Safety Assessment of Tin(IV) Oxide As Used in Cosmetics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sn95/Sb5 – Organic Acid 3% Core
Technical Data Sheet Sn95/Sb5 – Organic Acid 3% Core NOMINAL COMPOSITION Tin 94% Min Lead 0.1% Max Arsenic 0.01% Max Antimony 4.5% 5.5 Cadmium 0.005% Max Iron 0.04% Max Copper 0.08% Max Aluminum 0.005% Max Zinc 0.005% Max Silver 0.015% Max Bismuth 0.15% Max Flux – 3% Organic Acid Core by weight PHYSICAL PROPERTIES Solder Alloy Color White Melting Point (Solidus) 450°F (233°C) Flow Point (Liquidus) 464°F (240°C) Specific Gravity 7.26 Density (Lbs/in3) 0.263 Bulk Room Temperature Tensile Strength (PSI) 5,900 Flux Type Water Soluble Organic Acid Physical State Solid Melting Point 250°F (120°C) Chloride Content 4% SOLDERING CHARACTERISTICS Sn95/Sb5 is a general-purpose solder used in applications involving soldering of copper and copper alloys and/or ferrous base alloys where use of lead containing solder is not permitted. This soft solder may be used in applications involving higher service temperatures. Typical applications for this alloy include copper components in air conditioning industry. This alloy is also recommended in applications involving food handling or drinking water components where use of lead containing alloys is not permitted. Antimony bearing alloys are not recommended in soldering of brass parts due to formation of a brittle Sb-Zn inter-metallic. This flux-cored solder can be used on difficult to solder materials where rosin based fluxes and electronic grade organic fluxes are not strong enough. It has been used effectively in many non-electronic applications such as lamps, fuses, and jewelry. The flux is active on copper, brass, bronze, steel, nickel, and stainless steel. -
Instructions for Blepharoplasty
Instructions for Blepharoplasty INTRODUCTION The following instructions are based on experience with many blepharoplasty operations. They will answer practically every question that may arise regarding the "do's and don’ts" after surgery. You and your family should read them several times so that you become familiar with them. Attempt to follow them faithfully. Those who do generally have the smoothest postoperative course. This, of course, favors proper healing. SWELLING AND DISCOLORATION As you were told before surgery, a varying amount of temporary swelling and discoloration follows every one of these operations, so try not to become anxious or depressed about it, it will pass. AFTER SURGERY 1. Continue to take the antibiotic as directed. 2. Sleep with your head elevated 30-40 degrees for one week; use an additional pillow or two under your head. 3. Apply ice compresses made of gauze sponges (not an ice pack) to your eyes as often as possible during the first two days after surgery. 4. Avoid bending over or lifting heavy things for one week. Besides aggravating swelling, this may raise the blood pressure and start hemorrhage. 5. Avoid straining at stool which also raises the blood pressure. If you feel you need a laxative get Correctol from your pharmacist (no prescription necessary). 6. Avoid hitting or bumping your face and eyes. It is wise not to pick up small children, and you should sleep alone for one week after your operation. 7. Avoid any tanning of the face during the first 30 days following your operation. 8. Don't tweeze your eyebrows for two weeks. -
Low Melting Temperature Sn-Bi Solder
metals Review Low Melting Temperature Sn-Bi Solder: Effect of Alloying and Nanoparticle Addition on the Microstructural, Thermal, Interfacial Bonding, and Mechanical Characteristics Hyejun Kang, Sri Harini Rajendran and Jae Pil Jung * Department of Materials Science and Engineering, University of Seoul, 163, Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Korea; [email protected] (H.K.); [email protected] (S.H.R.) * Correspondence: [email protected] Abstract: Sn-based lead-free solders such as Sn-Ag-Cu, Sn-Cu, and Sn-Bi have been used extensively for a long time in the electronic packaging field. Recently, low-temperature Sn-Bi solder alloys attract much attention from industries for flexible printed circuit board (FPCB) applications. Low melting temperatures of Sn-Bi solders avoid warpage wherein printed circuit board and electronic parts deform or deviate from the initial state due to their thermal mismatch during soldering. However, the addition of alloying elements and nanoparticles Sn-Bi solders improves the melting temperature, wettability, microstructure, and mechanical properties. Improving the brittleness of the eutectic Sn-58wt%Bi solder alloy by grain refinement of the Bi-phase becomes a hot topic. In this paper, literature studies about melting temperature, microstructure, inter-metallic thickness, and mechanical properties of Sn-Bi solder alloys upon alloying and nanoparticle addition are reviewed. Keywords: low-temperature solder; Sn-58wt%Bi; melting temperature; microstructure; mechani- Citation: Kang, H.; Rajendran, S.H.; cal property Jung, J.P. Low Melting Temperature Sn-Bi Solder: Effect of Alloying and Nanoparticle Addition on the Microstructural, Thermal, Interfacial Bonding, and Mechanical 1. Introduction Characteristics. Metals 2021, 11, 364. -
Major Causes of Solder Cracks Applications and Boards That Specially Require Solder Crack Countermeasures Comparison of 2 Soluti
Solder Crack Countermeasures in MLCCs Outline This page introduces major causes and countermeasures of solder crack in MLCCs (Multilayer Fig. 1: Appearance of a solder crack Ceramic Chip Capacitors). (cross-section) Major causes of solder cracks Solder cracks on MLCCs developed from severe usage conditions after going on the market and during manufacturing processes such as soldering. Applications and boards that specially require solder crack countermeasures Solder cracks occur mainly because of thermal fatigue due to thermal shock or temperature cycles or the use of lead-free solder, which is hard and fragile. TDK offers following MLCC products as solder crack countermeasures. 1) Metal terminals “disperse” thermal shock : 2) Equipped with resin layers that absorb stress applied on solder MEGACAP joints and resistant to dropping: Soft termination Comparison of 2 solutions: Summary of “Solder Crack Countermeasures in MLCCs” Major causes of solder cracks Solder cracks on MLCCs developed from severe usage conditions Fig. 2: Major causes of solder cracks and their impact after going on the market and during manufacturing processes such as soldering. The following causes can be listed as the major cause of solder cracks. (1) Thermal shock (heat shock), heat fatigue caused by temperature cycle Solder cracks occur when heat stress is applied to a solder joint due to the difference in the thermal coefficients of the MLCC and PCB, in an environment in which changes between high temperatures and low temperatures are repeated. In addition, it can also occur when temperature control is insufficient during the process of soldering. (2) Lead-free solder Lead-free solder, which started to be used due to environmental considerations, has properties of being rigid and fragile, and has a higher risk of solder cracks compared to conventional eutectic solder; therefore, caution is required when using it. -
Soldering to Gold Films
Soldering to Gold Films THE IMPORTANCE OF LEAD-INDIUM ALLOYS Frederick G. Yost Sandia Laboratories, Albuquerque, New Mexico, U.S.A. Reliable solder joints can be made on gold metallised microcircuits using lead-indium solders providing certain important conditions are understood and carefully controlled. This paper reviews the three fundamental concepts of scavenging, wetting, and ageing, which are relevant when soldering to gold films. Alloys containing indium have been used for solder- sition and a body centred tetragonal space lattice. ing electronic components to thin gold films and wires Although considerable work has been addressed for at least 14 years. Braun (1, 2) investigated the to the question of clustering and phase separation potential of several multicomponent alloys based in the a field below 20°C (7, 8, 9) the practical signifi- upon the lead-tin-indium ternary alloy system. cance of this phenomenon has not yet materialised. More recently, work on lead-indium binary alloys The most commonly used alloy is the 50 weight has been reported by Jackson (3) and Yost, et al per cent indium composition which has a liquidus (4, 5, 6). In this paper we intend to define, to discuss, temperature of approximately 210°C and a solidus and to illustrate three fundamental concepts relevant temperature of approximately 185°C. Alloys in the to soldering to gold films using lead-indium solders. lead rich phase field, a, freeze dendritically by The lead-indium phase diagram, shown in Figure forming lead rich stalks. The formation of these 1, contains a wealth of useful solder alloys having dendrites causes a surface rumpling which gives the solidus temperatures which range from 156.6°C solder surface a somewhat frosty rather than a shiny (pure indium) to 327.5 °C (pure lead). -
Temperature Cycling and Fatigue in Electronics
Temperature Cycling and Fatigue in Electronics Gilad Sharon, Ph.D. [email protected] 9000 Virginia Manor Road, Suite 290, Beltsville, Maryland 20705 | Phone: (301) 474-0607 | Fax: (866) 247-9457 | www.dfrsolutions.com ABSTRACT The majority of electronic failures occur due to thermally induced stresses and strains caused by excessive differences in coefficients of thermal expansion (CTE) across materials. CTE mismatches occur in both 1st and 2nd level interconnects in electronics assemblies. 1st level interconnects connect the die to a substrate. This substrate can be underfilled so there are both global and local CTE mismatches to consider. 2nd level interconnects connect the substrate, or package, to the printed circuit board (PCB). This would be considered a “board level” CTE mismatch. Several stress and strain mitigation techniques exist including the use of conformal coating. Key words: temperature cycling, thermal cycling, fatigue, reliability, solder joint reliability. INTRODUCTION The excessive difference in coefficients of thermal expansion between the components and the printed board cause a large enough strain in solder and embedded copper structures to induce a fatigue failure mode. This paper discusses the solder fatigue failure mechanism and the associated PTH (plated through hole) fatigue failure. The solder fatigue failure is more complicated due to the many solder materials and different solder shapes. Figure 1 shows an example of a solder fatigue failure in a cross section of a ball grid array (BGA) solder ball with the corresponding finite element model. The predicted location of maximum strain corresponds to the same location of solder fatigue crack initiation. Discussion CTE Mismatch Any time two different materials are connected to one another in electronics assemblies, there is a potential for CTE mismatch to occur. -
FW2018 • CATALOG READY-TO-WEAR SPECIALTY PRODUCTS & SERVICES READY-TO-WEAR WELCOME to INSPIRED BEAUTY • New for 2018 FACE
PRIVATE LABEL PRIVATE CUSTOM BLEND FW2018 • CATALOG READY-TO-WEAR SPECIALTY PRODUCTS & SERVICES PRODUCTS SPECIALTY READY-TO-WEAR WELCOME TO INSPIRED BEAUTY • new for 2018 FACE ...................................................................28 EYES ....................................................................46 hether you’re a trusted partner or first-time explorer, Colorlab invites you Liquid Foundation - SUPERIOR PERFORMANCE 28 Eye Shadows Loose Mineral Powder 46 Mineral Moisture Tint 28 • Glitter Eyes Fashion Stack/Eye Art 48 to experience the wondrous, natural beauty of pure mineral cosmetics Natural Foundation 29 • Eye Shadows Pressed Mineral Powder 49 Foundation - CREAM TO POWDER 30 Eye and Brow Pencils - SKETCH STICKS™ 52 imbued with soothing botanicals. Free of talc and bismuth oxychloride, High Definition Powder Loose - FLAWLESS FINISH 30 Eye Brightener Pencils 52 Blotting Powder Pressed - SHINE CONTROL 30 Brow Styler Pencil - ARCH-OLOGY 52 void of fillers and harsh additives, Colorlab cosmetics are gentle Reflective Pressed Mineral Powder with Peptides 31 Gel Eye Liners - LUXURY LINER 53 Foundation Pressed Mineral Powder 31 Brow Tint - WONDERBROW™ 53 enough for any situation—from everyday sensitivities to delicate post- Foundation Loose Mineral Powder 32 Eye Shadow Primer - SENSATIONAL EYES™ 54 surgical skin. The beauty is so pure, even Dermatologists and Cosmetic Travel Kit - MINERALS ON THE MOVE 32 Eye Shadow Primer - EYELIGHTS 54 • Concealer - DISGUISE & WISE DISGUISE™ 33 Cake Eye Liners 55 Surgeons recommend it. • Blush Pressed Mineral Powder 34 Mascara - LASH OF LUXURY 55 W Blush Loose Mineral Powder 35 Highlighters & Bronzers Loose Mineral Powder 36 SPECIALTY EYE PRODUCTS Translucent Loose Mineral Powder SHIMMY POWDER 36 Eyeliner Fixative - STUCK ON YOU 56 Micronized mineral powders contain natural healing qualities. -
Gold Embrittlement of Solder Joints 2018.Pages
Gold Embrittlement of Solder Joints Ed Hare, PhD - SEM Lab, Inc 425.335.4400 [email protected] Introduction Gold embrittlement of solder joints has been written about for at least four decades [1 – 3]. Nevertheless, gold embrittlement related solder joint failures have been analyzed in this laboratory as recently as July 2009. Gold embrittlement can be avoided by careful solder joint design and knowledge of the causes of this condition. The purpose of this paper is to provide a detailed account of material and process parameters that can lead to gold embrittlement in electronic assemblies. There are a variety of reasons that designers might want to solder to gold or gold plating. One reason is that some designs involve wire bonding and soldering operations on the same assembly. Another reason would be to include gold contact pads (e.g. for dome keypad contacts) or card edge contacts (e.g. PC cards). The wire bond pads or contact pads can be selectively gold plated, but the selective plating process can be expensive. The electronics industry currently recognizes a threshold level for gold that can be dissolved into eutectic tin-lead solder above which the solder is likely to become embrittled. This threshold is ~ 3 wt% gold. It will be shown in the paragraphs below that embrittlement of solder joints can develop at significantly lower bulk gold concentrations. Metallurgical Description of Gold Embrittlement The most important soldering alloy in the electronics industry is the eutectic tin-lead alloy, 63%Sn – 37%Pb. This may change in the near future as lead-free soldering takes its hold on the industry. -
Here's a Summary of How to Make the Perfect Solder Joint
Here's a summary of how to make the perfect solder joint. 1. All parts must be clean and free from dirt and grease. 2. Try to secure the work firmly. 3. "Tin" the iron tip with a small amount of solder. Do this immediately, with new tips being used for the first time. 4. Clean the tip of the hot soldering iron on a damp sponge. 5. Many people then add a tiny amount of fresh solder to the cleansed tip. 6. Heat all parts of the joint with the iron for under a second or so. 7. Continue heating, then apply sufficient solder only, to form an adequate joint. 8. Remove and return the iron safely to its stand. 9. It only takes two or three seconds at most, to solder the average p.c.b. joint. 10. Do not move parts until the solder has cooled. Troubleshooting Guide 11. Solder won't "take" - grease or dirt present - desolder and clean up the parts. Or, material may not be suitable for soldering with lead/tin solder (eg aluminium). 12. Joint is crystalline or grainy-looking - has been moved before being allowed to cool, or joint was not heated adequately - too small an iron/ too large a joint. 13. Solder joint forms a "spike" - probably overheated, burning away the flux. First Aid If you are unlucky enough to receive burns which require treatment, here's what to do :- 14. Immediately cool the affected area with cold running water for several minutes. 15. Remove any rings etc. before swelling starts. -
L'oreal Products
L'OREAL PRODUCTS PRODUCT CARBON BLACK DIOXIDE (INHALABLE) TITANIUM TALC UREADIAZOLIDINYL (FORMALDEHYDE RELEASER) DMDM HYDANTOIN (FORMALDEHYDE RELEASER) UREA IMIDAZOLIDINYL (FORMALDEHYDE RELEASER) POLYPERFLUOROMETHYLISOPRO PYL ETHER PTFE (TEFLON) POLYACRYLAMIDE QUATERNIUM-15 (FORMALDEHYDE RELEASER) CATEGORY BENZOPHENONE-1 Garnier Ultra-Lift Anti-Wrinkle Firming Anti-aging Moisturizer • • Garnier Ultra-Lift Transformer Anti-Age Anti-aging Skin Corrector • • Keratin Complex by Coppola Keratin Care Shampoo Shampoo • Keratin Complex by Coppola Keratin Shampoo Color Care Shampoo • L'Oreal Clean Artiste 100% Oil-free Eye Makeup Makeup Remover remover • L'Oreal Collagen Moisture Filler Daily Anti-aging Moisturizer Day Lotion • L'Oreal Collagen Moisture Filler Daily Anti-aging Moisturizer Day/Night Cream • L'Oreal Color Smokes Quads, Blackened Eye shadow Smokes • • • • L'Oreal Color Smokes Quads, Cobalt Eye shadow Smokes • • • • L'Oreal Color Smokes Quads, Forest Eye shadow Smokes • • • • L'Oreal Color Smokes Quads, Lavender Eye shadow Smokes • • • • L'Oreal Colour Riche Nail Polish, After Nail polish Hours • L'Oreal Colour Riche Nail Polish, Breaking Nail polish Curfew • L'Oreal Colour Riche Nail Polish, Butterfly Nail polish Kisses • L'Oreal Colour Riche Nail Polish, Nail polish Charmed, I'm Sure • L'Oreal Colour Riche Nail Polish, Crazy Nail polish For Chic • L'Oreal Colour Riche Nail Polish, Nail polish Diamond in the Rough • L'Oreal Colour Riche Nail Polish, Eiffel For Nail polish You • L'Oreal Colour Riche Nail Polish, Greycian Nail polish -
Permanent Cosmetic Scar Camouflaging
Permanent Cosmetic Scar Camouflaging Camouflaging Scars With Permanent Make-Up Camouflaging Scars and their appearance is a personal aesthetic decision. Camouflaging scars using permanent makeup tattooing is possible for small scars and large scars. Permanent cosmetic scar camouflaging can successfully reduce the appearance of scars and in some cases eliminate the appearance of scars. Each person is unique as is their scar tissue and should be evaluated before proceeding with permanent cosmetic scar camouflaging. Scar Camouflage Is An Advanced Specialty. Potential clients should know micro pigmentation to camouflage scars uses advanced cosmetic procedures and they need to feel very comfortable with the skill level of their scar camouflage specialist. Before selecting a scar camouflage technician - Ask Questions ! Have they taken the advanced continuing education courses in this specialized area you are considering? Does your local permanent cosmetic clinician have the required certificates or licenses to perform the necessary procedures to camouflage scars or any other permanent cosmetic procedures? Most, insurance companies do not cover scar reduction procedures for persons practicing without additional training and experience in the industry. Prior to permanent make up scar reduction, multiple surgeries are required to restore facial features for those people who have been in serious accidents. However, once their plastic surgery heals, permanent makeup and scar camouflaging can begin to help restore a normal appearance both artistically and scientifically. Permanent Cosmetic Scar Camouflaging Does It Really Work? Permanent Makeup, Micro-pigmentation, Derma-graphics. Whatever name you choose to use to describe the process of permanent make up and its use to hide large scars or eliminate small scars, the procedures are the same as are the results also known as permanent cosmetic scar camouflage. -
Safe Flo® Silver Lead Free Plumbing Solder
SAFE FLO ® SILVER LEAD FREE PLUMBING SOLDER TECHNICAL SPECIFICATION: Oatey Safe Flo Silver Lead Free Plumbing Solder is recommended for use on potable water systems for sweating joints in a copper water distribution system. Safe Flo Silver Lead Free Solder is also effective on stainless steel, brass alloys, chrome alloys, galvanized steel and cast iron piping. Safe-Flo Solder complies with CA & VT lead content regulations. PRECAUTIONS Read all cautions and directions carefully before using this product. Apply flux with brush- do not apply with fingers. Wash hands thoroughly after use and before eating. Wear safety glasses with side shields and rubber gloves. EYE AND SKIN IRRITANT. HARMFUL IF SWALLOWED. VAPOR MAY BE HARMFUL. Use only in well ventilated area. Eye or skin contact may cause intense irritation and injury. In case of contact with eyes or skin, flush with water and seek medical attention immediately. If inhaled, get fresh air and seek medical attention if ill feelings persist. KEEP OUT OF REACH OF CHILDREN. Refer to material safety data sheet for more information. For emergency first aid help, call 1-877-740-5015. PHYSICAL/CHEMICAL PROPERTIES COMMON APPLICATIONS Alloy composition Tin, Copper, Bismuth, Silver Oatey Safe Flo Silver Lead Free Plumbing Solder is recommended Appearance Silver Solid Wire for use on potable water systems for sweating joints in a copper Melting Range 420° F to 460° F water distribution system. DIRECTIONS FOR USE Cut the pipe to the exact length required using a tube Consult Oatey Technical Department for applications not cutter. Be sure the pipe is cut square.