Special Topic a Review of the Biomechanical and Functional

Total Page:16

File Type:pdf, Size:1020Kb

Special Topic a Review of the Biomechanical and Functional Special Topic A Review of the Biomechanical and Functional Changes in the Shoulder following Transfer of the Latissimus Dorsi Muscles Scott L. Spear, M.D., and Christopher L. Hess, M.D. Washington, D.C. bidity. However, the normal physiology of the Summary: The latissimus dorsi muscle is shoulder girdle depends on the function of among the most commonly used muscle flaps this muscle. Thus, the questions are, are there because it has broad versatility and is gener- biomechanical changes resulting from the loss ally believed to result in minimal donor-site of this muscle, and do these changes translate morbidity. However, the normal physiology into a significant deficit in normal function? of the shoulder girdle depends on the func- Perhaps most importantly, do these changes tion of this muscle. Therefore, we have un- lead to interference with daily activities? We dertaken this review of the literature to ex- have undertaken this review of the literature to amine the issue of biomechanical and examine the issue of biomechanical and func- functional changes of the shoulder that occur tional changes of the shoulder that occur with with transfer of the latissimus dorsi muscle transfer of the latissimus dorsi muscle. In addi- and to determine whether these changes re- tion to any measurable changes, we were par- sult in deficits in normal function. A review of ticularly interested in the clinical implications the literature pertaining to all aspects of the and how one should advise a patient consider- latissimus muscle and shoulder function fol- ing these options. lowing muscle transfer was conducted. The latissimus muscle functions in extension, ad- ANATOMY AND PHYSIOLOGY duction, and internal and external rotation. The latissimus dorsi muscle is one of 26 mus- After the transfer of the muscle there are cles that make up the complex shoulder joint.1 deficits in extension and adduction. These Its broad origin arises as an aponeurosis from deficits result in a faster rate of fatigue during the lower thoracic and lumbar vertebra, sa- activities in which the arms are extended over crum, and iliac crest. As the muscle spans the the head, such as ladder climbing and swim- back heading toward the shoulder, several ming. In addition, there is no decrease in small slips of origin may arise from the lower range of shoulder motion. (Plast. Reconstr. four ribs.2 Crossing the scapula, the latissimus Surg. 115: 2070, 2005.) joins with the teres major muscle; it then wraps around the teres major as it traverses the axil- lary space, creating the posterior axillary fold. The muscle then inserts onto the anteromedial The use of muscle flaps to facilitate the trans- aspect of the humerus along the crest and floor fer of soft tissue is one of the pillars of recon- of the bicipital or intertubercular groove, just structive surgery. The latissimus dorsi muscle is lateral to the teres major muscle.3 among the most commonly used muscle flaps Innervated by the thoracodorsal nerve (C6 because it has broad versatility and is generally to C8), the latissimus muscle acts on the hu- believed to result in minimal donor-site mor- merus in medial rotation, adduction, shoulder From the Division of Plastic Surgery, Medstar-Georgetown University Hospital. Received for publication July 28, 2004. DOI: 10.1097/01.PRS.0000163329.96736.6A 2070 Vol. 115, No. 7 / LATISSIMUS DORSI TRANSFER 2071 extension, depressing of the raised arm, and rotation, 3:2. Upon removal of the muscle, mo- downward rotation of the scapula. These func- tions involving the latissimus should experience a tions are possible through the synergistic ac- change in these torque ratios, to a degree, based tions of the latissimus with six other muscles in on the relative contribution of the latissimus to which the teres major muscle is the principal each movement. component (Table I).4 Although it is only one component of this seven-muscle unit, the latis- LITERATURE simus is one of the most powerful of these The latissimus dorsi flap was originally de- muscles.5 scribed by Tansini in 1906 to cover mastectomy Unfortunately, because of the number of defects.7 The flap fell out of favor until 1976, muscles and complexity of vectors involved in when Olivari8 redescribed it. Since that time, it each shoulder motion, it is difficult to quantify has become one of the workhorses for cover- a specific muscle’s exact contribution to a age of soft-tissue defects throughout the body. given movement. However, by studying ana- Surprisingly though, there have been few con- tomic features of each muscle and certain ac- trolled studies to examine the biomechanical tions, such as torque, the approximate contri- and functional changes that result from remov- bution of the latissimus muscle to shoulder ing the latissimus muscle from the shoulder motion can be appreciated. Therefore, the def- unit. This may be because early reports describ- icits created by its loss can be estimated. To ing the use of the latissimus stated subjectively begin with, the potential force generated by a that shoulder function was unchanged.4,8–10 It muscle is based on its effective size, which is should be noted that some authors did state determined by its physiologic cross-section. that disability could occur in activities that re- This is calculated by measuring the volume of quire strong shoulder adduction,11,12 although the muscle and dividing by the muscle fiber none of these observations were verified by length. The value for each shoulder muscle has objective assessment. been previously calculated, and the latissimus It was not until 1985 that Laitung and Peck13 muscles can generate a significant amount of examined shoulder adduction in 19 patients 2 force.5 Second, when the working capacity of months to 4 years after an operation in which the shoulder is examined, we find that a rela- the latissimus was removed and used as a free tive balance exists between flexor and extensor flap. With arms at 90 degrees of abduction, torques. Ivey et al.6 demonstrated these rela- they utilized a Salter spring balance to examine tionships in the shoulder using variable- adduction strength. The authors determined resistance isokinetic devices. They found the that adduction strength was not affected, but following torque ratios: flexion-extension, 4:5; that scar contracture and loss of range of mo- abduction-adduction, 1:2; and internal-external tion did occur. They concluded that latissimus muscle transfer did not affect arm adduction TABLE I strength, and that therefore shoulder function Latissimus Dorsi Functions and Substitute Muscles was not affected. In another study, Russell et al.14 set out to Function Substitute Muscle determine the extent of functional deficit fol- Medial rotation Latissimus dorsi lowing the use of the latissimus muscle for Pectoralis major reconstructive purposes. Twenty-four patients, Teres major 9 to 65 years of age, were studied 3 to 24 Subscapularis Backward extension Latissimus dorsi months after pedicled or free latissimus muscle Teres major transfer. Among other things, they attempted Deltoid to examine the strength and range of motion Adduction Latissimus dorsi Pectoralis major of all shoulder and trunk muscles involved in Coraco brachialis shoulder motion. No instrument testing was Teres major utilized, and no attempt was made to standard- Teres minor Depress raised arm Latissimus dorsi ize the group. The authors determined that Pectoralis major the operated shoulder was up to 34 percent Teres major weaker than the nonoperated side in 73 per- Accessory cough and squeeze All chest wall muscles cent of patients, and that some patients dem- Reprinted from McCraw, J. B., Penix, J. O., and Baker, J. W. Repair of major defects of the chest wall and spine with the latissimus dorsi myocutaneous onstrated a decreased range of motion follow- flap. Plast. Reconstr. Surg. 62: 197, 1978. ing muscle transfer. Unfortunately, because 2072 PLASTIC AND RECONSTRUCTIVE SURGERY, June 2005 each muscle group was not isolated, a conclu- DISCUSSION sion concerning the specific actions of the la- The use of the latissimus dorsi muscle for tissimus muscle could not be drawn. reconstruction, in particular breast reconstruc- Since that time, several significant studies tion, has become common in plastic surgery. have examined the full extent of shoulder Advising patients on different reconstructive 15–17 function following latissimus transfer. options requires educating them on the pros 15 Brumback et al. examined the dominant and and cons of each method, not just in terms of nondominant shoulders of 17 patients, 22 to the recipient site but the donor site as well 96 months after free muscle transfer. These because patients will have their own reasons for patients were compared with 17 healthy volun- choosing a particular reconstruction. There- teers. Patients were questioned regarding daily fore, it is necessary for the surgeon to have a activities and were evaluated for scar quality, thorough understanding of all aspects of the range of motion, and 19 different isometric, latissimus flap, especially the functional isotonic, and isokinetic strength tests. In this changes that can occur. well-conducted study, the authors reported Despite the paucity of literature examining that none of the patients noted any change in the biomechanics of the shoulder following the ability to perform activities of daily living or removal of the latissimus muscle, there appears had to modify sports-related activities because to be enough information to arrive at some of shoulder function. Only one patient de- conclusions. First, there are definite biome- scribed soreness of the donor shoulder follow- chanical changes that occur in the shoulder ing work performed with arms over the head. girdle following latissimus muscle transfer. Also, passive range of motion was not reduced This seems obvious when one considers the in these patients.
Recommended publications
  • The Structure and Function of Breathing
    CHAPTERCONTENTS The structure-function continuum 1 Multiple Influences: biomechanical, biochemical and psychological 1 The structure and Homeostasis and heterostasis 2 OBJECTIVE AND METHODS 4 function of breathing NORMAL BREATHING 5 Respiratory benefits 5 Leon Chaitow The upper airway 5 Dinah Bradley Thenose 5 The oropharynx 13 The larynx 13 Pathological states affecting the airways 13 Normal posture and other structural THE STRUCTURE-FUNCTION considerations 14 Further structural considerations 15 CONTINUUM Kapandji's model 16 Nowhere in the body is the axiom of structure Structural features of breathing 16 governing function more apparent than in its Lung volumes and capacities 19 relation to respiration. This is also a region in Fascla and resplrstory function 20 which prolonged modifications of function - Thoracic spine and ribs 21 Discs 22 such as the inappropriate breathing pattern dis- Structural features of the ribs 22 played during hyperventilation - inevitably intercostal musculature 23 induce structural changes, for example involving Structural features of the sternum 23 Posterior thorax 23 accessory breathing muscles as well as the tho- Palpation landmarks 23 racic articulations. Ultimately, the self-perpetuat- NEURAL REGULATION OF BREATHING 24 ing cycle of functional change creating structural Chemical control of breathing 25 modification leading to reinforced dysfunctional Voluntary control of breathing 25 tendencies can become complete, from The autonomic nervous system 26 whichever direction dysfunction arrives, for Sympathetic division 27 Parasympathetic division 27 example: structural adaptations can prevent NANC system 28 normal breathing function, and abnormal breath- THE MUSCLES OF RESPIRATION 30 ing function ensures continued structural adap- Additional soft tissue influences and tational stresses leading to decompensation.
    [Show full text]
  • Familial Absenceof the Pectoralis Major, Serratus Anterior, And
    J Med Genet: first published as 10.1136/jmg.22.5.390 on 1 October 1985. Downloaded from Journal of Medical Genetics, 1985, 22, 390-392 Familial absence of the pectoralis major, serratus anterior, and latissimus dorsi muscles T J DAVID* AND R M WINTERt From *the Department of Child Health, University ofManchester; and tthe Kennedy-Galton Centrefor Clinical Genetics, Harperbury Hospital, Hertfordshire. SUMMARY Congenital absence of shoulder girdle muscles is described in three generations of a family. The proband, a 3 year old boy, had absence of the sternocostal head of the right pectoralis major. His father had absence of the left serratus anterior and part of the left latissimus dorsi and his paternal grandfather had absence of the lower two-thirds of the left pectoralis major, with absence of the left serratus anterior and latissimus dorsi muscles. The condition is probably the result of a dominant gene. These observations show that absence of the pectoralis major is part of a wider spectrum of shoulder girdle defects. Where genetic advice is sought by persons with apparently sporadic absence of the pectoralis major, examination of the relatives is necessary. The Poland anomaly comprises unilateral absence of of the Poland anomaly or isolated absence of the the pectoralis major combined with an ipsilateral pectoralis. The pedigree is shown in fig 1. malformation of the hand which usually includes syndactyly. It is currently unclear whether isolated Case reports absence of the pectoralis major muscle and the CASE 1 Poland anomaly are part of the same spectrum of IV.3 was a male infant, the product of the first defects or are separate entities.1 Both are consis- 30 year old http://jmg.bmj.com/ tently unilateral and both are usually sporadic pregnancy of a 29 year old mother and 2 father, who had been married for seven years.
    [Show full text]
  • Bilateral Sternalis Muscles Were Observed During Dissection of the Thoraco-Abdominal Region of a Male Cadaver
    Case Reports Ahmed F. Ibrahim, MSc, MD, Saeed A. Makarem, MSc. PhD, Hassem H. Darwish, MBBCh. ABSTRACT Bilateral sternalis muscles were observed during dissection of the thoraco-abdominal region of a male cadaver. A full description of the muscles, as well as their attachments and innervations were reported. A brief review of the existing literature, regarding the nomenclature, incidence, attachments, innervations and clinical relevance of the sternalis muscle, is also presented. Neurosciences 2005; Vol. 10 (2): 171-173 he importance of continuing to record and Case Report. A well defined sternalis muscle Tdiscuss anatomical anomalies was addressed (Figures 1 & 2) was found, bilaterally, during recently1 in light of technical advances and dissection of the thoraco-abdominal region of a interventional methods of diagnosis and treatment. male cadaver in the Department of Anatomy, The sternalis muscle is a small supernumerary College of Medicine, King Saud University, Riyadh, muscle located in the anterior thoracic region, Kingdom of Saudi Arabia. Both muscles were superficial to the sternum and the sternocostal covered by superficial fascia, located superficial to fascicles of the pectoralis major muscle.2 In the the corresponding sternocostal portion of pectoralis literature, sternalis muscle is called "a normal major and separated from it by pectoral fascia. The anatomic variant"3 and "a well-known variation",4 left sternalis was 19 cm long and 3 cm wide at its although in most textbooks of anatomy, it is broadest part. Its upper end formed a tendon insufficiently mentioned. Yet, clinicians are continuous with that of the sternal head of left surprisingly unaware of this common variation.
    [Show full text]
  • M1 – Muscled Arm
    M1 – Muscled Arm See diagram on next page 1. tendinous junction 38. brachial artery 2. dorsal interosseous muscles of hand 39. humerus 3. radial nerve 40. lateral epicondyle of humerus 4. radial artery 41. tendon of flexor carpi radialis muscle 5. extensor retinaculum 42. median nerve 6. abductor pollicis brevis muscle 43. flexor retinaculum 7. extensor carpi radialis brevis muscle 44. tendon of palmaris longus muscle 8. extensor carpi radialis longus muscle 45. common palmar digital nerves of 9. brachioradialis muscle median nerve 10. brachialis muscle 46. flexor pollicis brevis muscle 11. deltoid muscle 47. adductor pollicis muscle 12. supraspinatus muscle 48. lumbrical muscles of hand 13. scapular spine 49. tendon of flexor digitorium 14. trapezius muscle superficialis muscle 15. infraspinatus muscle 50. superficial transverse metacarpal 16. latissimus dorsi muscle ligament 17. teres major muscle 51. common palmar digital arteries 18. teres minor muscle 52. digital synovial sheath 19. triangular space 53. tendon of flexor digitorum profundus 20. long head of triceps brachii muscle muscle 21. lateral head of triceps brachii muscle 54. annular part of fibrous tendon 22. tendon of triceps brachii muscle sheaths 23. ulnar nerve 55. proper palmar digital nerves of ulnar 24. anconeus muscle nerve 25. medial epicondyle of humerus 56. cruciform part of fibrous tendon 26. olecranon process of ulna sheaths 27. flexor carpi ulnaris muscle 57. superficial palmar arch 28. extensor digitorum muscle of hand 58. abductor digiti minimi muscle of hand 29. extensor carpi ulnaris muscle 59. opponens digiti minimi muscle of 30. tendon of extensor digitorium muscle hand of hand 60. superficial branch of ulnar nerve 31.
    [Show full text]
  • Anatomy, Shoulder and Upper Limb, Arm Quadrangular Space
    NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2018 Jan-. Anatomy, Shoulder and Upper Limb, Arm Quadrangular Space Authors Irfan A. Khan1; Matthew Varacallo2. Affiliations 1 Florida International University 2 Department of Orthopaedic Surgery, University of Kentucky School of Medicine Last Update: December 21, 2018. Introduction The quadrangular (or quadrilateral) space (QS) is named based on the shape of its anatomic boundaries. Located along the posterolateral shoulder, the QS serves as a passageway for the axillary nerve and posterior humeral circumflex artery (PHCA). Quadrangular (or quadrilateral) space syndrome (QSS) can occur secondary to various compressive pathologies. Although the incidence of such pathologies is rare, QSS has a known predilection for subgroups of athletic populations and can often suffer misdiagnosis or are clinically under-appreciated. Thus, clinicians should maintain a heightened clinical suspicion for QSS in patients aged 20-40 years of age presenting with a history of current contact or overhead athletic performance (e.g., baseball pitchers, swimmers, etc.), [1][2] or overhead laborers secondary to repetitive stress mechanics on the shoulder.[3] Structure and Function The QS has four anatomic borders; the teres minor superiorly, the inferior border is the teres major muscle, the medial boundary is the long head of the triceps brachii muscle, and the humeral surgical neck forms the lateral bound. The QS functions as a passageway for the axillary nerve, and the posterior humeral circumflex artery (PHCA).[3] The latter provides the primary (two-thirds) of the blood supply to the humeral head.[4] Blood Supply and Lymphatics The posterior humeral circumflex artery (PHCA) within the quadrangular space originates from the axillary artery, and within the QS, the PHCA divides into anterior and posterior branches.
    [Show full text]
  • The Laminated Nature of the Pectoralis Major Muscle and the Redefinition of the Inframammary Fold Clinical Implications in Aesthetic and Reconstructive Breast Surgery
    The Laminated Nature of the Pectoralis Major Muscle and the Redefinition of the Inframammary Fold Clinical Implications in Aesthetic and Reconstructive Breast Surgery Melvin M. Maclin II, MDa,*, Olivier A. Deigni, MD, MPHb, Bradley P. Bengtson, MDc KEYWORDS Pectoralis major muscle Inframammary fold Subpectoral augmentation Breast augmentation Breast reconstruction Acellular dermal matrix Breast inflection points Chest wall anatomy KEY POINTS The inframammary fold (IMF) is a critical landmark and aesthetic structure in breast surgery, yet it is poorly understood. The skin envelope is considered a separate entity from the chest wall; however, its surgical manip- ulation is not independent of chest wall anatomy. The pectoralis major muscle is a key structure in both cosmetic and reconstructive surgery, and its structure and performance are related to its inferior costal origins. A better understanding of the relationship of the IMF, pectoralis, and chest wall anatomy can offer improved outcomes in breast surgery. INTRODUCTION intimately aware of its relationship to the chest The breast is appreciated aesthetically and clini- wall and the breast soft tissues. Both are able to cally for its shape, projection, and volume. Multiple achieve outstanding outcomes; however, the au- techniques have evolved over the years to modify, thors present an alternative appreciation of the enhance, or recreate the breast mound. To this pectoralis and its relationship to the breast. The end surgical techniques have evolved to manipu- authors liken the comparison to the tale retold by late the breast skin envelope, soft tissues, and John Saxe of the 6 blind wise men and the chest wall anatomy, with and without prosthetic elephant (Fig.
    [Show full text]
  • A Very Rare Case of an Accessory Subscapularis Muscle and Its Potential Clinical Significance
    Surgical and Radiologic Anatomy (2021) 43:19–25 https://doi.org/10.1007/s00276-020-02531-6 ANATOMIC VARIATIONS A very rare case of an accessory subscapularis muscle and its potential clinical signifcance Nicol Zielinska1 · Łukasz Olewnik1 · Piotr Karauda1 · R. Shane Tubbs3,4,5 · Michał Polguj2 Received: 27 May 2020 / Accepted: 7 July 2020 / Published online: 12 July 2020 © The Author(s) 2020 Abstract The subscapularis muscle is the largest muscle of the rotator cuf and its main function is internal rotation. It is morphologi- cally variable in both point of origin and insertion. The presence of an accessory subscapularis muscle can lead to brachial plexus neuropathy. This report presents a very rare accessory subscapularis muscle originating from two distinct bands on the subscapularis and teres major muscles. The insertion was divided among four tendons. The fourth tendon is bifurcated. One of these was connected to the tendon of the subscapularis muscle and the other three inserted into the base of the cora- coid process of the scapula. This anomalous muscle has the potential to entrap the nerves of the posterior cord such as the axillary, lower subscapular, and thoracodorsal nerves. Keywords Subscapularis muscle · Subscapularis tendon · Accessory subscapularis muscle · Lower subscapular nerve · Rotator cuf · Quadrangular space syndrome · Compression syndrome Introduction the subscapularis fossa. Its insertion is situated on the supe- rior part of the humerus (in most cases, the lesser tuberosity) The subscapularis muscle (SM) is the largest and the most [11, 14, 23]. The SM limits the axillary fossa from behind. It powerful muscle of the rotator cuf [10, 11].
    [Show full text]
  • Pectoral Region and Axilla Doctors Notes Notes/Extra Explanation Editing File Objectives
    Color Code Important Pectoral Region and Axilla Doctors Notes Notes/Extra explanation Editing File Objectives By the end of the lecture the students should be able to : Identify and describe the muscles of the pectoral region. I. Pectoralis major. II. Pectoralis minor. III. Subclavius. IV. Serratus anterior. Describe and demonstrate the boundaries and contents of the axilla. Describe the formation of the brachial plexus and its branches. The movements of the upper limb Note: differentiate between the different regions Flexion & extension of Flexion & extension of Flexion & extension of wrist = hand elbow = forearm shoulder = arm = humerus I. Pectoralis Major Origin 2 heads Clavicular head: From Medial ½ of the front of the clavicle. Sternocostal head: From; Sternum. Upper 6 costal cartilages. Aponeurosis of the external oblique muscle. Insertion Lateral lip of bicipital groove (humerus)* Costal cartilage (hyaline Nerve Supply Medial & lateral pectoral nerves. cartilage that connects the ribs to the sternum) Action Adduction and medial rotation of the arm. Recall what we took in foundation: Only the clavicular head helps in flexion of arm Muscles are attached to bones / (shoulder). ligaments / cartilage by 1) tendons * 3 muscles are attached at the bicipital groove: 2) aponeurosis Latissimus dorsi, pectoral major, teres major 3) raphe Extra Extra picture for understanding II. Pectoralis Minor Origin From 3rd ,4th, & 5th ribs close to their costal cartilages. Insertion Coracoid process (scapula)* 3 Nerve Supply Medial pectoral nerve. 4 Action 1. Depression of the shoulder. 5 2. Draw the ribs upward and outwards during deep inspiration. *Don’t confuse the coracoid process on the scapula with the coronoid process on the ulna Extra III.
    [Show full text]
  • Effect of Latissimus Dorsi Muscle Strengthening in Mechanical Low Back Pain
    International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583 Effect of Latissimus Dorsi Muscle Strengthening in Mechanical Low Back Pain 1 2 Vishakha Vishwakarma , Dr. P. R. Suresh 1, 2PCPS & RC, People’s University, Bhopal (M.P.), India Abstract: Mechanical low back pain (MLBP) is one of the most common musculoskeletal pain syndromes, affecting up to 80% of people at some point during their lifetime. Sources of back pain are numerous, usually sought in as lesion of disc or facet joints at L4- L5 and L5-S1 levels. Studies have shown that 40% of all back pain is of thoracolumbar origin. The term meachnical low back pain also gives reassurance that there is no damage to the nerves or spinal pathology. The clinical presentation of mechanical low back pain usually the ages 18-55 years is in the lumbo sacral region. A study was conducted to evaluate the designed to check the effectiveness of Conventional Exercises alone in Mechanical low back pain and along with the latissimus dorsi muscle strengthening, data was collected from People’s hospital, Bhopal (age group-30-45 yr both male and female randomly) Keywords: Visual analog scale, Assessment chart, Treatment table, Data collection sheets, Essential stationery materials, Computer, SPSS Software etc. 1. Introduction Back pain is a primary to seek medical advice considering 80% of people suffering from back pain. Mechanical low back pain is defined as a result of minor intervertebral dysfunction and referred pain in the low back The latissimus dorsi is a large, flat muscle on the back that and hip region, and can often be confused with the other stretches to the sides, behind the arm, and is partly covered pathologies that may cause these symptoms.18 by the trapezius on the back near the midline, the word latissimus dorsi comes from Latin and its means, broadest muscle of the back dorsum means back.
    [Show full text]
  • Muscles of Mastication Muscles That Move the Head
    1 Muscles Of Mastication identification origin insertion action maxilla, zygomatic arch Mandible elevates & protracts mandible MASSETER Human Cat Zygomatic Bone Mandible elevates mandible TEMPORALIS Human/Cat Temporal Bone Mandible elevates and retracts mandible Hyoid Bone DIGASTRIC Human mandible & mastoid process depress mandible Cat occipital bone & mastoid process Mandible depress mandible raises floor of mouth; MYLOHYOID Human/Cat Mandible Hyoid bone pulls hyoid forward Muscles That Move The Head identification origin insertion action STERNOCLEIDOMAStoID clavicle, sternum mastoid process flexes and laterally rotates head HUMAN ONLY STERNOMAStoID CAT ONLY sternum mastoid process turns and depresses head pulls head laterally; CLEIDOMAStoID CAT ONLY clavicle mastoid process pulls clavicle craniad 2 Muscles Of The Hyoid, Larynx And Tongue identification origin insertion action Human Sternum Hyoid depresses hyoid bone STERNOHYOID Cat costal cartilage 1st rib Hyoid pulls hyoid caudally; raises ribs and sternum sternum Throid cartilage of larynx Human depresses thyroid cartilage STERNothYROID Cat costal cartilage 1st rib Throid cartilage of larynx pulls larynx caudad elevates thyroid cartilage and Human thyroid cartilage of larynx Hyoid THYROHYOID depresses hyoid bone Cat thyroid cartilage of larynx Hyoid raises larynx GENIOHYOID Human/Cat Mandible Hyoid pulls hyoid craniad 3 Muscles That Attach Pectoral Appendages To Vertebral Column identification origin insertion action Human Occipital bone; Thoracic and Cervical raises clavicle; adducts,
    [Show full text]
  • Study of Axillary Arch: Embryological Basis and Its Clinical Implications
    Original Article Indian Journal of Anatomy291 Volume 7 Number 3, May - June 2018 DOI: http://dx.doi.org/10.21088/ija.2320.0022.7318.12 Study of Axillary Arch: Embryological Basis and Its Clinical Implications Divya Shanthi D’Sa1, Vasudha T.K.2 Abstract Aim: To study the incidence, embryological basis and clinical implications of unusual but most common anatomical variant, axillary arch. Materials & Methods: The study was conducted in the department of Anatomy, Subbaiah Institute of Medical Sciences, Shimoga during routine cadaveric dissection on 60 upper limbs. Results: Of the 60 upper limbs dissected, Axillary arch was seen in one right upper limb. It was extending between latissimus dorsi and fascia covering the subscapularis muscle after crossing the posterior cord of brachial plexus and circumflex scapular vessels. It was supplied by a branch from the thoracodorsal nerve. Conclusion: The presence of an axillary arch needs to be considered in differential diagnosis of axillary swellings and also in surgeries of shoulder region. Therefore it is mandatory to know the variant slips of the musculotendinous arch. Keywords: Axillary Arch; Latissimus Dorsi; Neurovascular Bundle; Clinical Implications. Introduction other variants of this anomaly have also been observed like the muscle adhering to the coracoid process of the scapula, medial epicondyle of the Humerus or The axillary arch muscle is an accessory muscle blending with the fibers of teres major, long head of that extends between the pectoralis major and triceps brachii, coracobrachialis
    [Show full text]
  • Congenital Absence of the Pectoral Muscles
    Arch Dis Child: first published as 10.1136/adc.12.68.123 on 1 April 1937. Downloaded from CONGENITAL ABSENCE OF THE PECTORAL MUSCLES BY E. D. IRVINE, M.D., AND J. B. TILLEY, M.D. (Blackburn). The four patients described in this paper exhibit congenital absence of the pectoral muscles in varying degree, and illustrate many points of interest. Three of them were observed during routine and special medical examinations of approximately 15,000 elementary school children, and one was a pre-school child in hospital: it is interesting to note that Scheslinger, according to Rector', discovered five cases in 54,000 patients. Case 1 was discovered during the examination of a boy aged ten, the second of four children, who complained of cough: he is under observation http://adc.bmj.com/ on September 30, 2021 by guest. Protected copyright. FIG. 1. as a tuberculosis contact. The sterno-costal portion of the left pectoralis major and the left pectoralis minor are both missing. Although not previously noted, this is believed to be a congenital defect. The clavicular head of the pectoralis major is well developed and arises from the inner half of the clavicle; the deltoid is not hypertrophied (fig. 1). When the arms are extended above the head, a well-marked fold of skin running vertically across the axilla to the second left rib and interspace can be seen and in Arch Dis Child: first published as 10.1136/adc.12.68.123 on 1 April 1937. Downloaded from I 2d4 AIICIlIVES 0O' DISEASE IN CHILDHOOD the fold fibrous tissue can be felt deep to the skin: whether this is simply fascia or a vestigial or degenerated muscle is not known.
    [Show full text]