2010 U.S. Department of Energy Joint Genome Institute Progress Report Sequencing the World of Possibilities for Energy and the Environment

Total Page:16

File Type:pdf, Size:1020Kb

2010 U.S. Department of Energy Joint Genome Institute Progress Report Sequencing the World of Possibilities for Energy and the Environment 2010 U.S. Department of Energy Joint Genome Institute Progress Report Sequencing the world of possibilities for energy and the environment Table of Contents DOE JGI Mission ........................................................ 7 Legacy Project Highlights .......................................... 42 Director’s Perspective.................................................... 8 Software & Analysis Tools ......................................... 45 DOE Mission Areas ................................................... 12 R&D Projects ..................................................... 46 By the Numbers.......................................................... 14 Polisher ............................................................... 46 User Map ............................................................ 15 Rnnotator ............................................................ 47 Scientific Literature/Impact ................................ 16 Education & Outreach ............................................... 48 DOE JGI Sequence Output .............................. 17 Safety & Ergonomics ................................................. 53 DOE JGI Team Science Realized ....................... 18 Appendices: ................................................................ 54 DOE JGI User Community ............................... 19 App. A: Glossary ................................................. 55 User Meeting 5 ........................................................... 20 App. B: DOE JGI Sequencing Process ............... 56 2011 Community Sequencing Program Portfolio ...... 22 App. C: FY 2011 CSP Projects ........................... 58 Plant and Algal Projects ...................................... 24 App. D: Review Committee and Advisory Fungal Projects .................................................... 26 Committee Members ............................ 60 Microbial Projects ............................................... 27 App. E: 2010 JGI User Meeting ......................... 62 Metagenomic Projects ......................................... 28 App. F: 2009-2010 Publications ......................... 64 DOE JGI Programs ................................................... 30 Plant Genomics Program .................................... 32 Fungal Genomics Program ................................. 34 Microbial Genomics Program ............................. 36 Metagenomics Program ...................................... 38 Mount Diablo, looming over Walnut Creek, California, the home of the DOE Joint Genome Institute 6 DOE JGI Mission The mission of the U.S. Department of Energy Joint Genome Institute is to serve the diverse scientific community as a user facility, enabling the application of large-scale genomics and analysis of plants, microbes, and communities of microbes to address the DOE mission goals in bioenergy and the environment. 7 Director’s Perspective 8 Eddy Rubin with Production head Susan Lucas at the DOE JGI Sanger phase-out ceremony 2010 marked a year of transitions for the U.S. Depart- sequencing technology has been future direction for NERSC, and ment of Energy Joint Genome Institute (DOE JGI). brought online at DOE JGI, the with genomics and subsequent Changes occurred in DOE JGI’s sequencing technolo- Pacific Biosciences (PacBio) Single levels of complex -omics data, we gies, in the information technology infrastructure that Cell Molecular Real-Time Detection foresee exponential increases in computa- underlies all of its processes, and in our perspective on the System. This instrument has the potential to gener- tion and storage requirements, which NERSC is genome capabilities that the Institute should offer in the ate extremely long nucleotide base reads in short periods well positioned to handle for us. future, in addition to sequencing as it evolves as a DOE of time. It is expected that PacBio’s modest throughput of Our ever-expanding primary user community — over genomic user facility. long reads will complement the massive data output of 1,800 principal investigators, co-PIs, collaborators, and In the fall, DOE JGI marked the complete phasing the short-read Illumina technologies in the coming year genome annotators on active DOE JGI Genome Projects out of the “workhorse” Sanger sequencing platform. This to supply our users with improved genomic products. in FY 2010 — continues to benefit from access to DOE mature sequencing technology has been the mainstay of With the DOE JGI’s transition to more data-intensive JGI’s data generation and analysis capabilities. production sequencing for the Institute’s first 10 years (we technologies, we sought to maximize our in-house com- A particularly important metric of DOE JGI is the had over 105 such machines during the peak of the human putational capabilities while also tapping into a more robust wealth of contributions to the scientific literature, with genome sequencing efforts). With the steady improve- computational infrastructure. In 2010, we signed a formal more than 150 journal papers connected to the DOE ments in next-generation sequencers, it simply no longer Memorandum of Understanding and partnered with the mission areas of energy and the environment—of which made sense to maintain the elaborate infrastructure and Lawrence Berkeley National Laboratory’s National Energy 22 were manuscripts published in the high-impact jour- costs associated with the support of the Sanger instruments. Research Scientific Computing Center (NERSC) Divi- nals Science, Nature, and PNAS. Subsequently, DOE JGI has focused its production activities sion to more closely integrate DOE JGI staff and com- Here is a sampling of just a few of the publications on the evolving Illumina platform. A concerted effort was puting capability with this world-class institution. This from the past year: made in the past year to provide computational and mo- alliance represents a coming-of-age for the combined • The comparative analysis, published in the journal lecular biology support of the Illumina platform such that genomics and high performance computing enterprise. Science, of the genome of the multicellular alga Volvox the full complement of the DOE JGI’s products — plant, NERSC has a successful track record in responding to carteri with that of the unicellular alga Chlamydomonas fungal, microbial, and metagenomic — could be gener- these kinds of massive-scale data challenges, even though reinhardtii, which was previously sequenced by the ated with a data quality that our users have come to expect the tasks DOE JGI presents are quite different from DOE JGI. The results have implications for how from the Sanger platform, at dramatically reduced cost NERSC’s more traditional High-Performance Comput- these aquatic photosynthetic organisms can be engi- and increased throughput. In addition, a third-generation ing workload. Data-centric computing is an important neered and harnessed for potential biofuels. 9 • The publication in Nature Biotechnology of the genome down organic matter — analyzed in the context of a 2) Debunking the notion of so-called “junk DNA,” analysis of the white rot fungus Schizophyllum plastics wastewater system and published in the Inter- which had no immediately obvious associated commune, which joins another white rot and the first national Society for Microbial Ecology (ISME) Journal. functions, and showing that evolutionarily con- brown rot fungus as the third wood-decaying fungus • The development of a new computational tool for mi- served DNA was frequently involved in gene regu- completed by DOE JGI. crobial genome annotation quality control known as lation; and • The ability of leaf-cutter ants to tend a fungal “garden” “GenePRIMP,” which highlights errors that need to be 3) The development of the computational tools that to optimize their ability to break down cellulose for manually corrected — a feature that is critically im- were employed by others to help characterize their nutrition — something that could be mimicked portant to the DOE JGI user community for their ef- nearly 1,000 microbial species found in the human for biofuels production improvements — was ficient use of these data, was published inNature Methods. body—the human “microbiome." described in a PLoS Genetics publication. • The validation of two ribosomal RNA removal • The culmination of some Community Sequencing methods have enabled the analysis of the subset of In continuing to fill DOE JGI’s streamlined sequen- Program (CSP) research on characterizing the foregut genes that, for example, are transcribed under certain cing and data analysis pipelines, the CSP portfolio has microbiome of the Tammar wallaby. A metagenomic environmental conditions, appeared in Nature Methods. grown and diversified. The 35 approved FY 2011 CSP analysis, published in the Proceedings of the National • The enomeg analysis of the Western clawed frog targets include arctic algae, barley (whose genetic code is Academy of Sciences (PNAS), revealed microbes found Xenopus tropicalis was reported in and appeared on the nearly equivalent to sequencing two full human therein that could be considered for new strategies for cover of Science, recalling DOE JGI’s prior emphasis genomes), and microbial communities in deep-sea hydro- breaking down plant biomass toward the production of on understanding cell and evolutionary development thermal vents. Also, the Genomic Encyclopedia of Bacteria cellulosic biofuels. through sequencing. and Archaea (GEBA) project continues to fill in unrepre- • The study, published
Recommended publications
  • Corynebacterium Sp.|NML98-0116
    1 Limnochorda_pilosa~GCF_001544015.1@NZ_AP014924=Bacteria-Firmicutes-Limnochordia-Limnochordales-Limnochordaceae-Limnochorda-Limnochorda_pilosa 0,9635 Ammonifex_degensii|KC4~GCF_000024605.1@NC_013385=Bacteria-Firmicutes-Clostridia-Thermoanaerobacterales-Thermoanaerobacteraceae-Ammonifex-Ammonifex_degensii 0,985 Symbiobacterium_thermophilum|IAM14863~GCF_000009905.1@NC_006177=Bacteria-Firmicutes-Clostridia-Clostridiales-Symbiobacteriaceae-Symbiobacterium-Symbiobacterium_thermophilum Varibaculum_timonense~GCF_900169515.1@NZ_LT827020=Bacteria-Actinobacteria-Actinobacteria-Actinomycetales-Actinomycetaceae-Varibaculum-Varibaculum_timonense 1 Rubrobacter_aplysinae~GCF_001029505.1@NZ_LEKH01000003=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_aplysinae 0,975 Rubrobacter_xylanophilus|DSM9941~GCF_000014185.1@NC_008148=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_xylanophilus 1 Rubrobacter_radiotolerans~GCF_000661895.1@NZ_CP007514=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_radiotolerans Actinobacteria_bacterium_rbg_16_64_13~GCA_001768675.1@MELN01000053=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_rbg_16_64_13 1 Actinobacteria_bacterium_13_2_20cm_68_14~GCA_001914705.1@MNDB01000040=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_13_2_20cm_68_14 1 0,9803 Thermoleophilum_album~GCF_900108055.1@NZ_FNWJ01000001=Bacteria-Actinobacteria-Thermoleophilia-Thermoleophilales-Thermoleophilaceae-Thermoleophilum-Thermoleophilum_album
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Microbial and Geochemical Characterization of Wellington Oil Field, Southcentral Kansas, and Potential Applications to Microbial Enhanced Oil Recovery
    Microbial and Geochemical Characterization of Wellington Oil Field, Southcentral Kansas, and Potential Applications to Microbial Enhanced Oil Recovery By Breanna L. Huff Submitted to the graduate degree program in Geology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Master of Arts. ________________________________ Jennifer A. Roberts, Chair ________________________________ David A. Fowle, Co-Chair ________________________________ Gwendolyn L. Macpherson ________________________________ Leigh A. Stearns Date Defended: May 12, 2014 The Thesis Committee for Breanna L. Huff certifies that this is the approved version of the following thesis: Microbial and Geochemical Characterization of Wellington Oil Field, Southcentral Kansas, and Potential Applications to Microbial Enhanced Oil Recovery ________________________________ Jennifer A. Roberts, Chairperson Date approved: May 12, 2014 ii Abstract The aqueous geochemistry and microbiology of subsurface environments are intimately linked and in oil reservoir fluids. This interdependence may result in a number of processes including biodegradation of oil, corrosion of pipes, bioclogging of porous media, and biosurfactant production. During production of oil and reinjection of production water, surface exposed fluids are introduced to oxygen and exogenous microbes, both of which may alter reservoir biogeochemistry. In this study, production waters from six wells within the Wellington Field in SE Kansas, which has been water flooded continuously for 60 years, were sampled and analyzed for geochemistry, microbial ecology, microbial biomass, and biosurfactant production to better understand the relationship between the microbiology and oil production in the field. Minor differences in aqueous geochemistry were detected among the five production wells and single injection well, and data analysis and modeling indicate that depth-specific water-rock reactions play a major role in controlling the major ion geochemistry in the field.
    [Show full text]
  • Cv15866 JGI PR CR:JGI Progress Report
    15866_JGI_PR_CR:Cover 3/23/09 11:07 AM Page 1 U.S. DEPARTMENT OF ENERGY 2008 Progress Joint Genome Institute Report DOE JGI—powering a sustainable future with the science we need for biofuels, environmental cleanup, and carbon capture. 15866_JGI_PR_CR:Cover 3/23/09 11:07 AM Page 2 DISCLAIMER This document was prepared as an account of work sponsored by the United States Gov- ernment. While this document is believed to contain correct information, neither the United States Govern- ment nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect uencing targets of the DOE Joint Genome those of the United States Government or any agency thereof or The Regents of the University of California. The cover depicts various DOE mission-relevant genome seq Institute. This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Labora- tory under contract No.
    [Show full text]
  • Diversity and Prevalence of ANTAR Rnas Across Actinobacteria
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.11.335034; this version posted October 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Diversity and prevalence of ANTAR RNAs across actinobacteria Dolly Mehta1,2 and Arati Ramesh1,+ 1National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, India 560065. 2SASTRA University, Tirumalaisamudram, Thanjavur – 613401. +Corresponding Author: Arati Ramesh National Centre for Biological Sciences GKVK Campus, Bellary Road Bangalore, 560065 Tel. 91-80-23666930 e-mail: [email protected] Running title: Identification of ANTAR RNAs across Actinobacteria Keywords: ANTAR protein:RNA regulatory system, structured RNA, actinobacteria 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.11.335034; this version posted October 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Computational approaches are often used to predict regulatory RNAs in bacteria, but their success is limited to RNAs that are highly conserved across phyla, in sequence and structure. The ANTAR regulatory system consists of a family of RNAs (the ANTAR-target RNAs) that selectively recruit ANTAR proteins. This protein-RNA complex together regulates genes at the level of translation or transcriptional elongation.
    [Show full text]
  • Systematic Research on Actinomycetes Selected According
    Systematic Research on Actinomycetes Selected according to Biological Activities Dissertation Submitted in fulfillment of the requirements for the award of the Doctor (Ph.D.) degree of the Math.-Nat. Fakultät of the Christian-Albrechts-Universität in Kiel By MSci. - Biol. Yi Jiang Leibniz-Institut für Meereswissenschaften, IFM-GEOMAR, Marine Mikrobiologie, Düsternbrooker Weg 20, D-24105 Kiel, Germany Supervised by Prof. Dr. Johannes F. Imhoff Kiel 2009 Referent: Prof. Dr. Johannes F. Imhoff Korreferent: ______________________ Tag der mündlichen Prüfung: Kiel, ____________ Zum Druck genehmigt: Kiel, _____________ Summary Content Chapter 1 Introduction 1 Chapter 2 Habitats, Isolation and Identification 24 Chapter 3 Streptomyces hainanensis sp. nov., a new member of the genus Streptomyces 38 Chapter 4 Actinomycetospora chiangmaiensis gen. nov., sp. nov., a new member of the family Pseudonocardiaceae 52 Chapter 5 A new member of the family Micromonosporaceae, Planosporangium flavogriseum gen nov., sp. nov. 67 Chapter 6 Promicromonospora flava sp. nov., isolated from sediment of the Baltic Sea 87 Chapter 7 Discussion 99 Appendix a Resume, Publication list and Patent 115 Appendix b Medium list 122 Appendix c Abbreviations 126 Appendix d Poster (2007 VAAM, Germany) 127 Appendix e List of research strains 128 Acknowledgements 134 Erklärung 136 Summary Actinomycetes (Actinobacteria) are the group of bacteria producing most of the bioactive metabolites. Approx. 100 out of 150 antibiotics used in human therapy and agriculture are produced by actinomycetes. Finding novel leader compounds from actinomycetes is still one of the promising approaches to develop new pharmaceuticals. The aim of this study was to find new species and genera of actinomycetes as the basis for the discovery of new leader compounds for pharmaceuticals.
    [Show full text]
  • Fern Genomes Elucidate Land Plant Evolution and Cyanobacterial Symbioses
    ARTICLES https://doi.org/10.1038/s41477-018-0188-8 Fern genomes elucidate land plant evolution and cyanobacterial symbioses Fay-Wei Li 1,2*, Paul Brouwer3, Lorenzo Carretero-Paulet4,5, Shifeng Cheng6, Jan de Vries 7, Pierre-Marc Delaux8, Ariana Eily9, Nils Koppers10, Li-Yaung Kuo 1, Zheng Li11, Mathew Simenc12, Ian Small 13, Eric Wafula14, Stephany Angarita12, Michael S. Barker 11, Andrea Bräutigam 15, Claude dePamphilis14, Sven Gould 16, Prashant S. Hosmani1, Yao-Moan Huang17, Bruno Huettel18, Yoichiro Kato19, Xin Liu 6, Steven Maere 4,5, Rose McDowell13, Lukas A. Mueller1, Klaas G. J. Nierop20, Stefan A. Rensing 21, Tanner Robison 22, Carl J. Rothfels 23, Erin M. Sigel24, Yue Song6, Prakash R. Timilsena14, Yves Van de Peer 4,5,25, Hongli Wang6, Per K. I. Wilhelmsson 21, Paul G. Wolf22, Xun Xu6, Joshua P. Der 12, Henriette Schluepmann3, Gane K.-S. Wong 6,26 and Kathleen M. Pryer9 Ferns are the closest sister group to all seed plants, yet little is known about their genomes other than that they are generally colossal. Here, we report on the genomes of Azolla filiculoides and Salvinia cucullata (Salviniales) and present evidence for episodic whole-genome duplication in ferns—one at the base of ‘core leptosporangiates’ and one specific to Azolla. One fern- specific gene that we identified, recently shown to confer high insect resistance, seems to have been derived from bacteria through horizontal gene transfer. Azolla coexists in a unique symbiosis with N2-fixing cyanobacteria, and we demonstrate a clear pattern of cospeciation between the two partners. Furthermore, the Azolla genome lacks genes that are common to arbus- cular mycorrhizal and root nodule symbioses, and we identify several putative transporter genes specific to Azolla–cyanobacte- rial symbiosis.
    [Show full text]
  • Myceligenerans Crystallogenes Sp. Nov., Isolated from Roman Catacombs
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC International Journal of Systematic and Evolutionary Microbiology (2006), 56, 283–287 DOI 10.1099/ijs.0.63756-0 Myceligenerans crystallogenes sp. nov., isolated from Roman catacombs Ingrid Groth,1 Peter Schumann,2 Barbara Schu¨tze,1 Juan M. Gonzalez,3 Leonila Laiz,3 Maija-Liisa Suihko4 and Erko Stackebrandt2 Correspondence 1Leibniz-Institut fu¨r Naturstoff-Forschung und Infektionsbiologie e. V., Hans-Kno¨ll-Institut, Ingrid Groth Beutenbergstrasse 11a, 07745 Jena, Germany [email protected] 2DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg 1b, 38124 Braunschweig, Germany 3Instituto de Recursos Naturales y Agrobiologia, CSIC, Apartado 1052, 41080 Sevilla, Spain 4VTT Biotechnology, PO Box 1500, FI-02044 VTT, Finland Three xylan-degrading actinobacterial strains were isolated from different sampling sites in the Roman catacombs of Domitilla and San Callisto. The organisms showed morphological and chemotaxonomic properties such as peptidoglycan type A4a, L-Lys–L-Thr–D-Glu; whole-cell sugars (glucose, mannose and galactose); octa-, hexa- and tetrahydrogenated menaquinones with nine isoprene units; phosphatidylglycerol and diphosphatidylglycerol as the major phospholipids; anteiso-C15 : 0, iso-C15 : 0 and iso-C16 : 0 as the predominant fatty acids; and a DNA G+C content of 72 mol%. These features are consistent with affiliation of these isolates to the genus Myceligenerans. The three isolates shared a 16S rRNA gene similarity of 99?9 % and were most closely related to Myceligenerans xiligouense DSM 15700T (97?9 % sequence similarity). The low level of DNA–DNA relatedness (about 14 %) and the differences in phenotypic characteristics between the novel strains and M.
    [Show full text]
  • Isoptericola Hypogeus Sp. Nov., Isolated from the Roman Catacomb of Domitilla
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC International Journal of Systematic and Evolutionary Microbiology (2005), 55, 1715–1719 DOI 10.1099/ijs.0.63632-0 Isoptericola hypogeus sp. nov., isolated from the Roman catacomb of Domitilla Ingrid Groth,1 Peter Schumann,2 Barbara Schu¨tze,1 Juan M. Gonzalez,3 Leonila Laiz,3 Cesareo Saiz-Jimenez3 and Erko Stackebrandt2 Correspondence 1Leibniz-Institut fu¨r Naturstoff-Forschung und Infektionsbiologie e. V., Hans-Kno¨ll-Institut, Ingrid Groth Beutenbergstrasse 11a, 07745 Jena, Germany [email protected] 2DSMZ–Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg 1b, 38124 Braunschweig, Germany 3Instituto de Recursos Naturales y Agrobiologia, CSIC, Apartado 1052, 41080 Sevilla, Spain In order to clarify the taxonomic position of an actinobacterium from the Roman catacomb of Domitilla, a combination of phenotypic characterization, phylogenetic analysis based on the 16S rRNA gene sequence and DNA–DNA relatedness studies was used. The results from the polyphasic taxonomic study of this organism showed that strain HKI 0342T (=DSM 16849T=NCIMB 14033T) should be considered as the type strain of a novel species of the genus Isoptericola, for which the name Isoptericola hypogeus sp. nov. is proposed. The genus Isoptericola has been proposed by Stackebrandt oxygen requirements) and antibiotic-susceptibility tests et al. (2004) for the misclassified species Cellulosimicro- were performed, using solid or liquid organic medium 79 bium variabile Bakalidou et al. 2002 and is currently based (Prauser & Falta, 1968) and an incubation temperature of on this single species. The type strain, which is the only 28 uC.
    [Show full text]
  • Metagenomic Analysis Reveals Oropharyngeal Microbiota Alterations in Patients with COVID-19
    Signal Transduction and Targeted Therapy www.nature.com/sigtrans ARTICLE OPEN Metagenomic analysis reveals oropharyngeal microbiota alterations in patients with COVID-19 Shengli Ma1, Fan Zhang2, Fengxia Zhou2, Hui Li1, Wenyu Ge1, Rui Gan2, Huan Nie2, Biao Li3, Yindong Wang1, Meng Wu1, Duo Li4, Dongmei Wang1, Zheng Wang1, Yuhong You1 and Zhiwei Huang 2 COVID-19 remains a serious emerging global health problem, and little is known about the role of oropharynx commensal microbes in infection susceptibility and severity. Here, we present the oropharyngeal microbiota characteristics identified by shotgun metagenomic sequencing analyses of oropharynx swab specimens from 31 COVID-19 patients, 29 influenza B patients, and 28 healthy controls. Our results revealed a distinct oropharyngeal microbiota composition in the COVID-19 patients, characterized by enrichment of opportunistic pathogens such as Veillonella and Megasphaera and depletion of Pseudopropionibacterium, Rothia, and Streptococcus. Based on the relative abundance of the oropharyngeal microbiome, we built a microbial classifier to distinguish COVID-19 patients from flu patients and healthy controls with an AUC of 0.889, in which Veillonella was identified as the most prominent biomarker for COVID-19 group. Several members of the genus Veillonella, especially Veillonella parvula which was highly enriched in the oropharynx of our COVID-19 patients, were also overrepresented in the BALF of COVID-19 patients, indicating that the oral cavity acts as a natural reservoir for pathogens to induce co-infections in the lungs of COVID-19 patients. We also found the increased ratios of Klebsiella sp., Acinetobacter sp., and Serratia sp. were correlated with both disease severity and elevated systemic inflammation markers (neutrophil–lymphocyte ratio, NLR), suggesting that these oropharynx microbiota alterations may impact fl fl 1234567890();,: COVID-19 severity by in uencing the in ammatory response.
    [Show full text]
  • Genome-Based Taxonomic Classification of the Phylum
    ORIGINAL RESEARCH published: 22 August 2018 doi: 10.3389/fmicb.2018.02007 Genome-Based Taxonomic Classification of the Phylum Actinobacteria Imen Nouioui 1†, Lorena Carro 1†, Marina García-López 2†, Jan P. Meier-Kolthoff 2, Tanja Woyke 3, Nikos C. Kyrpides 3, Rüdiger Pukall 2, Hans-Peter Klenk 1, Michael Goodfellow 1 and Markus Göker 2* 1 School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom, 2 Department Edited by: of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Martin G. Klotz, Germany, 3 Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States Washington State University Tri-Cities, United States The application of phylogenetic taxonomic procedures led to improvements in the Reviewed by: Nicola Segata, classification of bacteria assigned to the phylum Actinobacteria but even so there remains University of Trento, Italy a need to further clarify relationships within a taxon that encompasses organisms of Antonio Ventosa, agricultural, biotechnological, clinical, and ecological importance. Classification of the Universidad de Sevilla, Spain David Moreira, morphologically diverse bacteria belonging to this large phylum based on a limited Centre National de la Recherche number of features has proved to be difficult, not least when taxonomic decisions Scientifique (CNRS), France rested heavily on interpretation of poorly resolved 16S rRNA gene trees. Here, draft *Correspondence: Markus Göker genome sequences
    [Show full text]
  • Abstract Metagenomic Analysis of Deep-Branching
    ABSTRACT METAGENOMIC ANALYSIS OF DEEP-BRANCHING FIRMICUTES AND NEW REPRESENTATIVES OF KNOWN GENERA FROM THE CALUMET WETLANDS, A HIGHLY ALKALINE ENVIRONMENT Jay Osvatic, MS Department of Biological Sciences Northern Illinois University, 2017 Wesley Swingley, Director The Calumet Wetlands, located in southern Chicago, Illinois, USA, is a historical steel waste site that was created through the dumping of steel mill slag waste, which was used until the middle of the 20th century to turn the wetlands into buildable land. The weathering of the steel slag has led to a highly alkaline (up to pH 13.4), non-saline environment due to the release of Ca(OH)2 into the groundwater flow. While there are many chemical similarities to natural alkaline systems, such as serpentinizing sites, Calumet is distinct in that its extreme pH is a result of anthropogenic processes. Preliminary16S rDNA sequence analysis of these sites revealed that the microbial community was low in microbial diversity, and a significant portion of the community, particularly at the most alkaline sites, contained divergent sequences possibly representing some novel bacterial clades. The alkalinity of this site makes cultivation of these bacteria difficult and current ex situ culturing attempts have not yielded novel clades. As an alternative to the cultivation of these divergent taxa, we performed metagenomic sequencing and taxonomic binning to examine the genomes through computational analyses. Microbial DNA was sequenced from three samples taken from a single sediment core and assembled using a de novo metagenomic sequence assembler (SPAdes). Taxonomic bins were created using tetramer frequency and coverage values to separate contigs (Anvi’o).
    [Show full text]