Doolittle Developed Instrument Flight
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
51 Hot-Air Balloons
We’re on the www. Thanks to Don Taylor the MAAA has now its own individual Internet web site. Look us up on www.aussiemossie.asn.au. Don has slaved over a hot PC for many nights teaching himself how to undertake the task, and the result as you will see is a credit to him. He welcomes all feedback, as well as genuine articles that are unique, as he does not want the site to be just another list of numbers but wants to have articles that portray the human side as well. You can email him with your anecdotes via the Contact Us section on the site. Our thanks also go to stalwart Brian Fillery for making his personal site available to the MAAA for the past few years. It was greatly ap- preciated. By the way if you are look- ing for the home page, there is not one, it is now known as the Hangar page (Don’s humour—you can tell by the smirk on his face). THE AUSSIE MOSSIE / APRIL 2008 / 1 The President’s Log—by Alan Middleton OAM in the RAAF post 1945, retiring ers moved into Coomalie Creek in with the rank of Air Vice Mar- November 1942 and it remained an shal. operational base until the end of the The Gillespie Room is named war. for Sqn Ldr Jim Gillespie, a Pilot with 87 who died as a A report was recently seen in an result of a crash on takeoff at Airforce Association publication on Coomalie Creek on 2 August the death of Fred Stevens DFC, the 1945. -
Front Cover: Airbus 2050 Future Concept Aircraft
AEROSPACE 2017 February 44 Number 2 Volume Society Royal Aeronautical www.aerosociety.com ACCELERATING INNOVATION WHY TODAY IS THE BEST TIME EVER TO BE AN AEROSPACE ENGINEER February 2017 PROPELLANTLESS SPACE DRIVES – FLIGHTS OF FANCY? BOOM PLOTS RETURN TO SUPERSONIC FLIGHT INDIA’S NAVAL AIR POWER Have you renewed your Membership Subscription for 2017? Your membership subscription was due on 1 January 2017. As per the Society’s Regulations all How to renew: membership benefits will be suspended where Online: a payment for an individual subscription has Log in to your account on the Society’s www.aerosociety.com not been received after three months of the due website to pay at . If you date. However, this excludes members paying do not have an account, you can register online their annual subscriptions by Direct Debits in and pay your subscription straight away. monthly installments. Additionally members Telephone: Call the Subscriptions Department who are entitled to vote in the Society’s AGM on +44 (0)20 7670 4315 / 4304 will lose their right to vote if their subscription has not been paid. Cheque: Cheques should be made payable to the Royal Aeronautical Society and sent to the Don’t lose out on your membership benefits, Subscriptions Department at No.4 Hamilton which include: Place, London W1J 7BQ, UK. • Your monthly subscription to AEROSPACE BACS Transfer: Pay by Bank Transfer (or by magazine BACS) into the Society’s bank account, quoting • Use of your RAeS post nominals as your name and membership number. Bank applicable details: • Over 400 global events yearly • Discounted rates for conferences Bank: HSBC plc • Online publications including Society News, Sort Code: 40-05-22 blogs and podcasts Account No: 01564641 • Involvement with your local branch BIC: MIDLGB2107K • Networking opportunities IBAN: GB52MIDL400522 01564641 • Support gaining Professional Registration • Opportunities & recognition with awards and medals • Professional development and support .. -
Official News Letter AMA Chapter #3798
Chino Valley Model Aviators Official News Letter AMA Chapter #3798 April 25, 2017 Volume 20 Issue 4 www. chinovalleymodelaviators.org “To create an interest in, further the image of, and promote the hobby/sport of Bob Shanks’ German Trainer Arado 76 radio controlled aircraft” Inside this issue Presidents Message 2 Name This Plane 2 A-10 in a Tucson Sunset 2 Safety Column 3 Club Flying Photos 4 , 5 Eagles Hunting Drones 6 Gustave-whitehead Story 7 Name the Plane Answer 8 April General Meeting 9 This semi-scale plane was built from Model Airplane News plans over 10 years ago. Designed for glow, Bob converted it to electric and with the help of Randy Meathrell Life Survey finally test flew it for the first time ever. It needs a bigger electric motor for our altitude. Dale Tomlinson and His Little WACO Support Our Local Hobby Shop The Safeway Center Prescott Valley, AZ MAX & CINNIMON BANDY THEY SUPPORT OUR CLUB Please support them as well. CVMA OFFICIAL NEW SLETTER Page 2 Mike’s Blue Baby Field Chatter from CVMA President Michael Kidd: No Kidding! Greetings Fellow Pilots, can’t for whatever reason we Seems we still have a flight instructor for the last Well the annual spring can now have them join as problem with folks leaving three years, we now need winds are upon us but if you associate members. This the gate open. We have someone else to step up and get out early flying has been won’t affect many but will invested a lot of effort into fill that job. -
6.- Methods for Latitude and Longitude Measurement
Chapter 6 Copyright © 1997-2004 Henning Umland All Rights Reserved Methods for Latitude and Longitude Measurement Latitude by Polaris The observed altitude of a star being vertically above the geographic north pole would be numerically equal to the latitude of the observer ( Fig. 6-1 ). This is nearly the case with the pole star (Polaris). However, since there is a measurable angular distance between Polaris and the polar axis of the earth (presently ca. 1°), the altitude of Polaris is a function of the local hour angle. The altitude of Polaris is also affected by nutation. To obtain the accurate latitude, several corrections have to be applied: = − ° + + + Lat Ho 1 a0 a1 a2 The corrections a0, a1, and a2 depend on LHA Aries , the observer's estimated latitude, and the number of the month. They are given in the Polaris Tables of the Nautical Almanac [12]. To extract the data, the observer has to know his approximate position and the approximate time. When using a computer almanac instead of the N. A., we can calculate Lat with the following simple procedure. Lat E is our estimated latitude, Dec is the declination of Polaris, and t is the meridian angle of Polaris (calculated from GHA and our estimated longitude). Hc is the computed altitude, Ho is the observed altitude (see chapter 4). = ( ⋅ + ⋅ ⋅ ) Hc arcsin sin Lat E sin Dec cos Lat E cos Dec cos t ∆ H = Ho − Hc Adding the altitude difference, ∆H, to the estimated latitude, we obtain the improved latitude: ≈ + ∆ Lat Lat E H The error of Lat is smaller than 0.1' when Lat E is smaller than 70° and when the error of Lat E is smaller than 2°, provided the exact longitude is known. -
Langley Experiments Scrapbooks
Langley Experiments Scrapbooks 2001 National Air and Space Museum Archives 14390 Air & Space Museum Parkway Chantilly, VA 20151 [email protected] https://airandspace.si.edu/archives Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Scope and Contents........................................................................................................ 1 Biographical / Historical.................................................................................................... 1 General............................................................................................................................. 2 Names and Subjects ...................................................................................................... 2 Langley Experiments Scrapbooks NASM.XXXX.0294 Collection Overview Repository: National Air and Space Museum Archives Title: Langley Experiments Scrapbooks Identifier: NASM.XXXX.0294 Date: 1914-1915 Creator: Curtiss, Glenn Hammond, 1878-1930 Extent: 0.23 Cubic feet ((1 slim legal box)) Language: English . Administrative Information Acquisition Information Glenn H. Curtiss, gift, unknown, XXXX-0294, NASM Restrictions No restrictions on access Conditions Governing Use Material is subject to Smithsonian Terms of Use. Should you wish to use NASM material in any medium, please submit an Application -
A Brief History of Aviation-Part I with Emphasis on American Aviation Faster, Higher, Further!
A Brief History of Aviation-Part I With Emphasis on American Aviation Faster, Higher, Further! OLLI Fall 2012 Session L805 Mark Weinstein, Presenter 1 Full Disclosure • Currently a Docent at both Smithsonian Air and Space Museums • Retired from the Air Force-Active duty and Reserve • Electrical Engineer • 104 hours flying a Piper Tri-Pacer Wanted Caution: Long Winded Stories Reward: Info and Enjoyment 2 Ask Questions ― ? As we fly along ? 3 Anyone here a Pilot? 4 Historical Perspective • Historians and economists consider Aviation and follow on Space Endeavors to be one on the key transitional events of the 20 th Century. Aviation is more than the sum of it parts and it drove and was driven by: – Expanding technologies – Aeronautical engineering and research – Advance in manufacturing – Industrial development and national industrial policies – New materials – Warfare needs and drivers – Political actions – Transportation needs, investments and subsidies – Large scale population migration – Adventure, exploration, vision and finally fantasy. 5 Starting Off on a Positive Note • "Heavier-than-air flying machines are impossible“ -- Lord Kelvin, President, Royal Society, 1895. • "Airplanes are interesting toys but of no military value“ -- Marshal Ferdinand Foch, Professor of Strategy, Ecole Superieure de Guerre, France, 1911 -- Commander of all Allied Forces, 1918 • "Everything that can be invented has been invented" -- Charles H. Duell, Commissioner, US Office of Patents, 1899. 6 Session Subjects More or less – Part I 7 Session Subjects – Part II More or less 8 Pre WB- WWI WWII WWII K/V ME ME 1911 1911- 1919- 1938- 1942- 1946- 1981- 2001- 1918 1937 1941 1945 1980 2000 2012 Early Aviation 1909 WB-F WW I Europeans US Growth and Expansion WW II B of B Pearl Harbor Eur. -
Celestial Navigation Practical Theory and Application of Principles
Celestial Navigation Practical Theory and Application of Principles By Ron Davidson 1 Contents Preface .................................................................................................................................................................................. 3 The Essence of Celestial Navigation ...................................................................................................................................... 4 Altitudes and Co-Altitudes .................................................................................................................................................... 6 The Concepts at Work ........................................................................................................................................................ 12 A Bit of History .................................................................................................................................................................... 12 The Mariner’s Angle ........................................................................................................................................................ 13 The Equal-Altitude Line of Position (Circle of Position) ................................................................................................... 14 Using the Nautical Almanac ............................................................................................................................................ 15 The Limitations of Mechanical Methods ........................................................................................................................ -
Wright Brothers
WHITEHEAD VS. WHO INVENTED THE AIRPLANE? WRIGHT BROTHERS Kenney WHO INVENTED THE AIRPLANE? WRIGHT BROTHERS VS. WHITEHEAD THIS PAGE INTENTIONALLY LEFT BLANK WHO INVENTED THE AIRPLANE? WRIGHT BROTHERS VS. WHITEHEAD Karen Latchana Kenney Lerner Publications Minneapolis Copyright © 2018 by Lerner Publishing Group, Inc. All rights reserved. International copyright secured. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopying, recording, or otherwise—without the prior written permission of Lerner Publishing Group, Inc., except for the inclusion of brief quotations in an acknowledged review. Lerner Publications Company A division of Lerner Publishing Group, Inc. 241 First Avenue North Minneapolis, MN 55401 USA For reading levels and more information, look up this title at www.lernerbooks.com. Library of Congress Cataloging-in-Publication Data Names: Kenney, Karen Latchana, author. Title: Who invented the airplane? : Wright Brothers vs. Whitehead / Karen Latchana Kenney. Description: Minneapolis : Lerner Publications, [2018] | Series: STEM smackdown | Audience: Age 8–12. | Audience: Grade 4 to 6. | Includes bibliographical references and index. Identifiers: LCCN 2017022030 (print) | LCCN 2017027793 (ebook) | ISBN 9781512483253 (eb pdf) | ISBN 9781512483185 (lb : alk. paper) | ISBN 9781541512061 (pb : alk. paper) Subjects: LCSH: Whitehead, Gustave, 1874–1927. | Wright, Wilbur, 1867–1912. | Wright, Orville, 1871–1948. | Aeronautics—Juvenile literature. -
Number 6 SMITHSONIAN ANNALS of FLIGHT SMITHSONIAN AIR
Number 6 SMITHSONIAN ANNALS OF FLIGHT SMITHSONIAN AIR AND SPACE MUSEUM SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge. This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, com mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of profes sional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. These publications are distributed by subscription to libraries, laboratories, and other in terested institutions and specialists throughout the world. Individual copies may be obtained from the Smithsonian Institution Press as long as stocks are available. S. DILLON RIPLEY Secretary Smithsonian Institution Langley's Aero Engine of 1903 Charles M. -
Chapter 19 Sight Reduction
CHAPTER 19 SIGHT REDUCTION BASIC PROCEDURES 1900. Computer Sight Reduction 1901. Tabular Sight Reduction The purely mathematical process of sight reduction is The process of deriving from celestial observations the an ideal candidate for computerization, and a number of information needed for establishing a line of position, different hand-held calculators, apps, and computer LOP, is called sight reduction. The observation itself con- programs have been developed to relieve the tedium of sists of measuring the altitude of the celestial body above working out sights by tabular or mathematical methods. the visible horizon and noting the time. The civilian navigator can choose from a wide variety of This chapter concentrates on sight reduction using the hand-held calculators and computer programs that require Nautical Almanac and Pub. No. 229: Sight Reduction Ta- only the entry of the DR position, measured altitude of the bles for Marine Navigation. Pub 229 is available on the body, and the time of observation. Even knowing the name NGA website. The method described here is one of many of the body is unnecessary because the computer can methods of reducing a sight. Use of the Nautical Almanac identify it based on the entered data. Calculators, apps, and and Pub. 229 provide the most precise sight reduction prac- computers can provide more accurate solutions than tabular tical, 0.'1 (or about 180 meters). and mathematical methods because they can be based on The Nautical Almanac contains a set of concise sight precise analytical computations rather than rounded values reduction tables and instruction on their use. It also contains inherent in tabular data. -
Octave Chanute Papers
Octave Chanute Papers A Finding Aid to the Collection in the Library of Congress Manuscript Division, Library of Congress Washington, D.C. 1997 Revised 2010 March Contact information: http://hdl.loc.gov/loc.mss/mss.contact Additional search options available at: http://hdl.loc.gov/loc.mss/eadmss.ms998005 LC Online Catalog record: http://lccn.loc.gov/mm78015560 Prepared by Richard L. McCormack and Allan Teichroew Revised and expanded by Karen Linn Femia Collection Summary Title: Octave Chanute Papers Span Dates: 1807-1955 Bulk Dates: (bulk 1860-1910) ID No.: MSS15560 Creator: Chanute, Octave, 1832-1910 Extent: 10,325 items ; 46 containers plus 1 oversize ; 17.4 linear feet ; 25 microfilm reels Language: Collection material in English Location: Manuscript Division, Library of Congress, Washington, D.C. Summary: Civil engineer and aviation pioneer. The bulk of the collection relates to Chanute's experiments with gliders and his scientific and financial support of aeronautical pioneers. Other papers concern his career as a builder of railroads and his service as chief engineer of the Erie Railroad and railroads in Illinois and Kansas. Selected Search Terms The following terms have been used to index the description of this collection in the Library's online catalog. They are grouped by name of person or organization, by subject or location, and by occupation and listed alphabetically therein. People Ader, Clément, 1841-1925--Correspondence. Avery, William A.--Correspondence. Bell, Alexander Graham, 1847-1922--Correspondence. Cabot, Samuel, 1850-1906--Correspondence. Chanute, Octave, 1832-1910. Hargrave, Lawrence, 1850-1916--Correspondence. Herring, Augustus Moore, 1867-1926--Correspondence. Huffaker, Edward C.--Correspondence. -
William O'dwyer Gustave Whitehead Research Collection
O’Dwyer/Whitehead Research Collection, 1869-1999 Ms B107 Fairfield Museum and History Center Library 370 Beach Road Fairfield, CT 06824 Manuscript Finding Aid Title: O’Dwyer, William J. Gustave Whitehead Research Collection Collection #: Ms B107 Dates: 1869-1987 Size of collection: 18 linear ft Accession number: L1999.31, L1999.35 Donor: William J. O’Dwyer. Also includes photocopies of materials donated by the Connecticut State Library, from the William A. O’Neill Collection, Series I, S-561, folder 7. These materials are housed in Series E - Governmantal Recognition, 1964-1986 of this collection. Restrictions: The donor requires that an author receiving profits made from a publication using these materials pay a royalty of 60% to William J. O’Dwyer, with 50% of that sum going to the Fairfield Historical Society for maintenance of this collection. Processed by: Barbara E. Austen Related Collections: Stella Randolph Collection - History of Aviation, Special Collections, Eugene Mc Dermott Library at the University of Texas at Dallas. P.O. Box 830643, Richardson, TX 75083, (972) 883- 2950 Date: January 2000 Biographical/historical note: Retired Air Force Major William J. O’Dwyer, a Fairfield, Conn., resident, began his research on the life and work of Gustave Whitehead in 1963 when he found some photograph albums with pictures of Whitehead’s aircraft taken by A. L. Watson. In more than thirty year of research O’Dwyer published numerous articles and co-authored a book about Whitehead. In 1986 he and other aviation professionals constructed and flew a replica of Whitehead’s plane 1 O’Dwyer/Whitehead Research Collection, 1869-1999 Ms B107 model 21.