View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Mathematics Publications Mathematics 1990 Complexity and Unsolvability Properties of Nilpotency Irvin R. Hentzel Iowa State University,
[email protected] David Pokrass Jacobs Clemson University Follow this and additional works at: http://lib.dr.iastate.edu/math_pubs Part of the Algebra Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ math_pubs/140. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Mathematics at Iowa State University Digital Repository. It has been accepted for inclusion in Mathematics Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact
[email protected]. Complexity and Unsolvability Properties of Nilpotency Abstract A nonassociative algebra is nilpotent if there is some n such that the product of any n elements, no matter how they are associated, is zero. Several related, but more general, notions are left nilpotency, solvability, local nilpotency, and nillity. First the complexity of several decision problems for these properties is examined. In finite-dimensional algebras over a finite field it is shown that solvability and nilpotency can be decided in polynomial time. Over Q, nilpotency can be decided in polynomial time, while the algorithm for testing solvability uses a polynomial number of arithmetic operations, but is not polynomial time. Also presented is a polynomial time probabilistic algorithm for deciding left nillity.