Shear Thickening in Colloidal Silica Chemical Mechanical

Total Page:16

File Type:pdf, Size:1020Kb

Shear Thickening in Colloidal Silica Chemical Mechanical SHEAR THICKENING IN COLLOIDAL SILICA CHEMICAL MECHANICAL POLISHING SLURRIES by Anastasia Krasovsky A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Chemical Engineering). Golden, Colorado Date _________________________ Signed: _________________________ Anastasia Krasovsky Signed: _________________________ Dr. Matthew W. Liberatore Thesis Advisor Golden, Colorado Date _________________________ Signed: _________________________ Dr. David W. M. Marr Professor and Head Department of Chemical and Biological Engineering ii ABSTRACT Chemical mechanical polishing (CMP) is used by the semiconductor manufacturing industry to polish materials under high shear for the fabrication of microelectronic devices such as computer chips. Under these high shear conditions, slurry particles can form agglomerates causing defects, which cost the semiconductor industry billions of dollars annually. The shear thickening behavior of colloidal silica CMP slurries (28-38 wt%) under high shear was studied using a rotating rheometer with parallel-plate geometry. The colloidal silica slurries showed continuous thickening and irreversible behavior at high shear rates (>10,000 s-1). Changing the silica concentration, adding monovalent chloride salts (NaCl, KCl, CsCl, and LiCl), adjusting the pH (pH 4 to pH 10.5), and mixing two particle sizes (d = 20 nm and 100 nm) within the slurry altered the thickening behavior of the slurries. Shear thickening behavior can be eliminated with certain large to small particle ratios. iii TABLE OF CONTENTS ABSTRACT…………………………………………………………………………………….. iii LIST OF FIGURES……………………………………………………………………………... vi LIST OF TABLES…………………………………………………………………………...... viii LIST OF SYMBOLS……………………………………………………………………………. ix LIST OF ABBREVIATIONS……………………………………………………………………. x CHAPTER 1 BACKGROUND………………………………………………………………… 1 1.1 Chemical Mechanical Polishing…………………………………………………. 1 1.2 High Shear Rheology…………………………………………………………….. 5 1.2.1 Common Techniques and Geometries…………………………………… 5 1.2.2 Parallel-Plate High Shear Rheology……………………………………... 6 1.3 Chemical Mechanical Polishing Slurries………………………………………… 8 1.4 Stability of Colloidal Silica……………………………………………………... 10 CHAPTER 2 SHEAR THICKENING OF CHEMICAL MECHANICAL POLISHING SLURRIES UNDER HIGH SHEAR WITH ADDED ELECTROLYTE……… 14 2.1 Abstract…………………………………………………………………………. 14 2.2 Introduction……………………………………………………………………... 14 2.3 Experimental Methods………………………………………………………...... 16 2.4 Effect of Electrolyte on Shear Thickening…………………………………….... 17 2.5 Varying Silica Concentration Under Constant Salt Concentration……………... 22 2.6 Conclusions……………………………………………………………………... 24 CHAPTER 3 PARTICLE SIZE AND pH IMPACT ON SHEAR THICKENING OF COLLOIDAL SILICA CMP SLURRIES……………………………………… 26 iv 3.1 Abstract…………………………………………………………………………. 26 3.2 Introduction……………………………………………………………………... 26 3.3 Experimental Methods………………………………………………………….. 28 3.4 Shear Thickening Behavior Examined in a Range of pH Values………………. 29 3.5 Mixtures of Small and Large Colloidal Silica Particle Slurries………………… 33 3.6 Conclusions……………………………………………………………………... 36 CHAPTER 4 CONCLUSIONS AND RECOMMENDATIONS……………………………... 38 4.1 Conclusions……………………………………………………………………... 38 4.2 Recommendations………………………………………………………………. 39 REFERENCES CITED…………………………………………………………………………. 40 v LIST OF FIGURES Figure 1.1 Schematic of the CMP process, where Ωp and Ωc are the rotational speeds of the platen and wafer carrier, respectively. Adapted from Gokale and Moudgil [1]………………………………………………………………………. 2 Figure 1.2 Top (a), angled (b), and side view (c) of a concentric ring patterned polyurethane polishing pad used for experimentation…………………………… 2 Figure 1.3 Cross-section schematic of the damascene processing method for the sequential deposition of the: (a) dielectric, (b) diffusion barrier, and (c) interconnecting Cu layers. (d) Extra Cu must be removed via CMP in order to create a planarized surface for depositing the next layer of interconnects. Adapted from Matijevic and Babu [2].…………………………… 4 Figure 1.4 Schematic of a parallel-plate rheometer…………………………………………. 7 Figure 1.5 Transmission electron microscope (TEM) image of colloidal silica…………….. 9 Figure 1.6 Total interaction energy as predicted by DLVO theory versus particle separation distance between two hard spheres………………………………….. 11 Figure 2.1 Steady shear rate ramp (filled symbols) and reduction (open symbols) for 30wt% silica slurry with an added electrolyte concentration of 0.17 M KCl (black circles), 0.17 M NaCl (blue diamonds), 0.17 M CsCl (green triangles), 0.17 M LiCl (red squares), and no salt added (orange diamonds)……………… 18 Figure 2.2 Viscosity of small silica particles with a weight percent of 30% with an added electrolyte concentration of 0.17 M during shear rate ramp and reduction………………………………………………………………………... 19 Figure 2.3 Schematic of the adsorption of Cs+, K+, Na+, and Li+ onto a hydrated silica surface. Small and more hydrated counterions (Na+ and Li+) penetrate deeper into the hydration layer of silica than larger, weakly hydrated cations (Cs+ and K+). This figure is an adaption of a graphic published in Colic et al. [3]…………………………………………………………………... 22 Figure 2.4 Steady shear rate ramp (filled symbols) and reduction (open symbols) for a 28 wt% (green diamonds), 30 wt% (orange circles), 33 wt% (red diamonds), 36 wt% (black squares), and 38 wt% (blue triangles) silica slurry with an NaCl concentration of 0.17 M………………………………………………….. 23 vi Figure 2.5 Viscosity of small silica particles at 28 wt%, 30 wt%, 33 wt%, 36 wt%, and 38 wt% with an added sodium chloride concentration of 0.17 M during shear rate ramp and reduction…………………………………………………... 23 Figure 3.1 Steady shear rate ramp (filled symbols) and reduction (open symbols) for a 33 wt% small particle silica slurry pH adjusted with NaOH or HCl to pH 4 (black squares), pH 7 (blue diamonds), pH 9 (orange triangles), pH 10 (green circles), and pH 10.5 (red triangles)…………………………………….. 29 Figure 3.2 Steady shear rate ramp (filled symbols) and reduction (open symbols) for a 33 wt% large particle silica slurry pH adjusted with NaOH or HCl to pH 4 (black squares), pH 7 (blue diamonds), pH 8 (orange triangles), pH 10 (green circles), and pH 10.5 (red triangles)…………………………………….. 30 Figure 3.3 Viscosity of small silica particles (33 wt%) pH adjusted with NaOH or HCl to pH values of 4, 7, 9, 10, and 10.5 during shear rate ramp and reduction……. 30 Figure 3.4 Viscosity of large silica particles (33 wt%) pH adjusted with NaOH or HCl to pH values of 4, 7, 8, 10, and 10.5 during shear rate ramp and reduction……. 31 Figure 3.5 Steady shear rate ramp (filled symbols) and reduction (open symbols) for mixtures of small (d = 20 nm) and large (d = 100 nm) silica particles at a constant overall volume percent (23%) and a pH value of 9…………………… 33 Figure 3.6 Viscosity of mixtures of small (d = 20 nm) and large (d = 100 nm) silica particles during shear rate ramp and reduction at a constant volume percent (23%) and a pH value of 9……………………………………………………… 34 Figure 3.7 Schematic representation of how small particle spheres fit within the spaces between large particle spheres (a) and a TEM image of a mixture or small and large particle spheres (b)………………………………………….. 36 vii LIST OF TABLES Table 1.1 Applied shear rates during CMP slurry processing [4]…………………………... 1 Table 2.1 Critical shear rate for small silica particle slurries with a weight percent of 30% and an added electrolyte concentration of 0.17 M……………………... 21 Table 3.1 Conductivity and zeta potential values for small and large particles at 33 wt% for a range of pH values……………………………………………….. 32 Table 3.2 Conductivity and zeta potential values for mixtures of ratios to small and large particles at a constant volume percent (23%) and a pH value of 9……….. 35 viii LIST OF SYMBOLS Density………………………………………………………………………………………….... ρ Measured torque……………………………………………………………………………….... M Particle radius…………………………………………………………………………………...... a Rheometer gap height…………………………………………………………………………… H Rheometer plate radius…………………………………………………………………………... R Rotational speed…………………………………………………………………………………. Ω Salt concentration………………………………………………………………………………... C Shear rate………………………………………………………………………………………… � Shear stress……………………………………………………………………………………….. τ Surface tension…………………………………………………………………………………... Γ Viscosity…………………………………………………………………………………………. η ix LIST OF ABBREVIATIONS Chemical Mechanical Polishing……………………………………………………………... CMP Cabot Microelectronics Corporation………………………………………………………… CMC Derjaguin-Landau-Verwey-Overbeek theory……………………………………………… DLVO Dynamic Light Scattering…………………………………………………………………..... DLS Electrical Double Layer……………………………………………………………………… EDL Transmission Electron Microscopy………………………………………………………….. TEM x CHAPTER 1 BACKGROUND The following techniques and materials were used to study the high shear rheology of chemical mechanical polishing slurries and to examine changes to the slurry structure under shear. This chapter provides background information on chemical mechanical polishing (CMP), high shear rheology, CMP slurries, and colloidal silica stability. 1.1 Chemical Mechanical Polishing Chemical mechanical polishing (CMP) is used in the semiconductor industry to ensure that the thickness of the dielectric materials is uniform and that interconnects between the multilayer chips are reliable [5]. In the semiconductor processing industry, CMP has become the primary technique for the planarization of integrated circuits
Recommended publications
  • Colloidal Properties of Aqueous Suspensions of Acid-Treated, Multi-Walled Carbon Nanotubes Billy Smith, Kevin Wepasnick, K
    Subscriber access provided by Johns Hopkins Libraries Article Colloidal Properties of Aqueous Suspensions of Acid-Treated, Multi-Walled Carbon Nanotubes Billy Smith, Kevin Wepasnick, K. E. Schrote, A. R. Bertele, William P. Ball, Charles O’Melia, and D. Howard Fairbrother Environ. Sci. Technol., 2009, 43 (3), 819-825 • DOI: 10.1021/es802011e • Publication Date (Web): 29 December 2008 Downloaded from http://pubs.acs.org on February 4, 2009 More About This Article Additional resources and features associated with this article are available within the HTML version: • Supporting Information • Access to high resolution figures • Links to articles and content related to this article • Copyright permission to reproduce figures and/or text from this article Environmental Science & Technology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Environ. Sci. Technol. 2009, 43, 819–825 CNTs is enormous, providing the impetus for dramatic Colloidal Properties of Aqueous increases in their annual production rates: Bayer anticipates Suspensions of Acid-Treated, production rates of 200 tons/yr by 2009, and 3,000 tons/yr by 2012 (4). Multi-Walled Carbon Nanotubes Many CNT applications (e.g., as components of drug delivery agents, composite materials) require CNT suspen- sions that remain stable in polar mediums such as water or BILLY SMITH,† KEVIN WEPASNICK,† polymeric resins (5, 6). Due to strongly attractive van der K. E. SCHROTE,§ A. R. BERTELE,§ | | Waals forces between the hydrophobic graphene surfaces, WILLIAM P. BALL, CHARLES O’MELIA, AND D. HOWARD FAIRBROTHER*,†,‡ pristine CNTs minimize their surface free energy by forming settleable aggregates in solution. To prepare uniform, well- Department of Chemistry, The Johns Hopkins University, dispersed mixtures, the CNTs’ exterior surface must be Baltimore, Maryland 21218, Department of Materials Science modified.
    [Show full text]
  • Silica White Paper (PDF)
    Jeff Cameron, P.E., Amy Blain, P.E. – To: Date: June 6, 2014 City of Longview Stephen Booth, Ph.D., Distribution System Water Quality Evaluation From: Melinda Friedman, P.E. – Project: Confluence Cc: Subject: Final – Silica White Paper 1 INTRODUCTION AND OBJECTIVES Since switching sources of supply from the surface water treated at the Filter Plant on Fishers Lane to a ground water supply treated at the new Mint Farm Regional Water Treatment Plant (MFRWTP), the City of Longview has received complaints due to white spot formation. The spots seem to be formed upon evaporation of water drops on the exterior of cars, plumbing fixtures, and kitchenware. Investigations conducted to date have shown that the white spots consist largely of silica and to a lesser degree calcium carbonate and other minerals. Although the MFRWTP water has a higher hardness level compared to the Cowlitz River source, it is classified as Moderately Hard on most hardness scales. The nature and degree of white spotting is not consistent with other ground waters with a hardness of approximately 90-100 mg/L as CaCO3 (calcium carbonate). Additional study has indicated that elevated silica levels in the ground- water supply (50 mg/L as SiO2 (silicon dioxide)) is the primary cause of the white spotting. The purpose of this white paper is to present background information on silica chemistry, to summarize information concerning silica treatment alternatives, and to discuss potential silica deposit modification alternatives. This document is not intended as an exhaustive review of the literature pertaining to silica, but rather as an overview of the key aspects of silica chemistry that may provide insights on the feasibility of removing silica from the water and methods customers of the City of Longview could use to reduce white spotting.
    [Show full text]
  • FW: Seabrook Attachments: Alkali-Silica Reaction 5571E6f008ae7536374c6022.Pdf
    SeabrookLANPEm Resource From: Morante, Richard J <[email protected]> Sent: Tuesday, October 24, 2017 3:28 PM To: Lehman, Bryce Subject: [External_Sender] FW: Seabrook Attachments: Alkali-Silica Reaction 5571e6f008ae7536374c6022.pdf From: Morante, Richard J Sent: Monday, July 18, 2016 11:47 AM To: Braverman, Joseph I Subject: Seabrook Joe, For your information. Rich 1 Hearing Identifier: Seabrook_LA_NonPublic Email Number: 162 Mail Envelope Properties (4909515901062646BE47A0C16E45C8673755A297) Subject: [External_Sender] FW: Seabrook Sent Date: 10/24/2017 3:27:35 PM Received Date: 10/24/2017 3:28:12 PM From: Morante, Richard J Created By: [email protected] Recipients: "Lehman, Bryce" <[email protected]> Tracking Status: None Post Office: EXMB3.bnl.gov Files Size Date & Time MESSAGE 175 10/24/2017 3:28:12 PM Alkali-Silica Reaction 5571e6f008ae7536374c6022.pdf 2107918 Options Priority: Standard Return Notification: No Reply Requested: No Sensitivity: Normal Expiration Date: Recipients Received: Cement and Concrete Research 76 (2015) 130–146 Contents lists available at ScienceDirect Cement and Concrete Research journal homepage: http://ees.elsevier.com/CEMCON/default.asp Alkali–silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps Farshad Rajabipour a,⁎, Eric Giannini b, Cyrille Dunant c, Jason H. Ideker d, Michael D.A. Thomas e a Dept. of Civil and Environmental Engineering, Pennsylvania State University, University Park, PA 16802, USA b Dept. of Civil, Construction, and Environmental Engineering, The University
    [Show full text]
  • Electrical Double Layer Interactions with Surface Charge Heterogeneities
    Electrical double layer interactions with surface charge heterogeneities by Christian Pick A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland October 2015 © 2015 Christian Pick All rights reserved Abstract Particle deposition at solid-liquid interfaces is a critical process in a diverse number of technological systems. The surface forces governing particle deposition are typically treated within the framework of the well-known DLVO (Derjaguin-Landau- Verwey-Overbeek) theory. DLVO theory assumes of a uniform surface charge density but real surfaces often contain chemical heterogeneities that can introduce variations in surface charge density. While numerous studies have revealed a great deal on the role of charge heterogeneities in particle deposition, direct force measurement of heterogeneously charged surfaces has remained a largely unexplored area of research. Force measurements would allow for systematic investigation into the effects of charge heterogeneities on surface forces. A significant challenge with employing force measurements of heterogeneously charged surfaces is the size of the interaction area, referred to in literature as the electrostatic zone of influence. For microparticles, the size of the zone of influence is, at most, a few hundred nanometers across. Creating a surface with well-defined patterned heterogeneities within this area is out of reach of most conventional photolithographic techniques. Here, we present a means of simultaneously scaling up the electrostatic zone of influence and performing direct force measurements with micropatterned heterogeneously charged surfaces by employing the surface forces apparatus (SFA). A technique is developed here based on the vapor deposition of an aminosilane (3- aminopropyltriethoxysilane, APTES) through elastomeric membranes to create surfaces for force measurement experiments.
    [Show full text]
  • Understanding Adhesion: a Means for Preventing Fouling
    ELSEVIER Understanding Adhesion: A Means for Preventing Fouling R. Oliveira • Adhesion of particulate materials is an important step in the formation Engenharia Biol6gica, of fouling. Because the size of such materials is generally less than 1 tzm, Unicersidade do Minho, the phenomenon can be described in terms of colloid chemistry. Accord- Braga, Portugal ingly, the net force of interaction between foulants and the surface has been described in terms of DLVO theory (van der Waals attraction and electrostatic double-layer repulsion). However, those forces are sometimes not sufficient to describe the formation of fouling. Recent works have made it possible to calculate the effect of hydrophobic interactions and steric forces, which can also be taken into account. In aqueous media, the various types of interactions can be strongly affected by the pH, the ionic strength, the type of ions, and the presence of polymeric molecules. The objective of this work is to give a general overview of the basic physicochemical factors playing a role in fouling and to outline some practical aspects related to the theoretical reasoning to help prevent or at leasl[ mitigate fouling. © Elsevier Science Inc., 1997 Keywords: adhesion, DLVO theory, surface free energy, hydrophobic interactions, steric forces, ionic strength, ion bridging INTRODUCTION tant roles. In bifouling, the adhesion of microorganisms can be strongly dependent on their external appendages. The accumulation of inorganic particles, microorganisms, The net effect is a balance between all possible interac- macromolecules, and corrosion products on heat ex- tions. A knowledge of the roles of the main variables changer surfaces gives rise to the so-called fouling phe- affecting the interactions outlined above is of great impor- nomenon.
    [Show full text]
  • Colloidal Silica Filtration Case Study
    NEW LOGIC RESEARCH Case Membrane Filtration of Colloidal Silica Study A cost-effective and efficient solution Background Raw Materials New Logic Research’s patented V✧SEP The main ingredient for amorphous membrane filtration system has been silica is regular quartz sand which can installed at Silica Gel processing plants. be found in abundance anywhere. This Vibrational membrane filtration is an in- sand is processed with Sodium novative new way to dewater or diafilter Carbonate, Na2CO3 which is made Silica product. V✧SEP can be used as using the Solvay process combining a pre-treatment for a spray dryer or salt, ammonia, carbon dioxide, and evaporator. It can replace other less re- limestone all naturally occurring liable pre-treatment systems such as substances. Centrifuges. Today’s Industrial Silica market is very competitive and effi- ciency in operating costs can make the Silica Gel: difference. The V✧SEP system con- Step One, sand is fused with Sodium Carbonate in a high temperature furnace. The result is sumes about 12 kW of electricity and Sodium Silicate and Carbon Dioxide gas. can reduce the gas consumption of a spray dryer by an average of 700,000 SiO2 + Na2CO3 = Na2O.SiO2 + CO2 Therms/year. Also, the power consump- Step 2, the Silica Gel is made using Sulfuric Acid: ✧ tion of a V SEP system is 10-20 times Na2O.SiO2 + H2SO4 = SiO2 + H2O + Na2SO4 lower than Centrifuges. small country one of the largest The result is an aqueous salty solution containing coastlines in the world, the surface area Silica colloids. The Sodium Sulfate salts must be New Logic’s vibrating Membrane of amorphous Silica is incredibly large washed using diafiltration and then the Silica must System is currently being used for be partially dewatered.
    [Show full text]
  • The Synthesis and Behavior of Positive and Negatively Charged Quantum Dots THESIS Presented in Partial Fulfillment of the Requir
    The Synthesis and Behavior of Positive and Negatively Charged Quantum Dots THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Andrew Paul Zane Graduate Program in Chemistry The Ohio State University 2011 Master's Examination Committee: Professor Prabir K. Dutta, Advisor Professor Susan V. Olesik Copyright by Andrew Paul Zane 2011 Abstract The synthesis, characteristics, and macrophage uptake of CdSe/ZnS core/shell quantum dots were studied. Insights into the mechanism of nucleation and growth of the quantum dots were gained by performing in-situ fluorescence spectroscopy during a microwave synthesis. The size and surface charge of quantum dots capped by 3- mercaptopropionic acid (3-MPA, negatively charged) and thiocholine (positively charged) were characterized by dynamic light scattering (DLS) and electrophoretic light scattering (ELS). Finally, macrophage uptake studies were performed by Amber Nagy via flow cytometry to determine the level of quantum dot association with murine alveolar macrophages, and to determine a possible uptake pathway into the cells. The mechanism for the CdSe/ZnS synthesis was determined by an in-situ fluorescence experiment. A fast nucleation step occurred, resulting in small CdSe seed nanoparticles which were protected from aggregation by the 3-MPA. Upon microwave heating, these caps were removed from the surface and began to deteriorate. The CdSe cores underwent Ostwald ripening in which smaller particles dissolved and provided free ions to increase the size of the larger particles. After this period, free zinc in the solution reacted with sulfur, freed from MPA decomposition, to form a ZnS shell around the CdSe core.
    [Show full text]
  • Charge-Dependent Regulation in DNA Adsorption on 2D Clay Minerals
    www.nature.com/scientificreports OPEN Charge-Dependent Regulation in DNA Adsorption on 2D Clay Minerals Received: 27 November 2018 Hongyi Xie1,2, Zhengqing Wan3, Song Liu4, Yi Zhang 1,2, Jieqiong Tan3 & Huaming Yang1,2 Accepted: 27 February 2019 DNA purifcation is essential for the detection of human clinical specimens. A non-destructive, Published: xx xx xxxx controllable, and low reagent consuming DNA extraction method is described. Negatively charged DNA is absorbed onto a negatively charged montmorillonite to achieve non-destructive DNA extraction based on cation bridge construction and electric double layer formation. Diferent valence cation modifed montmorillonite forms were used to validate the charge-dependent nature of DNA adsorption on montmorillonite. Electric double layer thickness thinning/thickening with the high/lower valence cations exists, and the minerals tended to be sedimentation-stable due to the Van der Waals attraction/ electrostatic repulsion. Li-modifed montmorillonite with the lowest charge states showed the best DNA adsorption efciency of 8–10 ng/μg. Charge-dependent regulating research provides a new perspective for controllable DNA extraction and a deep analysis of interface engineering mechanisms. DNA purifcation has been widely used for transfection, sequencing, and polymerase chain reaction (PCR)1. Sample preparation steps, including adsorption and desorption of DNA are of prime importance for the following analysis procedures, using the physicochemical characteristics of the negative charge (owing to the phosphate 3− 2,3 group (PO4 )) and the diferent solubilities in organic and aqueous phases. Traditional chemical extraction, 4–9 10–15 magnetic separation and silicon material matrix separation, such as SiO2 and other extraction meth- ods16–19 (the corresponded adsorption pattern is shown in Table S1), have been developed over the past decades.
    [Show full text]
  • Heteroaggregation of Nanoparticles with Biocolloids and Geocolloids
    UC Santa Barbara UC Santa Barbara Previously Published Works Title Heteroaggregation of nanoparticles with biocolloids and geocolloids. Permalink https://escholarship.org/uc/item/98x882rd Journal Advances in colloid and interface science, 226(Pt A) ISSN 0001-8686 Authors Wang, Hongtao Adeleye, Adeyemi S Huang, Yuxiong et al. Publication Date 2015-12-01 DOI 10.1016/j.cis.2015.07.002 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Advances in Colloid and Interface Science 226 (2015) 24–36 Contents lists available at ScienceDirect Advances in Colloid and Interface Science journal homepage: www.elsevier.com/locate/cis Historical perspective Heteroaggregation of nanoparticles with biocolloids and geocolloids Hongtao Wang a,⁎, Adeyemi S. Adeleye b, Yuxiong Huang b,FengtingLia, Arturo A. Keller b,⁎⁎ a State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China b Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, 93106, USA article info abstract Available online 22 July 2015 The application of nanoparticles has raised concern over the safety of these materials to human health and the ecosystem. After release into an aquatic environment, nanoparticles are likely to experience heteroaggregation Keywords: with biocolloids, geocolloids, natural organic matter (NOM) and other types of nanoparticles. Heteroaggregation Heteroaggregation is of vital importance for determining the fate and transport of nanoparticles in aqueous phase and sediments. In Nanoparticles this article, we review the typical cases of heteroaggregation between nanoparticles and biocolloids and/or Biocolloid geocolloids, mechanisms, modeling, and important indicators used to determine heteroaggregation in aqueous Geocolloid phase.
    [Show full text]
  • The Development and Improvement of Instructions
    MICROFLUIDIC EMULSIFICATION A Dissertation by PENG HE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2011 Major Subject: Chemical Engineering Microfluidic Emulsification Copyright 2011 Peng He MICROFLUIDIC EMULSIFICATION A Dissertation by PENG HE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Zhengdong Cheng Committee Members, Debjyoti Banerjee Arul Jayaraman Victor Ugaz Head of Department, Charles Glover December 2011 Major Subject: Chemical Engineering iii ABSTRACT Microfluidic Emulsification. (December 2011) Peng He, B.E., University of Science and Technology of China Chair of Advisory Committee: Dr. Zhengdong Cheng This dissertation investigates the emulsification of aqueous liquid in immiscible organic liquid in various microfluidic environments, and addresses both experimental characterization and theoretical interpretation of the dynamics and design guidelines, as well as an application of microfluidic emulsification in fabrication of disk-like colloidal particle suspensions for studying its sedimentation behavior. In an attempt to understand the dynamics of drop formation in flow-focusing microfluidic channels, especially for an explanation of a transition from unique drop size to bimodal oscillating drop sizes as observed in the experiments, numerical simulation is developed to use the volume-of-fraction method to model the drop formation, and the simulation results help to interpret the transition in the theory of saddle-node transition in drop formation, as well as show the importance of selecting proper orifice length in flow-focusing microfluidic channel design.
    [Show full text]
  • Colloids and Surfaces a Analysis of Stability Behavior Of
    Colloids and Surfaces A 554 (2018) 306–316 Contents lists available at ScienceDirect Colloids and Surfaces A journal homepage: www.elsevier.com/locate/colsurfa Analysis of stability behavior of carbon black nanoparticles in T ecotoxicological media: Hydrophobic and steric effects Gukhwa Hwanga,b, Allan Gomez-Floresa, Scott A. Bradfordb, Sowon Choia, Eunhye Joc, ⁎ Song Bae Kime, Meiping Tongf, Hyunjung Kima,b, a Department of Mineral Resources and Energy Engineering, Chonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea b US Salinity Laboratory, USDA, ARS, Riverside, CA, USA c Risk Assessment Division, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon 22689, Republic of Korea e Department of Rural Systems Engineering, Seoul National University, Republic of Korea f The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China G R A P H I C A L A B S T R A C T A R T I C L E I N F O A B S T R A C T Keywords: The stability of carbon black nanoparticles (CB-NPs) was investigated in five different ecotoxicity test media for Carbon black nanoparticles fish, daphnia, and algae (i.e., ISO Test water, Elendt M4 medium, OECD TG 201 medium, AAP medium, and Ecotoxicological medium Bold’s Basal Medium) in the presence and absence of Suwannee River Humic Acid (SRHA) as a function of time. Stability Hydrodynamic size, particle sedimentation rate, and visual images of suspensions were analyzed for 96 h, and Hydrophobic force the SRHA concentration was varied from 0 to 10 mg/L.
    [Show full text]
  • Chapter 1 Introduction
    Chapter 1 Introduction 1.1 Motivation The stability of thin liquid films within various disperse systems is critical for people to better understand many industrial processes such as the mineral flotation and oil recovery operations. In froth flotation process, hydrophobic particles are collected on the surface of air bubbles and rise to the surface of an ore pulp to form a froth phase. The rate-determining step of flotation can be the stability of foams and froths (1-3). In the froth phase, bubbles laden with particles grow in size, and less strongly adhering particles drop off the bubble surface and are subsequently returned to the pulp phase. Thus, the froth phase provides a mechanism for removing the gangue minerals that are loosely held to the bubble surface. In column flotation, wash water is added to accelerate the process of removing the entrained particles. More and more flotation engineers recognize the importance of better understanding the physics and chemistry of froth and, thereby, improving the performance of their flotation cells. However, relatively little is known of the basic sciences involved in foam and froth and, therefore, it is difficult to model the froth behavior in flotation. Also, many operators use stronger frothers to produce smaller air bubbles in order to increase the recovery of fine particles and, hence, higher recovery and throughput. Despite its importance, little is known of the fundamentals of foam and froth stability. Foam is a two-phase froth. The fundamental research on foam stability is expected to set a path to understanding of the stability of froths in the presence of solid particles.
    [Show full text]