The Role of Metallothionein in Oxidative Stress
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metallothionein-Protein Interactions
DOI 10.1515/bmc-2012-0049 BioMol Concepts 2013; 4(2): 143–160 Review S í lvia Atrian * and Merc è Capdevila Metallothionein-protein interactions Abstract: Metallothioneins (MTs) are a family of univer- Introduction sal, small proteins, sharing a high cysteine content and an optimal capacity for metal ion coordination. They take Metallothioneins (MTs) are a family of small ( < 10 kDa), part in a plethora of metal ion-related events (from detoxi- extremely heterogeneous proteins, sharing a high cysteine fication to homeostasis, storage, and delivery), in a wide content (15 – 30 % ) that confers them an optimal capacity range of stress responses, and in different pathological for metal ion coordination. After their discovery in horse processes (tumorigenesis, neurodegeneration, and inflam- kidneys by Bert Vallee in 1957 (1) , MTs have been identi- mation). The information on both intracellular and extra- fied and characterized in most prokaryotic and all eukary- cellular interactions of MTs with other proteins is here otic organisms. Besides metal ion detoxification, they comprehensively reviewed. In mammalian kidney, MT1/ have been related to a plethora of physiological events, MT2 interact with megalin and related receptors, and with from the homeostasis, storage, and delivery of physiologi- the transporter transthyretin. Most of the mammalian MT cal metals, to the defense against a wide range of stresses partners identified concern interactions with central nerv- and pathological processes (tumor genesis, neurodegen- ous system (mainly brain) proteins, both through physical eration, inflammation, etc.). It is now a common agree- contact or metal exchange reactions. Physical interactions ment among MT researchers that the ambiguity when mainly involve neuronal secretion multimers. -
Metallothionein Monoclonal Antibody, Clone N11-G
Metallothionein monoclonal antibody, clone N11-G Catalog # : MAB9787 規格 : [ 50 uL ] List All Specification Application Image Product Rabbit monoclonal antibody raised against synthetic peptide of MT1A, Western Blot (Recombinant protein) Description: MT1B, MT1E, MT1F, MT1G, MT1H, MT1IP, MT1L, MT1M, MT2A. Immunogen: A synthetic peptide corresponding to N-terminus of human MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1IP, MT1L, MT1M, MT2A. Host: Rabbit enlarge Reactivity: Human, Mouse Immunoprecipitation Form: Liquid Enzyme-linked Immunoabsorbent Assay Recommend Western Blot (1:1000) Usage: ELISA (1:5000-1:10000) The optimal working dilution should be determined by the end user. Storage Buffer: In 20 mM Tris-HCl, pH 8.0 (10 mg/mL BSA, 0.05% sodium azide) Storage Store at -20°C. Instruction: Note: This product contains sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which should be handled by trained staff only. Datasheet: Download Applications Western Blot (Recombinant protein) Western blot analysis of recombinant Metallothionein protein with Metallothionein monoclonal antibody, clone N11-G (Cat # MAB9787). Lane 1: 1 ug. Lane 2: 3 ug. Lane 3: 5 ug. Immunoprecipitation Enzyme-linked Immunoabsorbent Assay ASSP5 MT1A MT1B MT1E MT1F MT1G MT1H MT1M MT1L MT1IP Page 1 of 5 2021/6/2 Gene Information Entrez GeneID: 4489 Protein P04731 (Gene ID : 4489);P07438 (Gene ID : 4490);P04732 (Gene ID : Accession#: 4493);P04733 (Gene ID : 4494);P13640 (Gene ID : 4495);P80294 (Gene ID : 4496);P80295 (Gene ID : 4496);Q8N339 (Gene ID : 4499);Q86YX0 (Gene ID : 4490);Q86YX5 -
Eucaryotic Metallothioneins: Proteins, Gene Regulation and Copper Homeostasis
Cah. Biol. Mar. (2001) 42 : 125-135 Eucaryotic metallothioneins: proteins, gene regulation and copper homeostasis. Alejandra MOENNE Laboratorio de Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 correo 33, Santiago, Chile. Fax number: 56-2-6812108 - E-mail: [email protected] Abstract: Heavy metals such as copper, iron and zinc are essential for eucaryotic cell viability and they are required only in trace amounts. High concentrations of these metals are toxic for the cells and they trigger different molecular response mechanisms. One of the best studied of such responses involves the synthesis of metallothioneins (MTs) which are low molecular weight, cysteine-rich proteins that bind heavy metals by means of their cysteine residues. MTs have been purified from different eucaryotic cells and their structural and heavy metal binding properties have been determined. MT genes have been cloned from animal cells, fungi, plants and algae and their transcriptional activation by heavy metals has been characterized. The overexpression of MTs results in the accumulation of heavy metals in the cells. The best studied model for copper tolerance and homeostasis is the yeast Saccharomyces cerevisiae. In this fungus, high concentrations of copper activate transcription of the gene coding for CUP1 MT. This process involves the binding of ACE1 transcription factor to the promoter of cup-1 gene. ACE1 directly binds copper ions and undergoes a conformational change that allows its binding to the promoter region. On the other hand, copper starvation triggers the transcriptional activation of at least two copper transporter genes and a copper reductase gene. -
Emerging Roles of Metallothioneins in Beta Cell Pathophysiology: Beyond and Above Metal Homeostasis and Antioxidant Response
biology Review Emerging Roles of Metallothioneins in Beta Cell Pathophysiology: Beyond and above Metal Homeostasis and Antioxidant Response Mohammed Bensellam 1,* , D. Ross Laybutt 2,3 and Jean-Christophe Jonas 1 1 Pôle D’endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, B-1200 Brussels, Belgium; [email protected] 2 Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; [email protected] 3 St Vincent’s Clinical School, UNSW Sydney, Sydney, NSW 2010, Australia * Correspondence: [email protected]; Tel.: +32-2764-9586 Simple Summary: Defective insulin secretion by pancreatic beta cells is key for the development of type 2 diabetes but the precise mechanisms involved are poorly understood. Metallothioneins are metal binding proteins whose precise biological roles have not been fully characterized. Available evidence indicated that Metallothioneins are protective cellular effectors involved in heavy metal detoxification, metal ion homeostasis and antioxidant defense. This concept has however been challenged by emerging evidence in different medical research fields revealing novel negative roles of Metallothioneins, including in the context of diabetes. In this review, we gather and analyze the available knowledge regarding the complex roles of Metallothioneins in pancreatic beta cell biology and insulin secretion. We comprehensively analyze the evidence showing positive effects Citation: Bensellam, M.; Laybutt, of Metallothioneins on beta cell function and survival as well as the emerging evidence revealing D.R.; Jonas, J.-C. Emerging Roles of negative effects and discuss the possible underlying mechanisms. We expose in parallel findings Metallothioneins in Beta Cell from other medical research fields and underscore unsettled questions. -
Summary of Supportive Science Regarding Thimerosal Removal
Summary of Supportive Science Regarding Thimerosal Removal Updated December 2012 www.safeminds.org Science Summary on Mercury in Vaccines (Thimerosal Only) SafeMinds Update – December 2012 Contents ENVIRONMENTAL IMPACT ................................................................................................................................. 4 A PILOT SCALE EVALUATION OF REMOVAL OF MERCURY FROM PHARMACEUTICAL WASTEWATER USING GRANULAR ACTIVATED CARBON (CYR 2002) ................................................................................................................................................................. 4 BIODEGRADATION OF THIOMERSAL CONTAINING EFFLUENTS BY A MERCURY RESISTANT PSEUDOMONAS PUTIDA STRAIN (FORTUNATO 2005) ......................................................................................................................................................................... 4 USE OF ADSORPTION PROCESS TO REMOVE ORGANIC MERCURY THIMEROSAL FROM INDUSTRIAL PROCESS WASTEWATER (VELICU 2007)5 HUMAN & INFANT RESEARCH ............................................................................................................................ 5 IATROGENIC EXPOSURE TO MERCURY AFTER HEPATITIS B VACCINATION IN PRETERM INFANTS (STAJICH 2000) .................................. 5 MERCURY CONCENTRATIONS AND METABOLISM IN INFANTS RECEIVING VACCINES CONTAINING THIMEROSAL: A DESCRIPTIVE STUDY (PICHICHERO 2002) ...................................................................................................................................................... -
A Comparative Genomic Study in Schizophrenic and in Bipolar Disorder Patients, Based on Microarray Expression Pro�Ling Meta�Analysis
Hindawi Publishing Corporation e Scienti�c �orld �ournal Volume 2013, Article ID 685917, 14 pages http://dx.doi.org/10.1155/2013/685917 Research Article A Comparative Genomic Study in Schizophrenic and in Bipolar Disorder Patients, Based on Microarray Expression Pro�ling Meta�Analysis Marianthi Logotheti,1, 2, 3 Olga Papadodima,2 Nikolaos Venizelos,1 Aristotelis Chatziioannou,2 and Fragiskos Kolisis3 1 Neuropsychiatric Research Laboratory, Department of Clinical Medicine, Örebro University, 701 82 Örebro, Sweden 2 Metabolic Engineering and Bioinformatics Program, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece 3 Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece Correspondence should be addressed to Aristotelis Chatziioannou; [email protected] and Fragiskos Kolisis; [email protected] Received 2 November 2012; Accepted 27 November 2012 Academic Editors: N. S. T. Hirata, M. A. Kon, and K. Najarian Copyright © 2013 Marianthi Logotheti et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Schizophrenia affecting almost 1 and bipolar disorder affecting almost 3 –5 of the global population constitute two severe mental disorders. e catecholaminergic and the serotonergic pathways have been proved to play an important role in the development of schizophrenia, bipolar% disorder, and other related psychiatric% disorders.% e aim of the study was to perform and interpret the results of a comparative genomic pro�ling study in schizophrenic patients as well as in healthy controls and in patients with bipolar disorder and try to relate and integrate our results with an aberrant amino acid transport through cell membranes. -
Metallothionein-3 As a Multifunctional Player in the Control of Cellular Processes and Diseases Jae-Young Koh1,2 and Sook-Jeong Lee3*
Koh and Lee Molecular Brain (2020) 13:116 https://doi.org/10.1186/s13041-020-00654-w REVIEW Open Access Metallothionein-3 as a multifunctional player in the control of cellular processes and diseases Jae-Young Koh1,2 and Sook-Jeong Lee3* Abstract Transition metals, such as iron, copper, and zinc, play a very important role in life as the regulators of various physiochemical reactions in cells. Abnormal distribution and concentration of these metals in the body are closely associated with various diseases including ischemic seizure, Alzheimer’s disease, diabetes, and cancer. Iron and copper are known to be mainly involved in in vivo redox reaction. Zinc controls a variety of intracellular metabolism via binding to lots of proteins in cells and altering their structure and function. Metallothionein-3 (MT3) is a representative zinc binding protein predominant in the brain. Although the role of MT3 in other organs still needs to be elucidated, many reports have suggested critical roles for the protein in the control of a variety of cellular homeostasis. Here, we review various biological functions of MT3, focusing on different cellular molecules and diseases involving MT3 in the body. Keywords: Autophagy, Alzheimer’s disease, Lysosome, Metallothionein-3, Neurodegenerative disease, Oxidative stress, Zinc Introduction Metallothioneins (MTs) are proteins that bind or re- Intracellular transition metals exist in various forms- lease cellular transition metals, an interaction that de- free or attached to proteins or organelles. Most metals pends on specific cell situations. MTs were first reported in the cells are involved in diverse cellular function, in- by Vallee and Margoshe as Cd-binding protein from cluding the recycling of organelles and proteins as well horse renal cortex [1]. -
The Roles of Metallothioneins in Carcinogenesis Manfei Si and Jinghe Lang*
Si and Lang Journal of Hematology & Oncology (2018) 11:107 https://doi.org/10.1186/s13045-018-0645-x REVIEW Open Access The roles of metallothioneins in carcinogenesis Manfei Si and Jinghe Lang* Abstract Metallothioneins (MTs) are small cysteine-rich proteins that play important roles in metal homeostasis and protection against heavy metal toxicity, DNA damage, and oxidative stress. In humans, MTs have four main isoforms (MT1, MT2, MT3, and MT4) that are encoded by genes located on chromosome 16q13. MT1 comprises eight known functional (sub)isoforms (MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1M, and MT1X). Emerging evidence shows that MTs play a pivotal role in tumor formation, progression, and drug resistance. However, the expression of MTs is not universal in all human tumors and may depend on the type and differentiation status of tumors, as well as other environmental stimuli or gene mutations. More importantly, the differential expression of particular MT isoforms can be utilized for tumor diagnosis and therapy. This review summarizes the recent knowledge on the functions and mechanisms of MTs in carcinogenesis and describes the differential expression and regulation of MT isoforms in various malignant tumors. The roles of MTs in tumor growth, differentiation, angiogenesis, metastasis, microenvironment remodeling, immune escape, and drug resistance are also discussed. Finally, this review highlights the potential of MTs as biomarkers for cancer diagnosis and prognosis and introduces some current applications of targeting MT isoforms in cancer therapy. The knowledge on the MTs may provide new insights for treating cancer and bring hope for the elimination of cancer. Keywords: Metallothionein, Metal homeostasis, Cancer, Carcinogenesis, Biomarker Background [6–10]. -
Scientific Papers Showing Linking Thimerosal Exposure to Autism
Scientific Papers Showing Linking Thimerosal Exposure to Autism April 6, 2015 Brian S. Hooker, Ph.D., P.E. 1. Rose et al. 2015 J Toxicol “Increased Susceptibility to Ethylmercury-Induced Mitochondrial Dysfunction in a Subset of Autism Lymphoblastoid Cell Lines” PMID 25688267. In a comparison of lymphoblast cells from children with autism and matched non-autistic controls, a significantly higher number of “autistic” cell lines showed a reduction in ATP- linked respiration, maximal respiratory capacity and reserve capacity when exposed to mercury as compared to control cell lines. This supports the notion that a subset of individuals with autism may be vulnerable to mitochondrial dysfunction via thimerosal exposure. 2. Geier et al. 2015 Clin Chim Acta “Thimerosal: Clinical, Epidemiologic and Biochemical Studies,” PMID 25708367. This review article includes a section on numerous papers linking thimerosal exposure via infant vaccines to autism. This also includes a critique of studies from the U.S. Centers for Disease Control that deny any type of link. 3. Hooker et al. 2014 BioMed Research International, “Methodological Issues and Evidence of Malfeasance In Research Purporting to Show that Thimerosal-Containing Vaccines are Safe” http://dx.doi.org/10.1155/2014/247218. This review article shows methodological flaws in six separate CDC studies claiming that thimerosal does not cause autism. In three specific instances (Madsen et al. 2003, Verstraeten et al. 2003 and Price et al. 2010) evidence of malfeasance on the part of CDC scientists is shown. Background data (not reported in print) from these three publications suggest a strong link between thimerosal exposure and autism. -
The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism
International Journal of Molecular Sciences Review The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism Artur Kr˛ezel˙ 1 and Wolfgang Maret 2,* 1 Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; [email protected] 2 Division of Diabetes and Nutritional Sciences, Department of Biochemistry, Faculty of Life Sciences and Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, UK * Correspondence: [email protected]; Tel.: +44-020-7848-4264; Fax: +44-020-7848-4195 Academic Editor: Eva Freisinger Received: 25 April 2017; Accepted: 3 June 2017; Published: 9 June 2017 Abstract: Recent discoveries in zinc biology provide a new platform for discussing the primary physiological functions of mammalian metallothioneins (MTs) and their exquisite zinc-dependent regulation. It is now understood that the control of cellular zinc homeostasis includes buffering of Zn2+ ions at picomolar concentrations, extensive subcellular re-distribution of Zn2+, the loading of exocytotic vesicles with zinc species, and the control of Zn2+ ion signalling. In parallel, characteristic features of human MTs became known: their graded affinities for Zn2+ and the redox activity of their thiolate coordination environments. Unlike the single species that structural models of mammalian MTs describe with a set of seven divalent or eight to twelve monovalent metal ions, MTs are metamorphic. In vivo, they exist as many species differing in redox state and load with different metal ions. The functions of mammalian MTs should no longer be considered elusive or enigmatic because it is now evident that the reactivity and coordination dynamics of MTs with Zn2+ and Cu+ match the biological requirements for controlling—binding and delivering—these cellular metal ions, thus completing a 60-year search for their functions. -
ID AKI Vs Control Fold Change P Value Symbol Entrez Gene Name *In
ID AKI vs control P value Symbol Entrez Gene Name *In case of multiple probesets per gene, one with the highest fold change was selected. Fold Change 208083_s_at 7.88 0.000932 ITGB6 integrin, beta 6 202376_at 6.12 0.000518 SERPINA3 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3 1553575_at 5.62 0.0033 MT-ND6 NADH dehydrogenase, subunit 6 (complex I) 212768_s_at 5.50 0.000896 OLFM4 olfactomedin 4 206157_at 5.26 0.00177 PTX3 pentraxin 3, long 212531_at 4.26 0.00405 LCN2 lipocalin 2 215646_s_at 4.13 0.00408 VCAN versican 202018_s_at 4.12 0.0318 LTF lactotransferrin 203021_at 4.05 0.0129 SLPI secretory leukocyte peptidase inhibitor 222486_s_at 4.03 0.000329 ADAMTS1 ADAM metallopeptidase with thrombospondin type 1 motif, 1 1552439_s_at 3.82 0.000714 MEGF11 multiple EGF-like-domains 11 210602_s_at 3.74 0.000408 CDH6 cadherin 6, type 2, K-cadherin (fetal kidney) 229947_at 3.62 0.00843 PI15 peptidase inhibitor 15 204006_s_at 3.39 0.00241 FCGR3A Fc fragment of IgG, low affinity IIIa, receptor (CD16a) 202238_s_at 3.29 0.00492 NNMT nicotinamide N-methyltransferase 202917_s_at 3.20 0.00369 S100A8 S100 calcium binding protein A8 215223_s_at 3.17 0.000516 SOD2 superoxide dismutase 2, mitochondrial 204627_s_at 3.04 0.00619 ITGB3 integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61) 223217_s_at 2.99 0.00397 NFKBIZ nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta 231067_s_at 2.97 0.00681 AKAP12 A kinase (PRKA) anchor protein 12 224917_at 2.94 0.00256 VMP1/ mir-21likely ortholog -
The Heavy Metal-Regulatory Transcription Factor MTF-1
Review articles Putting its fingers on stressful situations: the heavy metal-regulatory transcription factor MTF-1 P. Lichtlen** and W. Schaffner* Summary and the liver. They have the ability to bind heavy metals such It has been suggested that metallothioneins, discovered as zinc, cadmium, copper, nickel and cobalt (reviewed in about 45 years ago, play a central role in heavy metal metabolism and detoxification, and in the management of Ref. 7). Metallothioneins are involved in homeostatic regula- various forms of stress. The metal-regulatory transcrip- tion of zinc concentrations and also for the detoxification of tion factor-1 (MTF-1) was shown to be essential for basal non-essential heavy metals. As an example of the latter, and heavy metal-induced transcription of the stress- mammals store all cadmium taken up in food in a form tightly responsive metallothionein-I and metallothionein-II. Re- bound to metallothioneins, where it remains with a half-life of cently it has become obvious that MTF-1 has further roles (8) in the transcriptional regulation of genes induced by approximately 15 years in humans. The expression of the various stressors and might even contribute to some major metallothionein genes (MT-I and MT-II ) is induced at the aspects of malignant cell growth. Furthermore, MTF-1 is level of transcription by heavy metal load.(9) As shown by an essential gene, as mice null-mutant for MTF-1 die in Palmiter and colleagues, the promoter region of these metal- utero due to liver degeneration. We describe here the lothionein genes contain so-called metal responsive elements state of knowledge on the complex activation of MTF-1, and propose a model with MTF-1 as an interconnected (MREs) that can confer metal-inducibility to any reporter gene (10,11) cellular stress-sensor protein involved in heavy metal when placed in a promoter position or at a remote metabolism, hepatocyte differentiation and detoxifica- enhancer position.(12) Several laboratories, including ours, tion of toxic agents.