Tagging, Telemetry, and Marking Measures for Monitoring Fish Populations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2012 PSMFC Annual Report
Golden Gate Bridge, California 65th AnnuAl RepoRt of the pAcific StAteS MARine fiSheRieS coMMiSSion To the Congress of the United States, and to the Governors and Legislatures of the Five Compacting States — Washington, Oregon, California, Alaska and Idaho — 2012 Presented by the Commissioners of the Pacific States Marine Fisheries Commission in compliance with the State enabling acts creating the Commission and Public Laws 232; 766; and 315 of the 80th; 87th; and 91st Congresses of the United States assenting thereto. Respectfully submitted, PACIFIC STATES MARINE FISHERIES COMMISSION Randy Fisher, Executive Director Headquarters 205 SE Spokane Street, Suite 100 Portland, Oregon 97202-6413 2 | Pacific States Marine Fisheries Commission, 2012 Annual Report coMMiSSioneRS, ADViSoRS AnD cooRDinAtoRS 2012 State Commissioners Advisors Coordinator Alaska Bryce Edgmon Terry L. Johnson Karla Bush (ADFG) Eric A. Olson Don Lane Sue Aspelund Matthew Moir Gabe Sam Herman Savikko c California Charlton H. Bonham Jim Caito Marija Vojkovich (CDFG) o Thomas Harman Robert Fletcher MM Barbara Emley Donald K. Hansen i Mike McCorkle SS Aaron Newman ione Roger Thomas Kate Wing RS , A Idaho Virgil Moore Sharon Kiefer Pete Hassemer (IDFG) DV Eric Anderson Ed Schriever i S Fred Trevey Joe Stegner o RS Oregon Ed Bowles Wayne Butler Gway Kirchner (ODFW) A n Betsy Johnson Steve Fick D Jeff Feldner Liz Hamilton c Paul Heikkila oo Rod Moore RD Brad Pettinger Frank Warrens in A to Washington Phil Anderson Robert Alverson Heather Reed (WDFW) RS Brian Blake Mark Cedergreen Harriet A. Spanel Robert Jones Marion Larkin Irene Martin Bill Robinson Pacific States Marine Fisheries Commission, 2012 Annual Report | 3 MeSSAGe fRoM the eXecutiVe DiRectoR Randy Fisher, Executive Director It is a pleasure to provide the 2012 Annual Report of the Pacific States Marine Fisheries Commission. -
Intensively Monitored Watersheds: 2008 Fish Population Studies in the Hood Canal and Lower Columbia Stream Complexes
STATE OF WASHINGTON December 2009 Intensively Monitored Watersheds: 2008 Fish Population Studies in the Hood Canal and Lower Columbia Stream Complexes by Clayton Kinsel, Pat Hanratty, Mara Zimmerman, and Bryce Glaser, Steven Gray, Todd Hillson, Dan Rawding, Steven VanderPloeg Washington Department of FISH AND WILDLIFE Fish Program Science Division FPA 09-12 Intensively Monitored Watersheds: 2008 Fish Population Studies in the Hood Canal and Lower Columbia Stream Complexes Clayton Kinsel, Pat Hanratty, Mara Zimmerman and Bryce Glaser, Steven Gray, Todd Hillson, Dan Rawding, Steven VanderPloeg Fish Program Washington Department of Fish and Wildlife December 2009 Acknowledgements This work was funded by the Salmon Recovery Funding Board. Hood Canal Data for the Hood Canal IMW project were collected by an experienced crew of technicians led by Mat Gillum. Eric Kummerow, Scott Walker, and Karen Shields each brought their individual expertise, commitment, and enthusiasm to this project. They responded to the whim of the weather, tides, and fishing schedules and have intimate knowledge of the watersheds, the fish, and fishing seasons. All field staff put in long hours, often at night during inclement weather, to ensure that traps continued to fish and that fish were handled and sampled in a gentle and timely fashion. Pete Topping and Mike Ackley provided logistical support related to trap installation and removal and expertise in trap design and function. Kelly Kiyohara edited earlier versions of this report. Biologists from Weyerhauser and Washington Department of Ecology worked collaboratively to sample and mark coho parr. University of Washington has continuously provided access to the Big Beef property and research station since our long-term monitoring project began in 1978. -
New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E. -
The Importance of Sample Size in Marine Megafauna Tagging Studies
Ecological Applications, 0(0), 2019, e01947 © 2019 by the Ecological Society of America The importance of sample size in marine megafauna tagging studies 1,17 2 3 4 5 6 6 A. M. M. SEQUEIRA, M. R. HEUPEL, M.-A. LEA, V. M. EGUILUZ, C. M. DUARTE, M. G. MEEKAN, M. THUMS, 7 8 9 6 4 10 H. J. CALICH, R. H. CARMICHAEL, D. P. COSTA, L. C. FERREIRA, J. F ERNANDEZ -GRACIA, R. HARCOURT, 11 10 10,12 13,14 15 16 A.-L. HARRISON, I. JONSEN, C. R. MCMAHON, D. W. SIMS, R. P. WILSON, AND G. C. HAYS 1IOMRC and The University of Western Australia Oceans Institute, School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 Australia 2Australian Institute of Marine Science, PMB No 3, Townsville, Queensland 4810 Australia 3Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Hobart, Tasmania 7000 Australia 4Instituto de Fısica Interdisciplinar y Sistemas Complejos IFISC (CSIC – UIB), E-07122 Palma de Mallorca, Spain 5Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology, Thuwal 23955-6900 Saudi Arabia 6Australian Institute of Marine Science, Indian Ocean Marine Research Centre (M096), University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 Australia 7IOMRC and The University of Western Australia Oceans Institute, Oceans Graduate School, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 Australia 8Dauphin Island Sea Lab and University of South Alabama, 101 Bienville Boulevard, Dauphin Island, Alabama 36528 USA 9Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95060 USA 10Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109 Australia 11Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, PO Box 37012 MRC 5503 MBC, Washington, D.C. -
Acoustic Tagging of Large Sharks – Potential for Acoustic Interference
CITIZEN SCIENCE – CS 05-11-17) Acoustic tagging of large sharks – Potential for acoustic interference (CS 05-11-17) – Kim Allen independent researcher Citizen science overview This paper is one of a series of unfunded, independent research initiatives that question mainstream science, Animal ethics approaches and Governments’ apparent acceptance of “Validated” science in the area of wildlife electronic tracking. Clearly, the Australian shark issue is extremely contentious as well as political and emotionally charged. Over $100 million has been expended by State and Federal governments in an attempt to find answers and make our beaches safer. Unfortunately, at no stage has a strategic approach been taken to identify the key disciplines of science that need to be considered, assessed, and applied. Significant investment has been directed into the construction and support of wide-scale acoustic receiver arrays and individual sensors as well as significant tagging of large sharks off our coastline for research and public safety. Previous satellite archival tagging programs conducted by CSIRO gave us good insight into shark movements, however since this time despite significant investment minimal progress appears to have been made and the potential risks appear to have been ignored. This CSIRO document clearly outlines the types of tags that are used for shark research, it also clearly defines the recommended protocols that should be used for shark tagging operations. From photographic details shared in the public domain it is clear that shark tagging operations undertaken by Fisheries departments don’t follow these stringent protocols. (www.cmar.csiro.au/e-print/open/2009/bradfordrw a.pdf ) It is extremely difficult for “Unqualified” Citizen scientists to challenge mainstream research particularly given the potential erosion of future funding sources if technical criticism is determined as valid. -
Conducting and Interpreting Fish Telemetry Studies
Manuscript Click here to access/download;Manuscript;Telemetry considerations RFBF submission REVISED clean.docx Click here to view linked References 1 2 3 4 1 Conducting and interpreting fish telemetry studies: Considerations for researchers and 5 2 resource managers 6 7 8 3 Submission to: Reviews in Fish Biology and Fisheries 9 a,b a c d 10 4 Jacob W. Brownscombe , Elodie Ledee , Graham D. Raby , Daniel P. Struthers , Lee F.G. e a f g 11 5 Gutowsky , Vivian M. Nguyen , Nathan Young , Michael J.W. Stokesbury , Christopher M. 12 6 Holbrookh, Travis O. Brendeni, Christopher S. Vandergootj, Karen J. Murchiek, Kim Whoriskeyl, 13 7 Joanna Mills-Flemmingl, Steven T. Kesselk, Charles C. Kruegerm, Steven J. Cookea 14 15 8 a Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of 16 17 9 Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, 18 10 ON, K1S 5B6, Canada 19 20 11 b Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS, B4H 4R2, 21 12 Canada 22 23 13 c Great Lakes Institute for Environmental Research, University of Windsor, 2601 Union St., 24 14 Windsor, ON, N9B 3P4, Canada 25 26 d 27 15 Parks Canada, Banff National Park, Box 900, Banff, AB, T1L 1K2, Canada 28 e 29 16 Aquatic Research & Monitoring Section, Ontario Ministry of Natural Resources & Forestry, 30 17 Trent University, 2140 East Bank Drive, Peterborough, ON, K9L 1Z8, Canada 31 32 18 f Department of Sociology and Anthropology, University of Ottawa, Ottawa, ON, K1N 6N5, 33 19 Canada 34 g 35 20 Department of Biology, Acadia University, 33 Westwood Ave., Wolfville, NS, B4P 2R6, 36 37 21 Canada 38 h 39 22 U.S. -
Merluccius Productus) Distribution and Poleward Sub-Surface Flow in the California Current System
The relationship between hake (Merluccius productus) distribution and poleward sub-surface flow in the California Current System Vera N. Agostini1*, Robert C. Francis1, Anne B. Hollowed2, Stephen D. Pierce3, Chris Wilson2, Albert N. Hendrix1. 1. School of Aquatic and Fishery Science, University of Washington, Box 355020, Seattle WA 98149 [email protected] [email protected] 2. National Marine Fisheries Service-AFSC, Sand Point Way, Seattle, WA 98143 [email protected] [email protected] 3. Oregon State University-COAS, 104 COAS Admin Bldg, Corvallis, OR 97331 4. [email protected] *Present address: Pew Institute for Ocean Science, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker way, Miami, FL 33133 ([email protected]) Phone: 305.421.4165 Fax: 305.421.4077 1 Abstract In a search for ocean conditions potentially affecting the extent of Pacific hake (Merluccius productus) feeding migrations, we analyzed data collected in 1995 and 1998 by the National Marine Fishery Service on abundance and distribution of hake (by echo- integration), intensity and distribution of alongshore flow (from acoustic Doppler current profiler) and temperature (CTD profiles). Our results show that Pacific hake are associated with subsurface poleward flow and not a specific temperature range. Temporal and spatial patterns characterize both hake distribution and undercurrent characteristics during the two years of this study. We suggest that poleward flow in this area defines adult hake habitat, with flow properties aiding or impeding the poleward migration of the population. We conclude that while physical processes may not directly affect fish production, they may be the link between large scale ocean-atmosphere variability and pelagic fish distribution. -
Marine Ecology Progress Series 548:181
Vol. 548: 181–196, 2016 MARINE ECOLOGY PROGRESS SERIES Published April 21 doi: 10.3354/meps11623 Mar Ecol Prog Ser OPEN ACCESS Isotopes and genes reveal freshwater origins of Chinook salmon Oncorhynchus tshawytscha aggregations in California’s coastal ocean Rachel C. Johnson1,2,*, John Carlos Garza1,3, R. Bruce MacFarlane1,4, Churchill B. Grimes1,4, Corey C. Phillis5,8, Paul L. Koch6, Peter K. Weber7, Mark H. Carr2 1Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 110 Shaffer Road, Santa Cruz, CA 95060, USA 2Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 110 Shaffer Road, Santa Cruz, CA 95060, USA 3Department of Ocean Sciences, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95060, USA 4Institute of Marine Sciences, University of California, Santa Cruz, 110 Shaffer Road, Santa Cruz, CA 95060, USA 5Department of Earth and Planetary Science, University of California, Berkeley, 307 McCone Hall, Berkeley, CA 94720, USA 6Department of Earth and Planetary Science, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95060, USA 7Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA 8Present address: Metropolitan Water District of Southern California, 1121 L St. Suite 900, Sacramento, CA 95814, USA ABSTRACT: The ability of salmon to navigate from the ocean back to their river of origin to spawn acts to reinforce local adaptation and maintenance of unique and heritable traits among salmon populations. Here, the extent to which Chinook salmon Oncorhynchus tshawytscha from the same freshwater breeding groups associate together in the ocean at regional and smaller-scale aggre- gations prior to homeward migration is evaluated. -
Ecological Engineering Response of Seaward-Migrating European
Ecological Engineering 127 (2019) 480–486 Contents lists available at ScienceDirect Ecological Engineering journal homepage: www.elsevier.com/locate/ecoleng Response of seaward-migrating European eel (Anguilla anguilla) to an T infrasound deterrent ⁎ Adam T. Pipera,b, , Paul R. Whitec, Rosalind M. Wrightd, Timothy G. Leightonc, Paul S. Kempa a International Centre for Ecohydraulics Research, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK b Institute of Zoology, Zoological Society of London, Regent’s Park, NW1 4RY London, UK c Institute of Sound and Vibration Research, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK d Environment Agency, Rivers House, Threshelfords Business Park, Inworth Road, Feering CO5 9SE, UK ARTICLE INFO ABSTRACT Keywords: Behavioural guidance technologies that employ stimuli to attract or repel fish offer potential to enhance, oreven Behavioural guidance replace, costly physical and mechanical screens traditionally used to protect fish at river infrastructure such as Acoustic telemetry hydropower and water intakes. At these structures, eel can suffer high rates of damage and mortality if entrained Bypass in pumps or turbines, or impinged on screens intended to protect them. This study used acoustic telemetry to Fishway quantify the behavioural response of adult European eel (Anguilla anguilla) to infrasound (12 Hz) under field Fish migration settings. Eel (n = 50) were tracked after release immediately upstream of the forebay of a redundant hydro- power facility. An infrasound deterrent located at the water intake either emitted continuously (ON) or was switched OFF. Treatment (ON/OFF) was alternated nightly over 10 consecutive nights with five eel released during a single trial conducted each night. -
Hatchery Update
Hatchery Update Carson National Fish Hatchery Spring Chinook salmon production began to take precedence over other production until 1976, when the last fall Chinook salmon were released into the Wind River. Carson NFH currently produces spring Chinook salmon exclusively. Support for the hatchery is through Mitchell Act funds, which are administered by the Department of Commerce. Facilities at Carson NFH include 46 raceways, two earthen rearing ponds, two adult holding ponds, an egg incubation building, and several administrative and support buildings. Four residences provide on station housing for staff. Staff residence provides for emergency and security support for the fish resources and physical facility. The primary water supply at CNFH is Tyee Springs, and secondarily the Wind River. Introduction Hatchery Purpose / Goal Carson National Fish Hatchery (CNFH) is one of CNFH operates as part of the Columbia River 12 National Fish Hatcheries operated by the U.S. Fish Fisheries Development Program under the 2008–2017 and Wildlife Service (USFWS) in the Columbia River United States v Oregon Management agreement. The basin. CNFH works closely with a USFWS Fish Health primary purpose of CNFH under this agreement is to Center (FHC) Fish Technology release 1.14 million healthy spring Chinook salmon Center (FTC) and Fisheries Program Office (FPO) smolts directly into the Wind River from the hatchery also located within the Columbia River basin. site. These releases help mitigate for fish losses in the The Columbia River Fisheries Program Office (CRFPO) Columbia River basin due to the impacts of main stem works with 6 of these hatcheries as part of a Hatchery hydropower, and other basin development. -
External Attachment of Acoustic Tags to Deepwater Reef Fishes- an Alternate
This article was downloaded by: [Texas A&M University Corpus Christi] On: 30 June 2015, At: 12:45 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Transactions of the American Fisheries Society Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/utaf20 External Attachment of Acoustic Tags to Deepwater Reef Fishes: an Alternate Approach When Internal Implantation Affects Experimental Design Matthew W. Johnsona, Sandra L. Diamondbc & Gregory W. Stunza a Harte Research Institute for Gulf of Mexico Studies, Texas A&M University–Corpus Christi, 6300 Ocean Drive, Corpus Christi, Texas 78412-5869, USA b Department of Biology, Texas Tech University, Lubbock, Texas 79409, USA c School of Science and Health, Hawkesbury Campus, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia Published online: 30 Jun 2015. Click for updates To cite this article: Matthew W. Johnson, Sandra L. Diamond & Gregory W. Stunz (2015) External Attachment of Acoustic Tags to Deepwater Reef Fishes: an Alternate Approach When Internal Implantation Affects Experimental Design, Transactions of the American Fisheries Society, 144:4, 851-859, DOI: 10.1080/00028487.2015.1042556 To link to this article: http://dx.doi.org/10.1080/00028487.2015.1042556 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. -
Residency, Partial Migration, and Late Egress of Subadult Chinook Salmon
544 Abstract—Migratory behavior af- fects growth, survival, and fitness Residency, partial migration, and late egress of individual fish, the dynamics and resilience of populations, and the of subadult Chinook salmon (Oncorhynchus ecosystems that fish occupy. Many tshawytscha) and coho salmon (O. kisutch) in salmonids are anadromous but in- dividuals vary in the duration and Puget Sound, Washington spatial extent of marine migrations. We used telemetry to investigate Anna N. Kagley (contact author)1 movements of Chinook salmon (On- 2 corhynchus tshawytscha) that re- Joseph M. Smith mained in Puget Sound (residents) Kurt L. Fresh1 rather than migrated to the Pacific Kinsey E. Frick1 Ocean. Most tagged Chinook salmon 2 (26 of 37=70%) remained in Puget Thomas P. Quinn Sound for a substantial period, stay- ing in the region where captured. Email address for contact author: [email protected] However, 30% of tagged individuals, termed “transients,” subsequently 1 Northwest Fisheries Science Center left Puget Sound. Residents and National Marine Fisheries Service, NOAA transients did not differ in tagging 2725 Montlake Boulevard East date, body size, or origin (hatchery Seattle, Washington 98112 or wild). Compared with sympatric 2 School of Aquatic and Fishery Sciences coho salmon (O. kisutch) where 80% University of Washington remained as residents according to Box 355020 similar data, Chinook salmon tend- Seattle, Washington 98195 ed to be detected closer to shore, in shallower water, and on fewer dif- ferent receivers. For both species, residents showed limited movement within Puget Sound. We conclude that Chinook and coho salmon dis- play resident and transient move- Many of the world’s most abundant and Myers, 2004).