Residency, Partial Migration, and Late Egress of Subadult Chinook Salmon

Total Page:16

File Type:pdf, Size:1020Kb

Residency, Partial Migration, and Late Egress of Subadult Chinook Salmon 544 Abstract—Migratory behavior af- fects growth, survival, and fitness Residency, partial migration, and late egress of individual fish, the dynamics and resilience of populations, and the of subadult Chinook salmon (Oncorhynchus ecosystems that fish occupy. Many tshawytscha) and coho salmon (O. kisutch) in salmonids are anadromous but in- dividuals vary in the duration and Puget Sound, Washington spatial extent of marine migrations. We used telemetry to investigate Anna N. Kagley (contact author)1 movements of Chinook salmon (On- 2 corhynchus tshawytscha) that re- Joseph M. Smith mained in Puget Sound (residents) Kurt L. Fresh1 rather than migrated to the Pacific Kinsey E. Frick1 Ocean. Most tagged Chinook salmon 2 (26 of 37=70%) remained in Puget Thomas P. Quinn Sound for a substantial period, stay- ing in the region where captured. Email address for contact author: [email protected] However, 30% of tagged individuals, termed “transients,” subsequently 1 Northwest Fisheries Science Center left Puget Sound. Residents and National Marine Fisheries Service, NOAA transients did not differ in tagging 2725 Montlake Boulevard East date, body size, or origin (hatchery Seattle, Washington 98112 or wild). Compared with sympatric 2 School of Aquatic and Fishery Sciences coho salmon (O. kisutch) where 80% University of Washington remained as residents according to Box 355020 similar data, Chinook salmon tend- Seattle, Washington 98195 ed to be detected closer to shore, in shallower water, and on fewer dif- ferent receivers. For both species, residents showed limited movement within Puget Sound. We conclude that Chinook and coho salmon dis- play resident and transient move- Many of the world’s most abundant and Myers, 2004). These patterns ment patterns across a behavioral fish species are migratory within have been studied extensively ow- continuum rather than within dis- fresh or marine waters or between ing to the importance of salmonids crete migrational categories. These these distinct environments (Lucas in commercial and recreational fish- movement patterns are important and Baras, 2001; Secor, 2015). How- eries, ecosystem function, and bio- because they affect the role of salm- ever, species and populations often diversity (NRC, 1996). Many stud- on in the ecosystem, their vulner- vary greatly in the prevalence, dura- ies have investigated the ecological ability to fisheries, and their accu- mulation of chemical contaminants. tion, and spatial extent of their mi- and evolutionary basis of anadromy grations (Quinn and Brodeur, 1991; and nonanadromy (Wood and Foote, Chapman et al., 2012a; Chapman 1996; Dodson et al., 2013; Kendall et al., 2012b). Such variation (e.g., et al., 2015) but there is also great partial and differential migration) variation in the extent of migra- can affect the population’s stability tion among anadromous individu- through alterations in exposure to als, especially for Chinook salmon predators, fisheries, and contami- (Oncorhynchus tshawytscha). The nants (Kerr et al., 2010; Gahagan tendency to use different marine en- Manuscript submitted 11 January 2017. et al., 2015). Consequently, a full vironments (coastal and open ocean) Manuscript accepted 24 August 2017. understanding of variation in move- varies markedly among populations, Fish. Bull. 115:544–555 (2017). ment patterns is important for man- as does the tendency to migrate Online publication date: 14 September 2017. agement of these populations, such northward or southward along the doi: 10.7755/FB.115.4.10 as conservation planning and the coast of North America (Myers et al., measurement of survival. 1998; Trudel et al., 2009; Weitkamp, The views and opinions expressed or implied in this article are those of the Among fishes, salmonids show a 2010; Sharma and Quinn, 2012). In author (or authors) and do not necessarily particularly wide variety of migra- addition, some individuals do not reflect the position of the National tion patterns (Jonsson and Jonsson, migrate into the North Pacific Ocean Marine Fisheries Service, NOAA. 1993; Klemetsen et al., 2003; Quinn but rather spend all or most of their Kagley et al.: Residency, partial migration, and late egress of Oncorhynchus tshawytscha and O. kisutch 545 marine period within protected waters of southeastern conspecifics that migrate to the coastal ocean (O’Neill Alaska (Orsi and Jaenicke, 1996) and British Columbia and West, 2009). As a prey item these salmon contain (Healey and Groot, 1987). It has also been known for high enough levels of persistent organic pollutants to decades that some Chinook salmon, termed “residents,” have possible health effects on ESA-listed killer whales are found throughout the year within Puget Sound, the (Hickie et al., 2007; Cullon et al., 2009) and to require Strait of Georgia, and associated inlets (Pressey1; Haw human health advisories (WDOH3). et al.2; Buckley, 1969). It has been unclear to what ex- In this study, individual Chinook salmon were im- tent these salmon move within the inland marine wa- planted with hydroacoustic tags at a time after the ters, collectively known as the Salish Sea, and whether majority of salmon had typically left Puget Sound for they leave for the coast at some point. Brannon and ocean feeding grounds (Healey, 1991). The detections of Setter (1989) inferred from coded wire tagging data these presumably resident Chinook salmon were used that both maturing and immature Chinook salmon to determine: 1) whether these individuals remained may make annual “loop” migrations from Puget Sound within Puget Sound, and 2) whether origin (wild or north into the Strait of Georgia in spring and sum- hatchery), body size, or season of tagging influenced mer and then back south into Puget Sound. However, their tendency to remain in Puget Sound. For the fish there is no direct evidence of individual fish making that stayed as residents within Puget Sound, we also such migrations. determined 3) whether resident salmon remained in Resident salmon seem to constitute a persistent and the same region where they were tagged or moved substantial fraction of the entire Puget Sound popula- throughout Puget Sound and parts of the Salish Sea, tion of Chinook salmon. Analysis of coded-wire tag data and 4) whether detections depended on the receiver lo- indicated that an estimated 29% of hatchery Chinook cation’s water depth and proximity to shore. salmon subyearlings and 45% of yearlings entering Finally, we compared the location features of receiv- Puget Sound remained as residents (O’Neill and West, ers that recorded Chinook salmon with those features 2009). Subsequent analyses based on similar data but that were recorded with receivers that detected coho reflecting a different analytical approach also revealed salmon collected and tagged at the same locations and that many Puget Sound Chinook salmon adopt a resi- times (Rohde et al., 2013). Coho and Chinook salmon dent marine distribution pattern (Chamberlin et al., in Puget Sound are ecologically similar and both ex- 2011). This pattern occurs but is less common with hibit partial migration (i.e., residency). The factors coho salmon (O. kisutch; Rohde et al., 2014). However, affecting residency, inferred from coded wire tagging because coded wire tags document only the location data, were similar for the 2 species (Chamberlin et al., where fish are captured, and not movement patterns, 2011; Rohde et al., 2014), and both species tended to movements of individual fish cannot be determined be caught as residents in the natal basin where they with these tags. Research using hydroacoustic trans- entered Puget Sound. We therefore combined data from mitters revealed differences between coho and Chinook this study and that by Rohde et al. (2013) to compare salmon depth distributions and diel vertical migrations directly the movement patterns of individual residents but did not provide information on movement through- of these species in Puget Sound. out the basins in Puget Sound and the Salish Sea (Smith et al., 2015). Four Chinook salmon distribution patterns were observed in the Salish Sea (Arostegui et Materials and methods al., 2017), but information on resident Chinook salmon movements in the main basins of Puget Sound is still Tagging very limited. The Chinook salmon evolutionarily significant unit On 9 dates in June (2006 and 2007), November (2006), in Puget Sound is listed as threatened under the U.S. and December (2006, 2007, and 2008), 87 Chinook Endangered Species Act (Federal Register, 2005). A salmon were caught with a commercial purse seine in better understanding of the movements of these fish central Puget Sound (tagging area, Fig. 1). On the ba- between Puget Sound and the coastal ocean, and sis of the dates, locations, and sizes (range: 208–370 within Puget Sound, will help to identify patterns in mm in fork length) of these salmon, all were assumed habitat use, to evaluate fishery management objec- to be residents at the time of capture. To determine tives across jurisdictional boundaries, and even help residency we presumed that fish of this size would to determine pathways to contaminant exposure. Resi- have entered salt water as smolts the previous spring dent Chinook salmon, for example, have higher accu- or summer and were still in Puget Sound about a year mulations of polychlorinated biphenyls (PCBs) than later at a time when migratory individuals would be moving along the coast or in offshore waters of the North Pacific Ocean (Trudel et al., 2009). 1 Pressey, R. T. 1953. The sport fishery for salmon on Puget Sound. Wash. Dep. Fish., Fish. Res. Pap. 1:33–48. 2 Haw, F., H. O. Wendler, and G. Deschamps. 1967. Devel- 3 WDOH (Washington State Department of Health). 2006. opment of Washington State salmon sport fishery through Human health evaluation of contaminants in Puget Sound 1964. Wash. Dep. Fish., Res. Bull. 7, 192 p. [Available from fish, 136 p. Div. Environ. Health, Wash. State Dep. Health, website.] Olympia, WA. [Available from webiste.] 546 Fishery Bulletin 115(4) fed by gravity through a tube and deliv- ered to the gills.
Recommended publications
  • 2012 PSMFC Annual Report
    Golden Gate Bridge, California 65th AnnuAl RepoRt of the pAcific StAteS MARine fiSheRieS coMMiSSion To the Congress of the United States, and to the Governors and Legislatures of the Five Compacting States — Washington, Oregon, California, Alaska and Idaho — 2012 Presented by the Commissioners of the Pacific States Marine Fisheries Commission in compliance with the State enabling acts creating the Commission and Public Laws 232; 766; and 315 of the 80th; 87th; and 91st Congresses of the United States assenting thereto. Respectfully submitted, PACIFIC STATES MARINE FISHERIES COMMISSION Randy Fisher, Executive Director Headquarters 205 SE Spokane Street, Suite 100 Portland, Oregon 97202-6413 2 | Pacific States Marine Fisheries Commission, 2012 Annual Report coMMiSSioneRS, ADViSoRS AnD cooRDinAtoRS 2012 State Commissioners Advisors Coordinator Alaska Bryce Edgmon Terry L. Johnson Karla Bush (ADFG) Eric A. Olson Don Lane Sue Aspelund Matthew Moir Gabe Sam Herman Savikko c California Charlton H. Bonham Jim Caito Marija Vojkovich (CDFG) o Thomas Harman Robert Fletcher MM Barbara Emley Donald K. Hansen i Mike McCorkle SS Aaron Newman ione Roger Thomas Kate Wing RS , A Idaho Virgil Moore Sharon Kiefer Pete Hassemer (IDFG) DV Eric Anderson Ed Schriever i S Fred Trevey Joe Stegner o RS Oregon Ed Bowles Wayne Butler Gway Kirchner (ODFW) A n Betsy Johnson Steve Fick D Jeff Feldner Liz Hamilton c Paul Heikkila oo Rod Moore RD Brad Pettinger Frank Warrens in A to Washington Phil Anderson Robert Alverson Heather Reed (WDFW) RS Brian Blake Mark Cedergreen Harriet A. Spanel Robert Jones Marion Larkin Irene Martin Bill Robinson Pacific States Marine Fisheries Commission, 2012 Annual Report | 3 MeSSAGe fRoM the eXecutiVe DiRectoR Randy Fisher, Executive Director It is a pleasure to provide the 2012 Annual Report of the Pacific States Marine Fisheries Commission.
    [Show full text]
  • Intensively Monitored Watersheds: 2008 Fish Population Studies in the Hood Canal and Lower Columbia Stream Complexes
    STATE OF WASHINGTON December 2009 Intensively Monitored Watersheds: 2008 Fish Population Studies in the Hood Canal and Lower Columbia Stream Complexes by Clayton Kinsel, Pat Hanratty, Mara Zimmerman, and Bryce Glaser, Steven Gray, Todd Hillson, Dan Rawding, Steven VanderPloeg Washington Department of FISH AND WILDLIFE Fish Program Science Division FPA 09-12 Intensively Monitored Watersheds: 2008 Fish Population Studies in the Hood Canal and Lower Columbia Stream Complexes Clayton Kinsel, Pat Hanratty, Mara Zimmerman and Bryce Glaser, Steven Gray, Todd Hillson, Dan Rawding, Steven VanderPloeg Fish Program Washington Department of Fish and Wildlife December 2009 Acknowledgements This work was funded by the Salmon Recovery Funding Board. Hood Canal Data for the Hood Canal IMW project were collected by an experienced crew of technicians led by Mat Gillum. Eric Kummerow, Scott Walker, and Karen Shields each brought their individual expertise, commitment, and enthusiasm to this project. They responded to the whim of the weather, tides, and fishing schedules and have intimate knowledge of the watersheds, the fish, and fishing seasons. All field staff put in long hours, often at night during inclement weather, to ensure that traps continued to fish and that fish were handled and sampled in a gentle and timely fashion. Pete Topping and Mike Ackley provided logistical support related to trap installation and removal and expertise in trap design and function. Kelly Kiyohara edited earlier versions of this report. Biologists from Weyerhauser and Washington Department of Ecology worked collaboratively to sample and mark coho parr. University of Washington has continuously provided access to the Big Beef property and research station since our long-term monitoring project began in 1978.
    [Show full text]
  • Marine Ecology Progress Series 548:181
    Vol. 548: 181–196, 2016 MARINE ECOLOGY PROGRESS SERIES Published April 21 doi: 10.3354/meps11623 Mar Ecol Prog Ser OPEN ACCESS Isotopes and genes reveal freshwater origins of Chinook salmon Oncorhynchus tshawytscha aggregations in California’s coastal ocean Rachel C. Johnson1,2,*, John Carlos Garza1,3, R. Bruce MacFarlane1,4, Churchill B. Grimes1,4, Corey C. Phillis5,8, Paul L. Koch6, Peter K. Weber7, Mark H. Carr2 1Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 110 Shaffer Road, Santa Cruz, CA 95060, USA 2Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 110 Shaffer Road, Santa Cruz, CA 95060, USA 3Department of Ocean Sciences, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95060, USA 4Institute of Marine Sciences, University of California, Santa Cruz, 110 Shaffer Road, Santa Cruz, CA 95060, USA 5Department of Earth and Planetary Science, University of California, Berkeley, 307 McCone Hall, Berkeley, CA 94720, USA 6Department of Earth and Planetary Science, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95060, USA 7Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA 8Present address: Metropolitan Water District of Southern California, 1121 L St. Suite 900, Sacramento, CA 95814, USA ABSTRACT: The ability of salmon to navigate from the ocean back to their river of origin to spawn acts to reinforce local adaptation and maintenance of unique and heritable traits among salmon populations. Here, the extent to which Chinook salmon Oncorhynchus tshawytscha from the same freshwater breeding groups associate together in the ocean at regional and smaller-scale aggre- gations prior to homeward migration is evaluated.
    [Show full text]
  • Hatchery Update
    Hatchery Update Carson National Fish Hatchery Spring Chinook salmon production began to take precedence over other production until 1976, when the last fall Chinook salmon were released into the Wind River. Carson NFH currently produces spring Chinook salmon exclusively. Support for the hatchery is through Mitchell Act funds, which are administered by the Department of Commerce. Facilities at Carson NFH include 46 raceways, two earthen rearing ponds, two adult holding ponds, an egg incubation building, and several administrative and support buildings. Four residences provide on station housing for staff. Staff residence provides for emergency and security support for the fish resources and physical facility. The primary water supply at CNFH is Tyee Springs, and secondarily the Wind River. Introduction Hatchery Purpose / Goal Carson National Fish Hatchery (CNFH) is one of CNFH operates as part of the Columbia River 12 National Fish Hatcheries operated by the U.S. Fish Fisheries Development Program under the 2008–2017 and Wildlife Service (USFWS) in the Columbia River United States v Oregon Management agreement. The basin. CNFH works closely with a USFWS Fish Health primary purpose of CNFH under this agreement is to Center (FHC) Fish Technology release 1.14 million healthy spring Chinook salmon Center (FTC) and Fisheries Program Office (FPO) smolts directly into the Wind River from the hatchery also located within the Columbia River basin. site. These releases help mitigate for fish losses in the The Columbia River Fisheries Program Office (CRFPO) Columbia River basin due to the impacts of main stem works with 6 of these hatcheries as part of a Hatchery hydropower, and other basin development.
    [Show full text]
  • Northwest Power and Conservation Council Decision Memo
    Bill Bradbury Jennifer Anders Chair Vice Chair Oregon Montana Henry Lorenzen Pat Smith Oregon Montana W. Bill Booth Tom Karier Idaho Washington James A. Yost Phil Rockefeller Idaho Washington August 20, 2013 Mr. William C. Maslen Manager, Fish and Wildlife Division Bonneville Power Administration P.O. Box 3621 Portland, Oregon 97208 Dear Mr. Maslen: The purpose of this letter is to advise you of the Council’s decisions and recommendations to Bonneville in response to the Fish Tagging Forum’s recommendations to the Council. These recommendations were made by the Council at its meeting on August 7, 2013. The following is a summary of the actions taken by the Council at the meeting in August. Fish Tagging Forum process and recommendations The Fish Tagging Forum (Forum) was chartered by the Northwest Power and Conservation Council (Council) in July 2011. The Forum was directed to evaluate the fish tagging activities and their cost-effectiveness and program effectiveness under the Fish and Wildlife Program (Program), as well as other issues identified in the March 2009 ISAB/ISRP report (ISAB/ISRP document 2009-1) regarding fish tagging technologies and programs. The Forum held fifteen in person all-day meetings of the full Forum as well as numerous subgroup meetings and conference calls between November 2011 and April 2013. The meetings have been regularly attended by 15 to 30 subject matter experts from the following entities: Bonneville Power Administration (BPA), United States Army Corps of Engineers (USACE), National Ocean and Aeronautics Administration (NOAA), Washington Department of Fish and Wildlife (WDFW), Oregon Department of Fish and Wildlife (ODFW), Idaho Department of Fish and Game (IDFG), Pacific States Marine Fisheries Commission (PSMFC), Columbia River Inter-Tribal Fish Commission (CRITFC), the Mid-Columbia Public Utility Districts (PUDs), and BPA customer groups (Public Power Council, Northwest River Partners).
    [Show full text]
  • 1989 by Earl F. Prentice Desmond J. Maynar
    A STUDY TO DETERMINE THE BIOLOGICAL FEASIBILITY OF A NEW FISH-TAGGING SYSTEM--1989 by Earl F. Prentice Desmond J. Maynard Pamela Sparks-McConkey C. Scott McCutcheon Daniel Neff Wayne Steffens F. William Waknitz Alvin L. Jensen Lowell C. Stuehrenberg Sandra L. Downing Benjamin Sandford and Timothy W. Newcomb Funded by Bonneville Power Administration Department of Energy Division of Fish and Wildlife P.O. Box 3621 Portland, Oregon 97208-3621 Contract DE-AI79-84BP11982 and Coastal Zone and Estuarine Studies Division Northwest Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 2725 Montlake Boulevard East Seattle, Washington 98112-2097 February 1993 CONTENTS Page EXECUTIVE SUMMARY vii INTRODUCTION 1 LABORATORY STUDIES 2 Experimental Design Caveat 2 The Effects of PIT Tags on Cultured Sockeye Salmon 4 Introduction . 4 Methods and Materials 4 Results and Discussion 7 The Effects of PIT Tags on Cultured Chinook Salmon 19 Introduction . 19 Methods and Materials 20 Results 21 Discussion 32 Summary, Conclusions, and Recommendations for the Laboratory Studies 35 Experimental Design Caveat 35 The Effects of PIT Tags on Cultured Sockeye Salmon . 35 The Effects of PIT Tags on Cultured Chinook Salmon 36 FIELD STUDIES . 37 The Effects of the Geometric, Electromagnetic, and Light Properties of PIT-Tag Passageways on Chinook Salmon Smolt Movement . 37 Introduction . 37 Methods and Materials 38 Results 41 Discussion 46 Page A Comparison of the Marine Survival, Maturation Strategies, Growth, and Tag Retention of Coho Salmon Tagged with PIT or Coded-Wire Tags 50 Introduction . 50 Methods and Materials 51 Results 55 Discussion 58 Juvenile PIT-Tag Monitors at Lower Granite, Little Goose, and McNary Dams: Systems Description and Reliability .
    [Show full text]
  • 2019 PSMFC Annual Report
    PACIFIC STATES MARINE FISHERIES COMMISSION 2019 ANNUAL REPORT PUBLISHED FOR THE CONGRESS OF THE UNITED STATES AND THE GOVERNORS AND LEGISLATURES OF 1 | Pacific States Marine FisheriesALASKA Commission • CALIFORNIA • IDAHO • OREGON • WASHINGTON 72ND ANNUAL REPORT OF THE PACIFIC STATES MARINE FISHERIES COMMISSION — Alaska, California, Idaho, Oregon, and Washington — 2019 Presented by the Commissioners of the Pacific States Marine Fisheries Commission in compliance with the State enabling acts creating the Commission and Public Laws 232; 766; and 315 of the 80th; 87th; and 91st Congresses of the United States. Respectfully submitted, PACIFIC STATES MARINE FISHERIES COMMISSION Randy Fisher, Executive Director Headquarters 205 SE Spokane Street, Suite 100 Portland, Oregon 97202-6413 2 | Pacific States Marine Fisheries Commission TABLE OF CONTENTS TABLE OF CONTENTS Commissioners, Advisors, and Coordinators............................................................................................ 4 Executive Director’s Message ...................................................................................................................... 5 72nd Annual Business Meeting Summary ................................................................................................... 9 Annual Award Recipient ............................................................................................................................. 13 Alaska Fisheries Information Network ....................................................................................................
    [Show full text]
  • Recovery of Coded Wire Tags on a Caspian Tern Colony in San Francisco Bay: a Technique to Evaluate Impacts of Avian Predation on Juvenile Salmonids
    Evans et al. 2010 In-review NAJFM Recovery of coded wire tags on a Caspian tern colony in San Francisco Bay: A technique to evaluate impacts of avian predation on juvenile salmonids by Allen F. Evans1, Daniel D. Roby2, Ken Collis1, Bradley M. Cramer1, John A. Sheggeby1, Lindsay J. Adrean2, Daniel S. Battaglia2, and Donald E. Lyons2 1Real Time Research, Inc., 52 Southwest Roosevelt Avenue, Bend, Oregon 97702, USA [email protected] 2 U.S. Geological Survey - Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife, 104 Nash Hall, Oregon State University, Corvallis, OR 97331, USA Abstract We recovered coded wire tags (CWTs) from a Caspian tern (Hydroprogne caspia) colony on Brooks Island in San Francisco Bay, California to evaluate predation on juvenile salmonids (Oncorhynchus spp.) originating from the Sacramento and San Joaquin rivers. Subsamples of colony substrate representing 11.7% of the nesting habitat used by terns yielded 2,079 salmonid CWTs from fish released and subsequently consumed by terns in 2008. The estimated number of CWTs deposited on the entire tern colony was 40,143 (ranging from 26,763 to 80,288), once adjustments are made to account for tag loss and the total amount of nesting habitat used by terns. Tags ingested by terns and then egested on the colony were undamaged, with the tags' complete numeric code still identifiable. The CWTs found on the tern colony indicated that hatchery Chinook salmon (O. tshawytscha) trucked to and released in San Pablo Bay, located roughly 25 km from Brooks Island, were 313 times more likely to be consumed by Brooks Island Caspian terns than Chinook salmon that migrated in-river to the Bay.
    [Show full text]
  • Coded Wire Tag Project Manual
    Northwest Marine Technology, Inc. Planning and Conducting Projects Using Coded Wire Tags Compiled by D. J. Solomon & G. E. Vander Haegen 1 Nov-17 GEV 1 Contents 2 Introduction .....................................................................................................................................................................4 2.1 Background ......................................................................................................................................................................4 2.2 Overview of the CWT System ..................................................................................................................................4 2.3 A Little History ...............................................................................................................................................................2 2.4 Advantages and Limitations of CWT ....................................................................................................................2 3 Details of the CWT System .......................................................................................................................................4 3.1 Tag Formats and Coding ............................................................................................................................................4 3.1.1 Standard CWT ..............................................................................................................................................2 3.1.2 Half-length CWT..........................................................................................................................................2
    [Show full text]
  • EVOS Trustee Council Herring Tagging Workshop Workshop
    EVOS Trustee Council Herring Tagging Workshop Workshop proceedings: tagging and marking techniques applicable to the restoration of herring in Prince William Sound December 11 and 12, 2008 EVOSTC Office – Anchorage, Alaska Final Report - July 2009 EVOSTC Herring Tagging Workshop Table of Contents Executive summary ....................................................................................................................................7 Perspectives on herring tagging and the workshop..................................................................... 7 Conclusions and recommendations from the workshop ............................................................. 9 Chapter One - Workshop Overview and Report Goals .......................................................................10 Content and organization of the report ..................................................................................... 10 Limitations and potential applications of the report ................................................................. 10 Workshop Agenda .................................................................................................................... 11 Report Goals ............................................................................................................................. 12 Strengths and weaknesses of the workshop .............................................................................. 12 Definitions and concepts ..........................................................................................................
    [Show full text]
  • Special Publication No. 18-12
    Special Publication No. 18-12 Salmon Hatcheries in Alaska – A Review of the Implementation of Plans, Permits, and Policies Designed to Provide Protection for Wild Stocks by Danielle F. Evenson Christopher Habicht Mark Stopha Andrew R. Munro Theodore R. Meyers and William D. Templin October 2018 Alaska Department of Fish and Game Divisions of Sport Fish and Commercial Fisheries Symbols and Abbreviations The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions. Weights and measures (metric) General Mathematics, statistics centimeter cm Alaska Administrative all standard mathematical deciliter dL Code AAC signs, symbols and gram g all commonly accepted abbreviations hectare ha abbreviations e.g., Mr., Mrs., alternate hypothesis HA kilogram kg AM, PM, etc. base of natural logarithm e kilometer km all commonly accepted catch per unit effort CPUE liter L professional titles e.g., Dr., Ph.D., coefficient of variation CV meter m R.N., etc. common test statistics (F, t, χ2, etc.) milliliter mL at @ confidence interval CI millimeter mm compass directions: correlation coefficient east E (multiple) R Weights and measures (English) north N correlation coefficient cubic feet per second ft3/s south S (simple) r foot ft west W covariance cov gallon gal copyright degree (angular ) ° inch in corporate suffixes: degrees of freedom df mile mi Company Co.
    [Show full text]
  • University of California Santa Cruz Creation And
    UNIVERSITY OF CALIFORNIA SANTA CRUZ CREATION AND UTILIZATION OF NOVEL GENETIC METHODS FOR STUDYING AND IMPROVING MANAGEMENT OF CHINOOK SALMON POPULATIONS A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in OCEAN SCIENCES by Anthony J. Clemento December 2013 The Dissertation of Anthony J. Clemento is approved: Dr. John Carlos Garza, Chair Dr. Jonathan Zehr Dr. Grant Pogson Dr. Eric Anderson Dean Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright c by Anthony J. Clemento 2013 Table of Contents List of Figures vi List of Tables viii Abstract xi Dedication xiv Acknowledgments xv Introduction 1 1 Discovery and characterization of single nucleotide polymorphisms in Chinook salmon, Oncorhynchus tshawytscha 10 1.1 Abstract . 10 1.2 Introduction . 11 1.3 Methods . 16 1.3.1 Primer Design and PCR . 16 1.3.2 Sequencing and SNP Assay Development . 17 1.4 Results . 20 1.5 Discussion . 41 2 Evaluation of a SNP baseline for genetic stock identification of Chi- nook salmon (Oncorhynchus tshawytscha) in the California Current Large Marine Ecosystem 48 2.1 Abstract . 48 2.2 Acknowledgments . 50 2.3 Introduction . 51 2.4 Methods . 55 2.4.1 Baseline Populations . 55 2.4.2 Markers and Genotyping . 60 2.4.3 Marker Selection . 61 iii 2.4.4 Population Genetics Analyses . 66 2.4.5 Power Analyses . 67 2.4.6 Mixed Fishery Samples . 69 2.5 Results . 71 2.5.1 Genotyping and Basic Population Genetics . 71 2.5.2 Assignment and Mixture Estimation Accuracy . 75 2.5.3 Fishery Sample .
    [Show full text]