Non-Associative Algebras and Quantum Physics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:2009.05574V4 [Hep-Th] 9 Nov 2020 Predict a New Massless Spin One Boson [The ‘Lorentz’ Boson] Which Should Be Looked for in Experiments
Trace dynamics and division algebras: towards quantum gravity and unification Tejinder P. Singh Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India e-mail: [email protected] Accepted for publication in Zeitschrift fur Naturforschung A on October 4, 2020 v4. Submitted to arXiv.org [hep-th] on November 9, 2020 ABSTRACT We have recently proposed a Lagrangian in trace dynamics at the Planck scale, for unification of gravitation, Yang-Mills fields, and fermions. Dynamical variables are described by odd- grade (fermionic) and even-grade (bosonic) Grassmann matrices. Evolution takes place in Connes time. At energies much lower than Planck scale, trace dynamics reduces to quantum field theory. In the present paper we explain that the correct understanding of spin requires us to formulate the theory in 8-D octonionic space. The automorphisms of the octonion algebra, which belong to the smallest exceptional Lie group G2, replace space- time diffeomorphisms and internal gauge transformations, bringing them under a common unified fold. Building on earlier work by other researchers on division algebras, we propose the Lorentz-weak unification at the Planck scale, the symmetry group being the stabiliser group of the quaternions inside the octonions. This is one of the two maximal sub-groups of G2, the other one being SU(3), the element preserver group of octonions. This latter group, coupled with U(1)em, describes the electro-colour symmetry, as shown earlier by Furey. We arXiv:2009.05574v4 [hep-th] 9 Nov 2020 predict a new massless spin one boson [the `Lorentz' boson] which should be looked for in experiments. -
The Book of Involutions
The Book of Involutions Max-Albert Knus Alexander Sergejvich Merkurjev Herbert Markus Rost Jean-Pierre Tignol @ @ @ @ @ @ @ @ The Book of Involutions Max-Albert Knus Alexander Merkurjev Markus Rost Jean-Pierre Tignol Author address: Dept. Mathematik, ETH-Zentrum, CH-8092 Zurich,¨ Switzerland E-mail address: [email protected] URL: http://www.math.ethz.ch/~knus/ Dept. of Mathematics, University of California at Los Angeles, Los Angeles, California, 90095-1555, USA E-mail address: [email protected] URL: http://www.math.ucla.edu/~merkurev/ NWF I - Mathematik, Universitat¨ Regensburg, D-93040 Regens- burg, Germany E-mail address: [email protected] URL: http://www.physik.uni-regensburg.de/~rom03516/ Departement´ de mathematique,´ Universite´ catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve, Belgium E-mail address: [email protected] URL: http://www.math.ucl.ac.be/tignol/ Contents Pr´eface . ix Introduction . xi Conventions and Notations . xv Chapter I. Involutions and Hermitian Forms . 1 1. Central Simple Algebras . 3 x 1.A. Fundamental theorems . 3 1.B. One-sided ideals in central simple algebras . 5 1.C. Severi-Brauer varieties . 9 2. Involutions . 13 x 2.A. Involutions of the first kind . 13 2.B. Involutions of the second kind . 20 2.C. Examples . 23 2.D. Lie and Jordan structures . 27 3. Existence of Involutions . 31 x 3.A. Existence of involutions of the first kind . 32 3.B. Existence of involutions of the second kind . 36 4. Hermitian Forms . 41 x 4.A. Adjoint involutions . 42 4.B. Extension of involutions and transfer . -
DERIVATIONS and PROJECTIONS on JORDAN TRIPLES an Introduction to Nonassociative Algebra, Continuous Cohomology, and Quantum Functional Analysis
DERIVATIONS AND PROJECTIONS ON JORDAN TRIPLES An introduction to nonassociative algebra, continuous cohomology, and quantum functional analysis Bernard Russo July 29, 2014 This paper is an elaborated version of the material presented by the author in a three hour minicourse at V International Course of Mathematical Analysis in Andalusia, at Almeria, Spain September 12-16, 2011. The author wishes to thank the scientific committee for the opportunity to present the course and to the organizing committee for their hospitality. The author also personally thanks Antonio Peralta for his collegiality and encouragement. The minicourse on which this paper is based had its genesis in a series of talks the author had given to undergraduates at Fullerton College in California. I thank my former student Dana Clahane for his initiative in running the remarkable undergraduate research program at Fullerton College of which the seminar series is a part. With their knowledge only of the product rule for differentiation as a starting point, these enthusiastic students were introduced to some aspects of the esoteric subject of non associative algebra, including triple systems as well as algebras. Slides of these talks and of the minicourse lectures, as well as other related material, can be found at the author's website (www.math.uci.edu/∼brusso). Conversely, these undergraduate talks were motivated by the author's past and recent joint works on derivations of Jordan triples ([116],[117],[200]), which are among the many results discussed here. Part I (Derivations) is devoted to an exposition of the properties of derivations on various algebras and triple systems in finite and infinite dimensions, the primary questions addressed being whether the derivation is automatically continuous and to what extent it is an inner derivation. -
An Extended Freudenthal Magic Square in Characteristic 3
An extended Freudenthal Magic Square in characteristic 3 Alberto Elduque Universidad de Zaragoza From Lie Algebras to Quantum Groups Coimbra, 2006 Alberto Elduque (Universidad de Zaragoza) Freudenthal Magic Supersquare June 30, 2006 1 / 29 Exceptional Lie algebras G2, F4, E6, E7, E8 G2 = der O (Cartan 1914) F = der H ( ) 4 3 O (Chevalley-Schafer 1950) E6 = str0 H3(O) Alberto Elduque (Universidad de Zaragoza) Freudenthal Magic Supersquare June 30, 2006 2 / 29 Exceptional Lie algebras G2, F4, E6, E7, E8 G2 = der O (Cartan 1914) F = der H ( ) 4 3 O (Chevalley-Schafer 1950) E6 = str0 H3(O) Alberto Elduque (Universidad de Zaragoza) Freudenthal Magic Supersquare June 30, 2006 2 / 29 Tits construction (1966) C a Hurwitz algebra (unital composition algebra), J a central simple Jordan algebra of degree 3, Then T (C, J) = der C ⊕ (C0 ⊗ J0) ⊕ der J is a Lie algebra (char 6= 3) under a suitable Lie bracket. Alberto Elduque (Universidad de Zaragoza) Freudenthal Magic Supersquare June 30, 2006 3 / 29 Tits construction (1966) C a Hurwitz algebra (unital composition algebra), J a central simple Jordan algebra of degree 3, Then T (C, J) = der C ⊕ (C0 ⊗ J0) ⊕ der J is a Lie algebra (char 6= 3) under a suitable Lie bracket. Alberto Elduque (Universidad de Zaragoza) Freudenthal Magic Supersquare June 30, 2006 3 / 29 Tits construction (1966) C a Hurwitz algebra (unital composition algebra), J a central simple Jordan algebra of degree 3, Then T (C, J) = der C ⊕ (C0 ⊗ J0) ⊕ der J is a Lie algebra (char 6= 3) under a suitable Lie bracket. -
Hermitian Jordan Triple Systems, the Standard Model Plus Gravity, And
THEP-93-3 Feb. 1993 Hermitian Jordan Triple Systems, the Standard Model plus Gravity, and αE =1/137.03608 Frank D. (Tony) Smith, Jr. Department of Physics Georgia Institute of Technology Atlanta, Georgia 30332 Abstract A physical interpretation is given for some Hermitian Jordan triple systems (HJTS) that were recently discussed by G¨unaydin [4]. hep-th/9302030 9 Feb 1993 The quadratic Jordan algebras derived from HJTS provide a formulation of quantum mechanics (G¨unaydin[3]) that is a natural framework within which exceptional structures are identified with physically realistic struc- tures of a quantum field theory that includes both the standard model and MacDowell-Mansouri [14] gravity. The structures allow the calculation of the relative strengths of the four forces, including αE =1/137.03608. c 1993 Frank D. (Tony) Smith, Jr., 341 Blanton Road, Atlanta, Georgia 30342 USA P. O. Box for snail-mail: P. O. Box 430, Cartersville, Georgia 30120 USA e-mail: [email protected] and [email protected] 1 Introduction 1.1 Overview Since the purpose of this paper is to give a physical quantum field theoreti- cal interpretation of the algebraic structures (Jordan algebras, Lie algebras, symmetric spaces, bounded homogeneous domains, etc.) the field over which the structures are defined is the field C of the complex numbers. In particular, the initial fundamental Lie algebras will be complexifica- tions GC of real Lie algebras G. Real structures, such as spacetime, will emerge in the physical interpre- tation by such mechanisms as by taking the Silov boundary of a bounded complex homogeneous domain. -
Part I. Origin of the Species Jordan Algebras Were Conceived and Grew to Maturity in the Landscape of Physics
1 Part I. Origin of the Species Jordan algebras were conceived and grew to maturity in the landscape of physics. They were born in 1933 in a paper \Uber VerallgemeinerungsmÄoglichkeiten des Formalismus der Quantenmechanik" by the physicist Pascual Jordan; just one year later, with the help of John von Neumann and Eugene Wigner in the paper \On an algebraic generalization of the quantum mechanical formalism," they reached adulthood. Jordan algebras arose from the search for an \exceptional" setting for quantum mechanics. In the usual interpretation of quantum mechanics (the \Copenhagen model"), the physical observables are represented by Hermitian matrices (or operators on Hilbert space), those which are self-adjoint x¤ = x: The basic operations on matrices or operators are multiplication by a complex scalar ¸x, addition x + y, multipli- cation xy of matrices (composition of operators), and forming the complex conjugate transpose matrix (adjoint operator) x¤. This formalism is open to the objection that the operations are not \observable," not intrinsic to the physically meaningful part of the system: the scalar multiple ¸x is not again hermitian unless the scalar ¸ is real, the product xy is not observable unless x and y commute (or, as the physicists say, x and y are \simultaneously observable"), and the adjoint is invisible (it is the identity map on the observables, though nontrivial on matrices or operators in general). In 1932 the physicist Pascual Jordan proposed a program to discover a new algebraic setting for quantum mechanics, which would be freed from dependence on an invisible all-determining metaphysical matrix structure, yet would enjoy all the same algebraic bene¯ts as the highly successful Copenhagen model. -
Formal Power Series - Wikipedia, the Free Encyclopedia
Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series -
Moufang Loops and Alternative Algebras
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 132, Number 2, Pages 313{316 S 0002-9939(03)07260-5 Article electronically published on August 28, 2003 MOUFANG LOOPS AND ALTERNATIVE ALGEBRAS IVAN P. SHESTAKOV (Communicated by Lance W. Small) Abstract. Let O be the algebra O of classical real octonions or the (split) algebra of octonions over the finite field GF (p2);p>2. Then the quotient loop O∗=Z ∗ of the Moufang loop O∗ of all invertible elements of the algebra O modulo its center Z∗ is not embedded into a loop of invertible elements of any alternative algebra. It is well known that for an alternative algebra A with the unit 1 the set U(A) of all invertible elements of A forms a Moufang loop with respect to multiplication [3]. But, as far as the author knows, the following question remains open (see, for example, [1]). Question 1. Is it true that any Moufang loop can be imbedded into a loop of type U(A) for a suitable unital alternative algebra A? A positive answer to this question was announced in [5]. Here we show that, in fact, the answer to this question is negative: the Moufang loop U(O)=R∗ for the algebra O of classical octonions over the real field R andthesimilarloopforthe algebra of octonions over the finite field GF (p2);p>2; are not imbeddable into the loops of type U(A). Below O denotes an algebra of octonions (or Cayley{Dickson algebra) over a field F of characteristic =2,6 O∗ = U(O) is the Moufang loop of all the invertible elements of O, L = O∗=F ∗. -
An Introduction to Operad Theory
AN INTRODUCTION TO OPERAD THEORY SAIMA SAMCHUCK-SCHNARCH Abstract. We give an introduction to category theory and operad theory aimed at the undergraduate level. We first explore operads in the category of sets, and then generalize to other familiar categories. Finally, we develop tools to construct operads via generators and relations, and provide several examples of operads in various categories. Throughout, we highlight the ways in which operads can be seen to encode the properties of algebraic structures across different categories. Contents 1. Introduction1 2. Preliminary Definitions2 2.1. Algebraic Structures2 2.2. Category Theory4 3. Operads in the Category of Sets 12 3.1. Basic Definitions 13 3.2. Tree Diagram Visualizations 14 3.3. Morphisms and Algebras over Operads of Sets 17 4. General Operads 22 4.1. Basic Definitions 22 4.2. Morphisms and Algebras over General Operads 27 5. Operads via Generators and Relations 33 5.1. Quotient Operads and Free Operads 33 5.2. More Examples of Operads 38 5.3. Coloured Operads 43 References 44 1. Introduction Sets equipped with operations are ubiquitous in mathematics, and many familiar operati- ons share key properties. For instance, the addition of real numbers, composition of functions, and concatenation of strings are all associative operations with an identity element. In other words, all three are examples of monoids. Rather than working with particular examples of sets and operations directly, it is often more convenient to abstract out their common pro- perties and work with algebraic structures instead. For instance, one can prove that in any monoid, arbitrarily long products x1x2 ··· xn have an unambiguous value, and thus brackets 2010 Mathematics Subject Classification. -
Malcev Algebras
MALCEVALGEBRAS BY ARTHUR A. SAGLEO) 1. Introduction. This paper is an investigation of a class of nonassociative algebras which generalizes the class of Lie algebras. These algebras satisfy certain identities that were suggested to Malcev [7] when he used the com- mutator of two elements as a new multiplicative operation for an alternative algebra. As a means of establishing some notation for the present paper, a brief sketch of this development will be given here. If ^4 is any algebra (associative or not) over a field P, the original product of two elements will be denoted by juxtaposition, xy, and the following nota- tion will be adopted for elements x, y, z of A : (1.1) Commutator, xoy = (x, y) = xy — yx; (1.2) Associator, (x, y, z) = (xy)z — x(yz) ; (1.3) Jacobian, J(x, y, z) = (xy)z + (yz)x + (zx)y. An alternative algebra A is a nonassociative algebra such that for any elements xi, x2, x3 oí A, the associator (¡Ci,x2, x3) "alternates" ; that is, (xi, x2, xs) = t(xiv xh, xh) for any permutation i%,i2, i%of 1, 2, 3 where « is 1 in case the permutation is even, — 1 in case the permutation is odd. If we introduce a new product into an alternative algebra A by means of a commutator x o y, we obtain for any x, y, z of A J(x, y, z)o = (x o y) o z + (y o z) o x + (z o y) o x = 6(x, y, z). The new algebra thus obtained will be denoted by A(~K Using the preceding identity with the known identities of an alternative algebra [2] and the fact that the Jacobian is a skew-symmetric function in /l(-), we see that /1(_) satis- fies the identities (1.4) ïoï = 0, (1.5) (x o y) o (x o z) = ((x o y) o z) o x + ((y o z) o x) o x + ((z o x) o x) o y Presented to the Society, August 31, 1960; received by the editors March 14, 1961. -
Split Octonions
Split Octonions Benjamin Prather Florida State University Department of Mathematics November 15, 2017 Group Algebras Split Octonions Let R be a ring (with unity). Prather Let G be a group. Loop Algebras Octonions Denition Moufang Loops An element of group algebra R[G] is the formal sum: Split-Octonions Analysis X Malcev Algebras rngn Summary gn2G Addition is component wise (as a free module). Multiplication follows from the products in R and G, distributivity and commutativity between R and G. Note: If G is innite only nitely many ri are non-zero. Group Algebras Split Octonions Prather Loop Algebras A group algebra is itself a ring. Octonions In particular, a group under multiplication. Moufang Loops Split-Octonions Analysis A set M with a binary operation is called a magma. Malcev Algebras Summary This process can be generalized to magmas. The resulting algebra often inherit the properties of M. Divisibility is a notable exception. Magmas Split Octonions Prather Loop Algebras Octonions Moufang Loops Split-Octonions Analysis Malcev Algebras Summary Loops Split Octonions Prather Loop Algebras In particular, loops are not associative. Octonions It is useful to dene some weaker properties. Moufang Loops power associative: the sub-algebra generated by Split-Octonions Analysis any one element is associative. Malcev Algebras diassociative: the sub-algebra generated by any Summary two elements is associative. associative: the sub-algebra generated by any three elements is associative. Loops Split Octonions Prather Loop Algebras Octonions Power associativity gives us (xx)x = x(xx). Moufang Loops This allows x n to be well dened. Split-Octonions Analysis −1 Malcev Algebras Diassociative loops have two sided inverses, x . -
A Guide to Self-Distributive Quasigroups, Or Latin Quandles
A GUIDE TO SELF-DISTRIBUTIVE QUASIGROUPS, OR LATIN QUANDLES DAVID STANOVSKY´ Abstract. We present an overview of the theory of self-distributive quasigroups, both in the two- sided and one-sided cases, and relate the older results to the modern theory of quandles, to which self-distributive quasigroups are a special case. Most attention is paid to the representation results (loop isotopy, linear representation, homogeneous representation), as the main tool to investigate self-distributive quasigroups. 1. Introduction 1.1. The origins of self-distributivity. Self-distributivity is such a natural concept: given a binary operation on a set A, fix one parameter, say the left one, and consider the mappings ∗ La(x) = a x, called left translations. If all such mappings are endomorphisms of the algebraic structure (A,∗ ), the operation is called left self-distributive (the prefix self- is usually omitted). Equationally,∗ the property says a (x y) = (a x) (a y) ∗ ∗ ∗ ∗ ∗ for every a, x, y A, and we see that distributes over itself. Self-distributivity∈ was pinpointed already∗ in the late 19th century works of logicians Peirce and Schr¨oder [69, 76], and ever since, it keeps appearing in a natural way throughout mathematics, perhaps most notably in low dimensional topology (knot and braid invariants) [12, 15, 63], in the theory of symmetric spaces [57] and in set theory (Laver’s groupoids of elementary embeddings) [15]. Recently, Moskovich expressed an interesting statement on his blog [60] that while associativity caters to the classical world of space and time, distributivity is, perhaps, the setting for the emerging world of information.