal.archives-ouvertes.fr/hal-00593592 Submitted on 16 May 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. J. Agric. Food Chem. 2008, 56, 8635–8640 8635 Influence of Mitochondria Origin on Fruit Quality in a Citrus Cybrid † ‡ § JEAN-BAPTISTE BASSENE, LILIANE BERTI, ELODIE CARCOUET, | † † CLAUDIE DHUIQUE-MAYER, ANNE-LAURE FANCIULLINO, JEAN BOUFFIN, † ,† PATRICK OLLITRAULT, AND YANN FROELICHER* Centre de Coope´ration Internationale en Recherche Agronomique pour le De´veloppement (CIRAD), UPR Multiplication ve´ge´tative, F-20230 San Giuliano, France, Universite´ de Corse, UMR CNRS 6134, Laboratoire Biochimie et Biologie Mole´culaire du Ve´ge´tal, Quartier Grossetti, BP 52, 20250 Corte, France, Institut National de Recherche Agronomique (INRA), UR GEQA, San Giuliano, F-20230 San Giuliano, France, and CIRAD, UMR QUALISUD, F-34398 Montpellier Cedex 5, France Sugar, organic acid, and carotenoid are the most important indicators of fruit taste and nutritional and organoleptic quality.
    [Show full text]
  • UNIVERSITY of CALIFORNIA RIVERSIDE Cross-Compatibility, Graft-Compatibility, and Phylogenetic Relationships in the Aurantioi
    UNIVERSITY OF CALIFORNIA RIVERSIDE Cross-Compatibility, Graft-Compatibility, and Phylogenetic Relationships in the Aurantioideae: New Data From the Balsamocitrinae A Thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Plant Biology by Toni J Siebert Wooldridge December 2016 Thesis committee: Dr. Norman C. Ellstrand, Chairperson Dr. Timothy J. Close Dr. Robert R. Krueger The Thesis of Toni J Siebert Wooldridge is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGEMENTS I am indebted to many people who have been an integral part of my research and supportive throughout my graduate studies: A huge thank you to Dr. Norman Ellstrand as my major professor and graduate advisor, and to my supervisor, Dr. Tracy Kahn, who helped influence my decision to go back to graduate school while allowing me to continue my full-time employment with the UC Riverside Citrus Variety Collection. Norm and Tracy, my UCR parents, provided such amazing enthusiasm, guidance and friendship while I was working, going to school and caring for my growing family. Their support was critical and I could not have done this without them. My committee members, Dr. Timothy Close and Dr. Robert Krueger for their valuable advice, feedback and suggestions. Robert Krueger for mentoring me over the past twelve years. He was the first person I met at UCR and his willingness to help expand my knowledge base on Citrus varieties has been a generous gift. He is also an amazing friend. Tim Williams for teaching me everything I know about breeding Citrus and without whom I'd have never discovered my love for the art.
    [Show full text]
  • Literature Research
    Literature Search 20. Literature Search Growing Lemons in Australia - a production manual© 20 — 1 Literature Search Abu-Awwad, A.M. 2001. Influence of Different Water Quantities and Qualities on Lemon trees and Soil Salt Distribution at the Jordan Valley. Agricultural Water Management 52: 53-71. Young lemon trees (Eureka) were studied for five years (1996-2000). Five water levels and three water qualities were imposed via trickle irrigation system on clay loam soil. In saline substrates Na+ and C1- are usually the dominant ions. The lemon tree is a salt-sensitive crop to salinity, and even low salt concentrations may affect its growth and productivity. A field experiment was conducted to investigate the influence of different water and salinity levels on the development of young lemon (Eureka) trees. Materials and Methods A field experiment was conducted for 5 years. One dripper per tree for the first year, two drippers 1.0 m apart per tree for the second year, and thereafter four drippers 1.0 m apart. 8L/hr of five water levels and three water qualities. Conclusion Increasing irrigation water salinity increased salt concentration and osmotic potential in the root zone, and consequently reduced lemon annual water use, stem diameter and fruit yield. Regardless of irrigation water salinity, the significantly highest fruit yield was at irrigation water depth equal to evaporation depth from class A pan when corrected for tree canopy percentage shaded area. Adriaensens, S.Z., Past and Present Situation of the Spanish Citrus Industry, 1993. Lemon group The Verna is a typically Spanish variety of unknown origin.
    [Show full text]
  • What to Eat on the Autoimmune Protocol
    WHAT TO EAT ON THE AUTOIMMUNE PROTOCOL All the foods listed here are great to include in your It’s time to create an epidemic of - health. And it starts with learning ents that will help regulate your immune system and how to eat more nutrient-dense food. your hormones and provide the building blocks that your body needs to heal. You don’t need to eat all of these foods (it’s okay if snails, frog legs, and crickets aren’t your thing, and it’s okay if you just can’t get kangaroo meat or mizuna), but the idea is both to give Poultry innovative ways to increase variety and nutrient density • chicken • grouse • pigeon by exploring new foods. • dove • guinea hen • quail • duck • ostrich • turkey • emu • partridge (essentially, Red Meat • goose • pheasant any bird) • antelope • deer • mutton • bear • elk • pork • beaver • goat • rabbit • beef • hare • sea lion • • horse • seal • boar • kangaroo • whale • camel • lamb (essentially, • caribou • moose any mammal) Amphibians and Reptiles • crocodile • frog • snake • turtle 1 22 Fish* Shellfish • anchovy • gar • • abalone • limpet • scallop • Arctic char • haddock • salmon • clam • lobster • shrimp • Atlantic • hake • sardine • cockle • mussel • snail croaker • halibut • shad • conch • octopus • squid • barcheek • herring • shark • crab • oyster • whelk goby • John Dory • sheepshead • • periwinkle • bass • king • silverside • • prawn • bonito mackerel • smelt • bream • lamprey • snakehead • brill • ling • snapper • brisling • loach • sole • carp • mackerel • • • mahi mahi • tarpon • cod • marlin • tilapia • common dab • • • conger • minnow • trout • crappie • • tub gurnard • croaker • mullet • tuna • drum • pandora • turbot Other Seafood • eel • perch • walleye • anemone • sea squirt • fera • plaice • whiting • caviar/roe • sea urchin • • pollock • • *See page 387 for Selenium Health Benet Values.
    [Show full text]
  • Effect of Environmental Conditions on the Yield of Peel and Composition
    agronomy Article Effect of Environmental Conditions on the Yield of Peel and Composition of Essential Oils from Citrus Cultivated in Bahia (Brazil) and Corsica (France) François Luro 1,*, Claudia Garcia Neves 2, Gilles Costantino 1, Abelmon da Silva Gesteira 3 , Mathieu Paoli 4 , Patrick Ollitrault 5 ,Félix Tomi 4 , Fabienne Micheli 2,6 and Marc Gibernau 4 1 Unité Mixte de Recherche Amélioration Génétique et et Adaptation des Plantes (UMR AGAP) Corse, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 20230 San Giuliano, France; [email protected] 2 Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas (DCB), Universidade Estadual de Santa Cruz (UESC), Rodovia Ilhéus-Itabuna, km 16, Ilhéus, BA 45662-900, Brasil; [email protected] (C.G.N.); [email protected] (F.M.) 3 Empresa Brasileira de Pesquisa e Agropecuária (EMBRAPA) Mandioca e Fruticultura, Rua Embrapa, s/nº, Cruz das Almas, BA 44380-000, Brasil; [email protected] 4 Equipe Chimie et Biomasse, Unité Mixte de Recherche 6134 SPE, Université de Corse-CNRS, Route des Sanguinaires, 20000 Ajaccio, France; [email protected] (M.P.); [email protected] (F.T.); [email protected] (M.G.) 5 Unité Mixte de Recherche Amélioration Génétique et et Adaptation des Plantes (UMR AGAP) Corse, Centre de coopération Internationale en Recherche Agronomique pour le développement (CIRAD), 20230 San Giuliano, France; [email protected] 6 Unité Mixte de Recherche Amélioration Génétique et et Adaptation des Plantes (UMR AGAP), Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le développement (CIRAD), 34398 Montpellier, France * Correspondence: [email protected]; Tel.: +33-4-95-59-59-46 Received: 31 July 2020; Accepted: 24 August 2020; Published: 26 August 2020 Abstract: The cosmetic and fragrance industry largely exploits citrus essential oils (EOs) because of their aromatic properties.
    [Show full text]
  • Holdings of the University of California Citrus Variety Collection 41
    Holdings of the University of California Citrus Variety Collection Category Other identifiers CRC VI PI numbera Accession name or descriptionb numberc numberd Sourcee Datef 1. Citron and hybrid 0138-A Indian citron (ops) 539413 India 1912 0138-B Indian citron (ops) 539414 India 1912 0294 Ponderosa “lemon” (probable Citron ´ lemon hybrid) 409 539491 Fawcett’s #127, Florida collection 1914 0648 Orange-citron-hybrid 539238 Mr. Flippen, between Fullerton and Placentia CA 1915 0661 Indian sour citron (ops) (Zamburi) 31981 USDA, Chico Garden 1915 1795 Corsican citron 539415 W.T. Swingle, USDA 1924 2456 Citron or citron hybrid 539416 From CPB 1930 (Came in as Djerok which is Dutch word for “citrus” 2847 Yemen citron 105957 Bureau of Plant Introduction 3055 Bengal citron (ops) (citron hybrid?) 539417 Ed Pollock, NSW, Australia 1954 3174 Unnamed citron 230626 H. Chapot, Rabat, Morocco 1955 3190 Dabbe (ops) 539418 H. Chapot, Rabat, Morocco 1959 3241 Citrus megaloxycarpa (ops) (Bor-tenga) (hybrid) 539446 Fruit Research Station, Burnihat Assam, India 1957 3487 Kulu “lemon” (ops) 539207 A.G. Norman, Botanical Garden, Ann Arbor MI 1963 3518 Citron of Commerce (ops) 539419 John Carpenter, USDCS, Indio CA 1966 3519 Citron of Commerce (ops) 539420 John Carpenter, USDCS, Indio CA 1966 3520 Corsican citron (ops) 539421 John Carpenter, USDCS, Indio CA 1966 3521 Corsican citron (ops) 539422 John Carpenter, USDCS, Indio CA 1966 3522 Diamante citron (ops) 539423 John Carpenter, USDCS, Indio CA 1966 3523 Diamante citron (ops) 539424 John Carpenter, USDCS, Indio
    [Show full text]
  • Strategic Planning for the Florida Citrus Industry: Addressing Citrus Greening
    This PDF is available from The National Academies Press at http://www.nap.edu/catalog.php?record_id=12880 Strategic Planning for the Florida Citrus Industry: Addressing Citrus Greening ISBN Committee on the Strategic Planning for the Florida Citrus Industry: 978-0-309-15207-5 Addressing Citrus Greening Disease (Huanglongbing); National Research Council 328 pages 8 1/2 x 11 PAPERBACK (2010) Visit the National Academies Press online and register for... Instant access to free PDF downloads of titles from the NATIONAL ACADEMY OF SCIENCES NATIONAL ACADEMY OF ENGINEERING INSTITUTE OF MEDICINE NATIONAL RESEARCH COUNCIL 10% off print titles Custom notification of new releases in your field of interest Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Request reprint permission for this book Copyright © National Academy of Sciences. All rights reserved. Strategic Planning for the Florida Citrus Industry: Addressing Citrus Greening STRATEGIC PLANNING FOR THE FLORIDA CITRUS INDUSTRY Addressing Citrus Greening Disease Committee on the Strategic Planning for the Florida Citrus Industry: Addressing Citrus Greening Disease (Huanglongbing) Board on Agriculture and Natural Resources Division on Earth and Life Studies Copyright © National Academy of Sciences. All rights reserved. Strategic Planning for the Florida Citrus Industry: Addressing Citrus Greening THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine.
    [Show full text]
  • CITRUS BUDWOOD Annual Report 2017-2018
    CITRUS BUDWOOD Annual Report 2017-2018 Citrus Nurseries affected by Hurricane Irma, September 2017 Florida Department of Agriculture and Consumer Services Our Vision The Bureau of Citrus Budwood Registration will be diligent in providing high yielding, pathogen tested, quality budlines that will positively impact the productivity and prosperity of our citrus industry. Our Mission The Bureau of Citrus Budwood Registration administers a program to assist growers and nurserymen in producing citrus nursery trees that are believed to be horticulturally true to varietal type, productive, and free from certain recognizable bud-transmissible diseases detrimental to fruit production and tree longevity. Annual Report 2018 July 1, 2017 – June 30, 2018 Bureau of Citrus Budwood Registration Ben Rosson, Chief This is the 64th year of the Citrus Budwood Registration Program which began in Florida in 1953. Citrus budwood registration and certification programs are vital to having a healthy commercial citrus industry. Clean stock emerging from certification programs is the best way to avoid costly disease catastrophes in young plantings and their spread to older groves. Certification programs also restrict or prevent pathogens from quickly spreading within growing areas. Regulatory endeavors have better prospects of containing or eradicating new disease outbreaks if certification programs are in place to control germplasm movement. Budwood registration has the added benefit in allowing true-to-type budlines to be propagated. The selection of high quality cultivars for clonal propagation gives growers uniform plantings of high quality trees. The original mother stock selected for inclusion in the Florida budwood program is horticulturally evaluated for superior performance, either by researchers, growers or bureau staff.
    [Show full text]
  • AMS CATAIR Guidelines
    CBP and Trade Automated Interface Requirements USDA Agricultural Marketing Service PGA Message Set September 2016 AMS Supplemental - Customs and Trade Automated Interface Requirements USDA-AMS TABLE OF CONTENTS 1. PURPOSE OF DOCUMENT ................................................................................................. 7 2. OVERVIEW OF AMS PROGRAMS .................................................................................... 8 3. AMS-MO PROGRAM: MARKETING ORDER QUALITY INSPECTION COMPLIANCE............................................................................................................................... 9 3.1. AMS-MO PROGRAM DESCRIPTION .......................................................................... 9 3.2. AMS-MO1 MESSAGE – REQUEST FOR MARKETING ORDER INSPECTION ... 12 3.3. AMS-MO2 MESSAGE – REPORTING PRODUCTS PREVIOUSLY INSPECTED . 17 3.4. AMS-MO3 MESSAGE – EXEMPT PER EXISTING FV-6 ......................................... 20 3.5. AMS-MO4 MESSAGE – REQUEST AN INSPECTION EXEMPTION ..................... 22 3.6. AMS-MO5 MESSAGE – REQUEST PISTACHIO AFLATOXIN TESTING ............ 27 3.7. AMS-MO6 MESSAGE – REPORT EXEMPTED TYPE OR VARIETY .................... 30 3.8. AMS-MO7 MESSAGE – REPORT SEASONALLY EXEMPT PRODUCT ............... 33 3.9. AMS-MO8 MESSAGE – REPORT MINIMUM WEIGHT EXEMPT PRODUCT ..... 36 4. AMS-EG PROGRAM: IMPORT EGG INSPECTION ........................................................ 38 4.1. AMS-EG PROGRAM DESCRIPTION ........................................................................
    [Show full text]
  • Accessions for Cooperator
    Accessions for cooperator Accessions with University of California as source 1. DFIC 1 Ficus carica Vernino 2. DFIC 2 Ficus carica Panachee 3. DFIC 3 Ficus carica Marabout C.Smyrnay 4. DFIC 4 Ficus carica UCR 291 5. DFIC 5 Ficus carica Conadria 6. DFIC 6 Ficus carica UCR 347-1 7. DFIC 7 Ficus carica Archipel 8. DFIC 8 Ficus carica UCR 228-20 9. DFIC 9 Ficus carica Flanders 10. DFIC 10 Ficus carica UCR 271-1 11. DFIC 12 Ficus carica Mission 12. DFIC 13 Ficus hybrid DFIC 13 13. DFIC 14 Ficus carica UCR 276-49 14. DFIC 15 Ficus carica DiRedo 15. DFIC 16 Ficus carica Santa Cruz Dark 16. DFIC 17 Ficus carica Brown Turkey 17. DFIC 19 Ficus carica UCR 276-14 18. DFIC 20 Ficus carica Excel 19. DFIC 21 Ficus carica Tena 20. DFIC 22 Ficus carica Mary Lane 21. DFIC 23 Ficus hybrid DFIC 23 22. DFIC 24 Ficus carica Deanna 23. DFIC 25 Ficus carica UCR 278-128 24. DFIC 26 Ficus carica Verte 25. DFIC 27 Ficus carica Beall 26. DFIC 28 Ficus carica UCR 309 B-1 27. DFIC 29 Ficus hybrid DFIC 29 28. DFIC 30 Ficus carica Genoa 29. DFIC 31 Ficus carica Alma 30. DFIC 32 Ficus carica Adriatic 31. DFIC 33 Ficus carica Yellow Neeches 32. DFIC 34 Ficus carica Brunswick 33. DFIC 35 Ficus carica Orphan 34. DFIC 36 Ficus carica Zidi 35. DFIC 37 Ficus carica UCR 291-4 http://www.ars-grin.gov/cgi-bin/npgs/html/cno_acc.pl?61329 (1 of 21) [5/31/2009 3:37:10 PM] Accessions for cooperator 36.
    [Show full text]
  • Determination of Distinctness Among Citrus Cultiv Ars
    DETERMINATION OF DISTINCTNESS AMONG CITRUS CULTIVARS USING BIOCHEMICAL AND MOL:e<;;ULAR MARKERS THESIS Submitted in fulfilment of the requirements for the Degree of MASTER OF SCIENCE of Rhodes University by KARIN CARSTENS February 1994 AAN: MY OVERS "Education makes a people easy to lead, but difficult to drive; easy to govern, but impossible to enslave." ABSTRACT Citrus is among the most important fruit crops worlstwide, and therefore the preservation and improvement of citrus germplasm is of the essence. Citrus breeders are often faced with the difficulty of distinguishing between new and existing cultivars because of the ambiguous nature of morphological traits due to environmental influences and error in human judgement. The protection of new varieties is very important to the breeder. New varieties cannot be patented in South Africa, but it can be protected by Plant Breeders' Rights, only if it is genetically distinguishable and significantly different economically from existing varieties. Cultivars in four genera (c. sinensis, C. paradisi, C. grandis and C. reticulata) included in the Citrus Improvement Programme (CIP) or cultivars awaiting recognition of Plant Breeders' Rights by the International Union for the Protection of New Plant Varieties (UPOV) were analyzed with Isoenzymes, Restriction Fragment Length Polymorphism (RFLP) and Random Amplified Polymorphic DNA (RAPD). Five enzyme systems (PGM, PGI, MDH, GOT and IDH) were analyzed and founded to be suitable for grouping together cultivars belonging to the same genera. It was not suited for routine discrimination of cultivars in a particular genus. RFLP studies were conducted on five grapefruit cultivars, using cDNA clones from a genomic library of Rough Lemon.
    [Show full text]
  • Citrus Sp. and Hybrids (Back to Main MBN Catalog "C")
    Citrus sp. and hybrids (back to main MBN catalog "C") nice haul! Walt Steadman and the CRFG 2006 Lindcove tour we currently are not offering citrus for sale. While we feel citrus will always be part of the California home landscape, we are holding off until we see the the impact on our retail customers of pending state and federal regulations regarding Yellow Dragon Disease (Huang Long Bing, "citrus greening"). The information is provided as a free resource for professionals and home gardeners. rev 4/2015 Citrus are a large group trees and shrubs. The most commonly recognized categories (orange, lemon, grapefruit and mandarin) apparently originating in Asia from just three root species: the citron (C. medica), mandarin (C. reticulata), and pummelo (C. grandis or C. maxima). The resulting hybrids and backcrosses then radiated over thousands of years into the spectrum of hybrids and selections we now enjoy. All common citrus (exclusive of limes) appear to be hybrids and mutations of these original three types. Some, such as the mandarins, have been sold commercially for over 2300 years, while evidence of citron cultivation dates back to Babylonian times (~4000 BC). One statistic I recently heard at a UC Riverside gathering is that 60% of homes in California hav a citrus tree of some type. We offer a range of common as well as new and quite rare types. Disease Sorry folks, we have to start here. We here in California enjoy the very best quality citrus in the world because of the strict operating procedures and disease control efforts of UC Riverside, CDFA, and us commercial growers.
    [Show full text]