Pigeon Point Formation, California

Total Page:16

File Type:pdf, Size:1020Kb

Pigeon Point Formation, California PALEOGEOGRAPHIC IMPLICATIONS OF MOLLUSCAN ASSEMBLAGES IN THE UPPER CRETACEOUS (CAMPANIAN) PIGEON POINT FORMATION, CALIFORNIA William P. Elder LouElla R. Saul U. S. Geological Survey, Natural History Museum Mail Stop 915, of Los Angeles County, 345 Middlefield Road, 900 Exposition Boulevard, Menlo Park, CA 94025 Los Angeles, CA 90007 ABSTRACT formation's place of deposition relative to cratonic North America. The Pigeon Point Formation crops out along the San Mateo County coastline in a This paleogeographic controversy was northern and southern sequence of folded and generated by paleomagnetic data reported by faulted strata. Correlation of the two se- Champion and others (1981, 1984), which indi- quences remains somewhat equivocal, although cate that the Pigeon Point Formation was de- on the basis of biostratigraphy and a re- posited as much as 2500 km south of its pre- versed magnetic interval both appear to have sent latitude, or at the approximate latitude been deposited during the early to middle of southern Mexico in the Late Cretaceous. Campanian. Sedimentary structures suggest The formation has been considered by many to that the northern sequence was deposited by overlie basement rocks of the Salinian ter- turbidity currents in a continental rise set- rane (e.g. Howell and Vedder, 1978; Champion ting, whereas the southern sequence primarily and others, 1984), causing speculation that reflects deposition in shelf and slope envi- that terrane is far traveled. However, other ronments . geologic and paleomagnetic evidence suggests that Salinia has had more limited tectonic Right-lateral offset on the San Andreas transport (James and Mattinson, 1988; Lund and subsidiary faults to the east of the Pi- and others, 1991; Whidden et al., 1991). In geon Point Formation can account for 100's of addition, sandstone petrology and conglomer- km of northward transport since its deposi- ate clast composition of the Pigeon Point tion. However, Champion and others (1984) Formation is not characteristic of Cretaceous suggested 2500 km of northward transport from strata underlain by Salinian basement else- a tropical setting of about 21'N. Molluscan where (Lee-Wong and Howell, 1977; Grove, assemblages in the formation argue strongly 1989) . Instead, conglomerate clast composi- for a less tropical site of deposition. tion is suggestive of Late Cretaceous rocks Relative abundances of warm and temperate of the Sur-Obispo terrane (Grove, 1989), taxa and the presence or absence of key spe- which coincidentally does contain paleomag- cies are similar to those of the Santa Ana netic evidence of substantial northward Mountains Cretaceous section, and are indica- translation (Lund and others, 1991). tive of a warm-temperate to subtropical site of deposition. This paper will compare molluscan assem- blage data drawn from material collected in INTRODUCTION the Pigeon Point Format .ten, with molluscan distributions found in rocks of similar age Upper Cretaceous sedimentary rocks near along the Pacific margin of North America in Pigeon Point, California, were first recog- order to assess paleobiogeographic con- nized by Arnold (1908), who identified a num- straints on the tectonic transport history of ber of Late Cretaceous species and named sev- the formation. However, before addressing eral new species from the unit. These strata the paleogeographic questions, we will review were formally named the Pigeon Point Forma- the geologic and lithostratigraphic settings, tion by Hall and others (1959), who provided the age control and the paleoenvironmental molluscan evidence for a late Campanian or implications of the assemblage distributions, Maastrichtian age. Following these reports, since these factors play an important role in the Pigeon Point Formation generally has been developing paleobiogeographic comparisons. considered sparsely fossiliferous, although Saul and Popenoe (Saul and Popenoe, 1962, GEOLOGIC SETTING 1992; Saul, 1978, 1983, 1989) discussed and named a number of species from it. Continued The Pigeon Point Formation lies west of research of existing collections and analysis the San Andreas fault on a block that is of new collections by the authors indicates bounded to the northeast by the San Gregorio that approximately 100 megafossil species can fault (Fig. 1) . Cretaceous strata have not be identified from the formation, making the been identified between the San Gregorio and fauna one of the most diverse known for a San Andreas fault zones in the Santa Cruz unit apparently confined to middle Campanian Mountains, where Cenozoic strata apparently age on the west coast of North America. This lie directly on granitic basement rocks of paper provides a preliminary report of those the Salinian terrane (Clark and Brabb, 1978; taxa having paleobiogeographic implications McLaughlin and others, 1988). The offshore regarding the controversy surrounding the extent of the Pigeon Point Formation is not known, but some have suggested a hypothetical In Dunn, G., and McDougall, K., eds.,1993, Mcsozoic Palcogcography of the Western United Statcs-II Pacific Section SEPM, Book 71, p. 171-186. / f'-r extension of the Sur-Nacimiento fault zone through exposure or drill hole, identifica- not far offshore (e.g. Howell and others, tion of the amount of offset on the San Gre- 1977; Lowe, 1979), which may truncate the gorio fault is critical in determining the formation to the southwest (Fig. 1). basement rock and terrane to which the Pigeon Point Formation belongs. This is because the Because of the paleomagnetically implied Sur-Nacimiento fault, which separates grani- extensive transport of the Pigeon Point For- tic basement of the Salinian terrane to its mation since deposition (Champion and others, northeast from Franciscan basement of the Sur 1981, 1984), determination of the underlying Nacimiento block to its southwest, is appar- basement rock has been paramount to analysis ently offset by the San Gregorio fault off- of terrane movements. Barring the possibil- shore from Point Sur (Fig. 1) . Franciscan ity of direct investigation of the basement basement rocks dredged from the headward part of Ascension Canyon just south of Pigeon Point (Howell and Joyce, 1981) imply at least 90 km of dextral offset of the Sur-Nacimiento fault by the San Gregorio fault system. How- Point Arena ever, if offset on the San Gregorio fault is slightly greater, on the order of 110-115 km, then the Pigeon Point Formation would lie on the southwest side of the Sur-Nacimiento fault and be underlain by Franciscan basement of the Sur-Obispo terrane (Fig. 1) . Most es- timates of offset on the San Gregorio-Hosgri fault system fall into the range of 105-150 km (see discussion in Griscom and Jachens, 1989). Thus, a narrow adjustment of these constraints in either direction would allow the Pigeon Point Formation to be underlain by either Salinian or Sur-Obispo basement rocks. Cretaceous rocks nearest to the Pigeon Point Formation lie to the east of the San Andreas fault on Franciscan basement in Palo Alto and near Loma Prieta (Fig. 1). In Pal Alto, a small claystone outcrop on the St a- ford University campus contains foraminxit. and macrofossils of late Campanian ag*_- (Graham and Church, 1963), but exposure is too limited to make proper comparison with the Pigeon Point Formation. Upper Cretaceous rocks near Loma Prieta are turbidite deposits similar to those of the Pigeon Point Forma- tion and are of approximately the same age, as indicated by a number of bivalves in com- mon, including middle Campanian Meekia bella. However, the molluscan fauna near Loma Prieta contains turbidite transported nearshore com- ponents originating in littoral rocky coast- line habitats (Elder, 1991) that are not rep- resented by faunal components in the Pigeon Point Formation. LITHOLOGIC AND STRATIGRAPHIC SETTING The Pigeon Point Formation is well ex- posed along 16 km of coastline near Pigeon EXPLANATION Point in San Mateo County. Neither the de- Sur-Obispo positional base nor top of the formation are Salinian terrane exposed due to burial or fault contact and terrane erosional truncation, respectively (Howell and Joyce, 1981). Small to large scale fold- ing, faulting, and rotation of blocks within Figure 1. Map of west-central California the formation are extensive (Joyce, 1981) and showing the position of the Pigeon Point For- inhibit precise reconstruction of the strati- mation relative to nearby localities of simi- graphic section. Correlation is particularly lar age (LP = Loma Prieta; PA = Palo Alto, hampered by an unnamed fault 1.5 km south of Stanford University Campus) and major faults Bean Hollow Beach (Fig. 2), which effectively and terrane boundaries of significance to its divides the formation into northern and tectonic transport history. Fault abbrevia- southern sequences of uncertain relationship. tions are as follows: HF = Hosgri fault, PF = In spite of these structural difficulties, Pilarcitos fault, SAFZ = San Andreas fault reasonably accurate large-scale stratigraphic zone, SGF = San Gregorio fault, SNF = Sur sections through the approximately 2500-3300 Nacimiento fault. Position of offset Sur m of exposed formation have been constructed Nacimiento fault and Salinian/Sur Obispo ter- by Howell and others (1977), Lowe (1979), and rane boundary relative to the Pigeon Point Howell and Joyce (1981) . Formation is not known. / f'-r Northern Sequence Figure 2. Map showing fossil localities, major structures, and generalized dip directions and lithofacies units of the Pigeon Point Formation.
Recommended publications
  • New Late Cretaceous Gastropods from the Pacific Slope of North America
    Watural History Museum y p- CfljlWoh'cN^ Of Los Angeles County iRvartebrate Paleontology J. Paleont., 75(1), 2001, pp. 46-65 | Copyright © 2001, The Paleontological Society 0022-3360/01/0075-46$03.00 NEW LATE CRETACEOUS GASTROPODS FROM THE PACIFIC SLOPE OF NORTH AMERICA RICHARD L. SQUIRES AND LOUELLA R. SAUL Department of Geological Sciences, California State University, Northridge 91330-8266, <[email protected]>, and Invertebrate Paleontology Section, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, < lousaul @ earthlink.net > ABSTRACT—Two new genera and ten new species of shallow-marine, warm-water gastropods are reported from several Upper Creta- ceous formations found between British Columbia and southern California. The buccinid Zaglenum new genus is represented by two new species and the turbinellid Fimbrivasum new genus is represented by three new species. The nododelphinulid Trochacanthus pacificus new species is the first record of this genus in the Western Hemisphere, and the procerthiid Nudivagusl califus new species could be the first record of this genus on the Pacific slope of North America. The xenophorid Xenophora (Endoptygma) hermax new species is only the second known Cretaceous species of this genus on the Pacific slope of North America, and this species establishes that Endoptygma Gabb, 1877, is a valid taxon. The neritid Otostoma sharonae new species is only the fourth known Cretaceous species of this genus on the Pacific slope of North America. The ringiculid Ringicula? (Ringiculopsis?) hesperiae new species is the first Campanian record of this genus on the Pacific slope of North America and the first recognition of this subgenus in this area.
    [Show full text]
  • Cretaceous Acila (Truncacila) (Bivalvia: Nuculidae) from the Pacific Slope of North America
    THE VELIGER ᭧ CMS, Inc., 2006 The Veliger 48(2):83–104 (June 30, 2006) Cretaceous Acila (Truncacila) (Bivalvia: Nuculidae) from the Pacific Slope of North America RICHARD L. SQUIRES Department of Geological Sciences, California State University, Northridge, California 91330-8266, USA AND LOUELLA R. SAUL Invertebrate Paleontology Section, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA Abstract. The Cretaceous record of the nuculid bivalve Acila (Truncacila) Grant & Gale, 1931, is established for the first time in the region extending from the Queen Charlotte Islands, British Columbia, southward to Baja California, Mexico. Its record is represented by three previously named species, three new species, and one possible new species. The previously named species are reviewed and refined. The cumulative geologic range of all these species is Early Cretaceous (late Aptian) to Late Cretaceous (early late Maastrichtian), with the highest diversity (four species) occurring in the latest Campanian to early Maastrichtian. Acila (T.) allisoni, sp. nov., known only from upper Aptian strata of northern Baja California, Mexico, is one of the earliest confirmed records of this subgenus. ‘‘Aptian’’ reports of Trun- cacila in Tunisia, Morocco, and possibly eastern Venzeula need confirmation. Specimens of the study area Acila are most abundant in sandy, shallow-marine deposits that accumulated under warm- water conditions. Possible deeper water occurrences need critical evaluation. INTRODUCTION and Indo-Pacific regions and is a shallow-burrowing de- posit feeder. Like other nuculids, it lacks siphons but has This is the first detailed study of the Cretaceous record an anterior-to-posterior water current (Coan et al., 2000).
    [Show full text]
  • Cenomanian Turonian Coniacian Santonian Campanian
    walteri aff. aff. spp. spp. imperfectus spp. (prisms) Chronostratigraphy Offshore Norway sp. 1 Geologic Time Scale 2012 Zonation (Gradstein et al., 1999, and this study) Allomorphina halli / pyriformis Sigmoilina antiqua Textularia Gavelinella intermeda gracillima Valvulineria Bulbobaculites problematicus Caudammina ovuloides Nuttallinella florealis Stensioeina granulata polonica Inoceramus Rzehakina minima Rzehakina epigona Fenestrella bellii Gaudryina filiformis Trochamminoides Haplophragmoides Gavelinella usakensis Caudammina ovula Coarse agglutinated spp. LCO dubia Tritaxia Plectorecurvoides alternans Reussella szajnochae Recurvoides Hippocrepina depressa Psammosphaera sphaerical radiolarians Ma Age/Stage Lingulogavelinella jarzevae elegans Lt NCF19 Maastrichtian volutus LCO 70 NCF18 E szajnochae dubia Lt 75 LCO of NCF17 Campanian Deep Water M Agglutinated 80 Foraminifera E bellii NCF16 Lt Inoceramus LCO NCF15 85 Santonian M E polonica NCF14 Lt Coniacian M E Marginotruncana NCF13 90 Lt Turonian M E Dicarinella NCF12 95 Lt brittonensis M NCF11 Cenomanian delrioensis LCO NCF10 E antiqua NCF9 100 Figure 2.8c. Stratigraphic ranges of Upper Cretaceous benthic foraminifera, and miscellaneous index taxa, oshore mid-Norway, with the foraminiferal zonation established in this study. s.l. Chronostratigraphy Offshore Norway Geologic Time Scale 2012 Zonation (Gradstein et al., 1999, and this study) Abathomphalus mayaroensis Pseudotextularia elegans Hedbergella planispira Hedbergella hoelzi Praeglobotruncana delrioensis Praeglobotruncana stephani
    [Show full text]
  • Late Cretaceous (Santonian-Campanian) Stratigraphy of the Northern Sacramento Valley, California
    Late Cretaceous (Santonian-Campanian) stratigraphy of the northern Sacramento Valley, California DcT^rf {Department of Geology, University of California at Davis, Davis, California 95616 rElbK L). WAKL) J ABSTRACT INTRODUCTION METHODS The Upper Cretaceous (Coniacian-lower Thick accumulations of Upper Cretaceous Strata of the Chico Formation dip gently to Campanian) Chico Formation of the north- sedimentary deposits are found on the western, the southwest. Sections were mejisured using eastern Sacramento Valley, California, includes northern, and eastern margins of the Great Val- either tape and compass or Jacob's staff. In some three newly defined members at the type local- ley of California (Fig. 1). The search for oil and areas, outcrop data were plotted on U.S. Geo- ity: (1) cobble conglomerate of the basal Pon- gas in northern California, as well as interest in logical Survey topographic quadrangles and derosa Way Member, (2) coarse-grained con- the processes of sedimentation in fore-arc re- stratigraphie columns were determined trigo- glomeratic sandstone of the overlying Musty gimes, has made the Great Valley seque nce, ex- nometrically. Paleontologic collections of mac- Buck Member, and (3) fine-grained silty sand- posed along the west side of the Sacramento rofossils were made during the measuring of stone of the uppermost Ten Mile Member. Valley, probably the best-studied fore-arc de- sections. Minor offset of bedding was observed Other outcrops of the Chico Formation exhibit posit in the world (Ojakangas, 1968; Dickinson, on more southerly exposures of the Chico For- the same three members plus an additional unit, 1971; Ingersoll, 1978, 1979). These workers in- mation, and such structural modification be- the Kingsley Cave Member, composed of mud- terpreted strata of the Great Valley sequence to comes more prominent farther north.
    [Show full text]
  • DEPARTMENT of the INTERIOR U.S. GEOLOGICAL SURVEY Review of the Great Valley Sequence, Eastern Diablo Range and Northern San
    DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Review of the Great Valley sequence, eastern Diablo Range and northern San Joaquin Valley, central California by J. Alan Bartow1 and TorH.Nilsen2 Open-File Report 90-226 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1990 , Menlo Park, California 2Applied Earth Technologies, Inc, Redwood City, California ABSTRACT The Great Valley sequence of the eastern Diablo Range and northern San Joaquin Valley consists of a thick accumulation of marine and nonmarine clastic rocks of Jurassic to early Paleocene age deposited in a forearc basin that was situated between the Sierran magmatic arc to the east and the Franciscan subduction complex to the west. In the western part of the basin, the sequence rests conformably on the Jurassic Coast Range Ophiolite or is faulted against the structurally underlying Franciscan Complex. Beneath the eastern San Joaquin Valley, the sequence unconformably onlaps igneous and metamorphic rocks of the Sierran magmatic arc. The sequence generally thickens westward to as much as 8-9 km in the Diablo Range, where it is unconformably overlain by late Paleocene and younger strata. The stratigraphy of the Great Valley sequence has been the subject of much work, but problems, particularly nomenclatural, remain. Lithostratigraphic subdivisions of the sequence have not gained widespread acceptance because of the lenticularity of most sandstone bodies, abrupt fades changes in subsurface and outcrops, and the lack of detailed subsurface information from closely spaced or deep wells.
    [Show full text]
  • Cretaceous Research 69 (2017) 49E55
    Cretaceous Research 69 (2017) 49e55 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes High-resolution calcareous nannofossil biostratigraphy of the Santonian/Campanian Stage boundary, Western Interior Basin, USA * Zachary A. Kita a, , David K. Watkins a, Bradley B. Sageman b a Department of Earth and Atmospheric Sciences, University of Nebraska, Lincoln, NE 68588, USA b Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL 60208, USA article info abstract Article history: The base of the Campanian Stage does not have a ratified Global Stratotype Section and Point (GSSP); Received 26 June 2016 however, several potential boundary markers have been proposed including the base of the Scaphites leei Received in revised form III ammonite Zone and the base of the paleomagnetic Chron C33r. Calcareous nannofossil assemblages 25 August 2016 from the Smoky Hill Member of the Niobrara Formation in the central Western Interior Seaway, USA Accepted in revised form 28 August 2016 were analyzed from two localities to determine relevant biohorizons and their relationships to these Available online 30 August 2016 potential boundary markers. In a previous study, the Aristocrat Angus 12-8 core (Colorado) was astro- chronologically dated and constrained using macrofossil zonations and radiometric ages. The Smoky Hill Keywords: Calcareous nannofossils Member type area (Kansas) provides an expanded interval with good to excellent nannofossil Biostratigraphy preservation.
    [Show full text]
  • Uppermost Campanian–Maestrichtian Strontium Isotopic, Biostratigraphic, and Sequence Stratigraphic Framework of the New Jersey Coastal Plain
    Uppermost Campanian–Maestrichtian strontium isotopic, biostratigraphic, and sequence stratigraphic framework of the New Jersey Coastal Plain Peter J. Sugarman New Jersey Geological Survey, CN 427, Trenton, New Jersey 08625, and Department of Geological Sciences, Rutgers University, New Brunswick, New Jersey 08903 Kenneth G. Miller Department of Geological Sciences, Rutgers University, New Brunswick, New Jersey 08903, and Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964 David Bukry U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025 Mark D. Feigenson Department of Geological Sciences, Rutgers University, New Brunswick, New Jersey 08903 ABSTRACT boundaries elsewhere in the Atlantic Recent stratigraphic studies have concen- Coastal Plain (Owens and Gohn, 1985) and trated on the relationships between these se- Firm stratigraphic correlations are the inferred global sea-level record of Haq quences, their bounding surfaces (unconfor- needed to evaluate the global significance of et al. (1987); they support eustatic changes mities), and related sea-level changes. The unconformity bounded units (sequences). as the mechanism controlling depositional shoaling-upward sequences described by We correlate the well-developed uppermost history of this sequence. However, the latest Owens and Sohl (1969) have been related to Campanian and Maestrichtian sequences Maestrichtian record in New Jersey does recent sequence stratigraphic terminology of the New Jersey Coastal Plain to the geo- not agree with Haq et al. (1987); we at- (e.g., Van Wagoner et al., 1988) by Olsson magnetic polarity time scale (GPTS) by in- tribute this to correlation and time-scale (1991) and Sugarman et al. (1993). Glauco- tegrating Sr-isotopic stratigraphy and bio- differences near the Cretaceous/Paleogene nite beds are equivalent to the condensed stratigraphy.
    [Show full text]
  • Jason P. Schein
    Curriculum Vitae JASON P. SCHEIN EXECUTIVE DIRECTOR BIGHORN BASIN PALEONTOLOGICAL INSTITUTE 3959 Welsh Road, Ste. 208 Willow Grove, Pennsylvania 19090 Office: (406) 998-1390 Cell: (610) 996-1055 ​ ​ [email protected] EDUCATION Ph.D. Student Drexel University, Department of Biology, Earth and Environmental Science, 2005-2013 M.Sc., Auburn University, Department of Geology and Geography, 2004 B.Sc., Auburn University, Department of Geology and Geography, 2000 RESEARCH AND PROFESSIONAL INTERESTS Mesozoic vertebrate marine and terrestrial faunas, paleoecology, paleobiogeography, faunistics, taphonomy, biostratigraphy, functional morphology, sedimentology, general natural history, education and outreach, paleontological resource assessment, and entrepreneurial academic paleontology. ACADEMIC, PROFESSIONAL, & BOARD POSITIONS 2019-Present Member of the Board, Yellowstone-Bighorn Research Association ​ 2017-Present Founding Executive Director, Bighorn Basin Paleontological Institute ​ 2017-Present Member of the Board, Delaware Valley Paleontological Society ​ 2016-Present Scientific and Educational Consultant, Field Station: Dinosaurs ​ 2015-Present Graduate Research Associate, Academy of Natural Sciences of Drexel University ​ 2007-2017 Assistant Curator of Natural History Collections and Exhibits, New Jersey State Museum ​ 2015-2017 Co-founder, Co-leader, Bighorn Basin Dinosaur Project ​ 2010-2015 International Research Associate, Palaeontology Research Team, University of Manchester ​ 2010-2014 Co-leader, New Jersey State Museum’s Paleontology Field Camp ​ 2007-2009 Interim Assistant Curator of Natural History, New Jersey State Museum ​ 2006-2007 Manager, Dinosaur Hall Fossil Preparation Laboratory ​ 2004-2005 Staff Environmental Geologist, Cobb Environmental and Technical Services, Inc. ​ 1 FIELD EXPERIENCE 2010-2019 Beartooth Butte, Morrison, Lance, and Fort Union formations, Bighorn Basin, Wyoming and Montana, U.S.A. (Devonian, Jurassic, Late Cretaceous, and earliest Paleocene, respectively) 2010 Hell Creek Formation, South Dakota, U.S.A.
    [Show full text]
  • New Late Cretaceous (Santonian and Campanian) Gastropods from California and Baja California, Mexico
    Natural History Museum Of Los Angeles County invertebrate Paleontology hippos rt> 256o rfp THE NAUTILUS 119(4):133-148, 2005 Page 133 New Late Cretaceous (Santonian and Campanian) gastropods from California and Baja California, Mexico Richard L. Squires LouElIa R. Saul Department of Geological Sciences Invertebrate Paleontology Section California State University Natural History Museum of Los Angeles Northridge, CA 91330-8266 USA County [email protected] 900 Exposition Boulevard Los Angeles, CA 90007 USA [email protected] ABSTRACT Angeles County, allowed us to incorporate two additional species into Bullamirifica. These are Bullamirifica Three new genera and six new species of shallow-marine Late verruca new genus and species from the Coniacian Cretaceous gastropods are reported from various formations in Member IV of the Redding Formation in the Oak Run California and from one formation in Baja California, Mexico. Tegula jeanae new species, of early Campanian age, is the area, northern California, and Bullamirifica anikitos earliest known species of this trochid genus. Nerita (sub- Dailey and Popenoe (1966) new combination from the genus?) orovillensis new species is the second known Early middle Campanian Pigeon Point Formation southwest of Campanian neritid from California. The cerithioid Bullamir- San Francisco, northern California; the middle upper ifica new genus is represented by three species: Bullamirifica Campanian Punta Baja Formation, Baja California, verruca new species of Coniacian age; Bullamirifica elegans Mexico; and the upper Campanian Jalama Formation, new species of early Campanian age; and Bullamirifica ainiktos southern California (Figure 1). "Cimolithium miya- (Dailey and Popenoe, 1966) of middle to late Campanian age. koense" (Nagao, 1934) and "Vicarya (Shoshiroia) yabei" The latter species has the most widespread distribution, with Kamada, 1960, reported by Perrilliat-Montoya (1968) occurrences in southern California and northern Baja Cali- from Baja California, Mexico (see Figure 1, formation 6), fornia.
    [Show full text]
  • Paleontological Discoveries in the Chorrillo Formation (Upper Campanian-Lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina
    Rev. Mus. Argentino Cienc. Nat., n.s. 21(2): 217-293, 2019 ISSN 1514-5158 (impresa) ISSN 1853-0400 (en línea) Paleontological discoveries in the Chorrillo Formation (upper Campanian-lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina Fernando. E. NOVAS1,2, Federico. L. AGNOLIN1,2,3, Sebastián ROZADILLA1,2, Alexis M. ARANCIAGA-ROLANDO1,2, Federico BRISSON-EGLI1,2, Matias J. MOTTA1,2, Mauricio CERRONI1,2, Martín D. EZCURRA2,5, Agustín G. MARTINELLI2,5, Julia S. D´ANGELO1,2, Gerardo ALVAREZ-HERRERA1, Adriel R. GENTIL1,2, Sergio BOGAN3, Nicolás R. CHIMENTO1,2, Jordi A. GARCÍA-MARSÀ1,2, Gastón LO COCO1,2, Sergio E. MIQUEL2,4, Fátima F. BRITO4, Ezequiel I. VERA2,6, 7, Valeria S. PEREZ LOINAZE2,6 , Mariela S. FERNÁNDEZ8 & Leonardo SALGADO2,9 1 Laboratorio de Anatomía Comparada y Evolución de los Vertebrados. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina - fernovas@yahoo. com.ar. 2 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. 3 Fundación de Historia Natural “Felix de Azara”, Universidad Maimonides, Hidalgo 775, C1405BDB Buenos Aires, Argentina. 4 Laboratorio de Malacología terrestre. División Invertebrados Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 5 Sección Paleontología de Vertebrados. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 6 División Paleobotánica. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 7 Área de Paleontología. Departamento de Geología, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria (C1428EGA) Buenos Aires, Argentina. 8 Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET-INIBIOMA), Quintral 1250, 8400 San Carlos de Bariloche, Río Negro, Argentina.
    [Show full text]
  • Report 2015–1087
    Chronostratigraphic Cross Section of Cretaceous Formations in Western Montana, Western Wyoming, Eastern Utah, Northeastern Arizona, and Northwestern New Mexico, U.S.A. Pamphlet to accompany Open-File Report 2015–1087 U.S. Department of the Interior U.S. Geological Survey Chronostratigraphic Cross Section of Cretaceous Formations in Western Montana, Western Wyoming, Eastern Utah, Northeastern Arizona, and Northwestern New Mexico, U.S.A. By E.A. Merewether and K.C. McKinney Pamphlet to accompany Open-File Report 2015–1087 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2015 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Merewether, E.A., and McKinney, K.C., 2015, Chronostratigraphic cross section of Cretaceous formations in western Montana, western Wyoming, eastern Utah, northeastern Arizona, and northwestern New Mexico, U.S.A.: U.S. Geological Survey Open-File Report 2015–1087, 10 p.
    [Show full text]
  • A Fast-Growing Basal Troodontid (Dinosauria: Theropoda) from The
    www.nature.com/scientificreports OPEN A fast‑growing basal troodontid (Dinosauria: Theropoda) from the latest Cretaceous of Europe Albert G. Sellés1,2*, Bernat Vila1,2, Stephen L. Brusatte3, Philip J. Currie4 & Àngel Galobart1,2 A characteristic fauna of dinosaurs and other vertebrates inhabited the end‑Cretaceous European archipelago, some of which were dwarves or had other unusual features likely related to their insular habitats. Little is known, however, about the contemporary theropod dinosaurs, as they are represented mostly by teeth or other fragmentary fossils. A new isolated theropod metatarsal II, from the latest Maastrichtian of Spain (within 200,000 years of the mass extinction) may represent a jinfengopterygine troodontid, the frst reported from Europe. Comparisons with other theropods and phylogenetic analyses reveal an autapomorphic foramen that distinguishes it from all other troodontids, supporting its identifcation as a new genus and species, Tamarro insperatus. Bone histology shows that it was an actively growing subadult when it died but may have had a growth pattern in which it grew rapidly in early ontogeny and attained a subadult size quickly. We hypothesize that it could have migrated from Asia to reach the Ibero‑Armorican island no later than Cenomanian or during the Maastrichtian dispersal events. During the latest Cretaceous (ca. 77–66 million years ago) in the run-up to the end-Cretaceous mass extinc- tion, Europe was a series of islands populated by diverse and distinctive communities of dinosaurs and other vertebrates. Many of these animals exhibited peculiar features that may have been generated by lack of space and resources in their insular habitats.
    [Show full text]