Investigation of Functional Genes at Homologous Loci Identified Based
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Recombinant T-Cell Immunoglobulin and Mucin Domain Containing Protein 4 (TIMD4)
RPH854Hu01 100µg Recombinant T-Cell Immunoglobulin And Mucin Domain Containing Protein 4 (TIMD4) Organism Species: Homo sapiens (Human) Instruction manual FOR RESEARCH USE ONLY NOT FOR USE IN CLINICAL DIAGNOSTIC PROCEDURES 12th Edition (Revised in Aug, 2016) 1 / 4 [ PROPERTIES ] Source: Prokaryotic expression Host: E.coli Residues: Glu25~Gln314 Tags: N-terminal His Tag Subcellular Location: Secreted Purity: > 95% Traits: Freeze-dried powder Buffer formulation: 100mMNaHCO3, 500mMNaCl, pH8.3, containing 0.01% SKL, 5% Trehalose. Original Concentration: 100µg/mL Applications: Positive Control; Immunogen; SDS-PAGE; WB. (May be suitable for use in other assays to be determined by the end user.) Predicted isoelectric point: Predicted Molecular Mass: 35.0kDa Accurate Molecular Mass: 40kDa as determined by SDS-PAGE reducing conditions. Phenomenon explanation: The possible reasons that the actual band size differs from the predicted are as follows: 1.Splice variants: Alternative splicing may create different sized proteins from the same gene. 2. Relative charge: The composition of amino acids may affects the charge of the protein. 3. Post-translational modification: Phosphorylation, glycosylation, methylation etc. 4. Post-translation cleavage: Many proteins are synthesized as pro-proteins, and then cleaved to give the active form. 5. Polymerization of the target protein: Dimerization, multimerization etc. [ USAGE ] Reconstitute in 100mM NaHCO3, 500mM NaCl (pH8.3) to a concentration of 0.1-1.0 mg/mL. Do not vortex. 2 / 4 [ STORAGE AND STABILITY ] Storage: Avoid repeated freeze/thaw cycles. Store at 2-8ºC for one month. Aliquot and store at -80ºC for 12 months. Stability Test: The thermal stability is described by the loss rate. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Mining Public Toxicogenomic Data Reveals Insights and Challenges in Delineating Liver Steatosis Adverse Outcome Pathways
ORIGINAL RESEARCH published: 18 October 2019 doi: 10.3389/fgene.2019.01007 Mining Public Toxicogenomic Data Reveals Insights and Challenges in Delineating Liver Steatosis Adverse Outcome Pathways Mohamed Diwan M. AbdulHameed 1,2*, Venkat R. Pannala 1,2 and Anders Wallqvist 1* 1 Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States, 2 The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States Edited by: Exposure to chemicals contributes to the development and progression of fatty liver, or Chris Vulpe, University of Florida, steatosis, a process characterized by abnormal accumulation of lipids within liver cells. United States However, lack of knowledge on how chemicals cause steatosis has prevented any large- Reviewed by: scale assessment of the 80,000+ chemicals in current use. To address this gap, we mined Xuefang Liang, Inner Mongolia University, a large, publicly available toxicogenomic dataset associated with 18 known steatogenic China chemicals to assess responses across assays (in vitro and in vivo) and species (i.e., Annamaria Colacci, rats and humans). We identified genes that were differentially expressed (DEGs) in rat Agenzia Regionale Prevenzione E Ambiente Della Regione Emilia- in vivo, rat in vitro, and human in vitro studies in which rats or in vitro primary cell lines Romagna, Italy were exposed to the chemicals at different doses and durations. Using these DEGs, we *Correspondence: performed pathway enrichment analysis, analyzed the molecular initiating events (MIEs) of Mohamed Diwan M. AbdulHameed [email protected] the steatosis adverse outcome pathway (AOP), and predicted metabolite changes using Anders Wallqvist metabolic network analysis. -
Supplementary Materials
Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine -
1 Self-Maintaining Gut Macrophages Are Essential for Intestinal
Self-maintaining Gut Macrophages Are Essential for Intestinal Homeostasis De Schepper Sebastiaan1*, Verheijden Simon1*†, Aguilera-Lizarraga Javi1, Viola Maria Francesca1, Boesmans Werend2, Stakenborg Nathalie1, Voytyuk Iryna3, Smidt Inga3, Boeckx Bram4,5, Dierckx de Casterlé Isabelle6, Baekelandt Veerle7, Gonzalez Dominguez Erika1, Mack Matthias8, Depoortere Inge9, De Strooper Bart3, Sprangers Ben4, Himmelreich Uwe10, Soenen Stefaan10, Guilliams Martin11, Vanden Berghe Pieter2, Jones Elizabeth12, Lambrechts Diether5,6, Boeckxstaens Guy1 1Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, University of Leuven, Leuven, Belgium. 2Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, University of Leuven, Leuven, Belgium. 3VIB – KU Leuven Center for Brain and Disease Research, Leuven, Belgium. 4VIB Center for Cancer Biology, Leuven, Belgium. 5Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, Leuven, Belgium. 6Laboratory of Experimental Transplantation, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium. 7Research Group for Neurobiology and Gene Therapy, Department of Neurosciences, University of Leuven, Leuven, Belgium. 8Department of Internal Medicine – Nephrology, University Hospital Regensburg, Regensburg, Germany. 9Gut Peptide Research Lab, Translational -
Self-Renewing Resident Cardiac Macrophages Limit Adverse Remodeling Following Myocardial Infarction
JOURNAL CLUB 3/19/19 SAHIL MAHAJAN ARTICLES https://doi.org/10.1038/s41590-018-0272-2 Corrected: Publisher Correction Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction Sarah A. Dick1,2,11, Jillian A. Macklin 1,2,3,4,11, Sara Nejat 1,11, Abdul Momen1, Xavier Clemente-Casares1, Marwan G. Althagafi1,4, Jinmiao Chen 5,6, Crystal Kantores 1, Siyavash Hosseinzadeh1,4, Laura Aronoff1,4, Anthony Wong 1,7, Rysa Zaman 1,7, Iulia Barbu1,7, Rickvinder Besla1,4, Kory J. Lavine8, Babak Razani8,9, Florent Ginhoux 5,6, Mansoor Husain1,2,3,4,10, Myron I. Cybulsky1,4,10, Clinton S. Robbins1,4,7,10 and Slava Epelman 1,2,3,4,7,10* Macrophages promote both injury and repair after myocardial infarction, but discriminating functions within mixed populations remains challenging. Here we used fate mapping, parabiosis and single-cell transcriptomics to demonstrate that at steady state, TIMD4+LYVE1+MHC-IIloCCR2− resident cardiac macrophages self-renew with negligible blood monocyte input. Monocytes par- tially replaced resident TIMD4–LYVE1–MHC-IIhiCCR2− macrophages and fully replaced TIMD4−LYVE1−MHC-IIhiCCR2+ macro- phages, revealing a hierarchy of monocyte contribution to functionally distinct macrophage subsets. Ischemic injury reduced TIMD4+ and TIMD4– resident macrophage abundance, whereas CCR2+ monocyte-derived macrophages adopted multiple cell fates within infarcted tissue, including those nearly indistinguishable from resident macrophages. Recruited macrophages did not express TIMD4, highlighting the ability of TIMD4 to track a subset of resident macrophages in the absence of fate map- ping. Despite this similarity, inducible depletion of resident macrophages using a Cx3cr1-based system led to impaired cardiac function and promoted adverse remodeling primarily within the peri-infarct zone, revealing a nonredundant, cardioprotective role of resident cardiac macrophages. -
Methylation Epigenetic Landscape of Cpg DNA Defining CD4 T Cell Memory By
The Journal of Immunology Defining CD4 T Cell Memory by the Epigenetic Landscape of CpG DNA Methylation H. Kiyomi Komori, Traver Hart, Sarah A. LaMere, Pamela V. Chew, and Daniel R. Salomon Memory T cells are primed for rapid responses to Ag; however, the molecular mechanisms responsible for priming remain incom- pletely defined. CpG methylation in promoters is an epigenetic modification, which regulates gene transcription. Using targeted bisulfite sequencing, we examined methylation of 2100 genes (56,000 CpGs) mapped by deep sequencing of T cell activation in human naive and memory CD4 T cells. Four hundred sixty-six CpGs (132 genes) displayed differential methylation between naive and memory cells. Twenty-one genes exhibited both differential methylation and gene expression before activation, linking pro- moter DNA methylation states to gene regulation; 6 of 21 genes encode proteins closely studied in T cells, whereas 15 genes represent novel targets for further study. Eighty-four genes demonstrated differential methylation between memory and naive cells that cor- related to differential gene expression following activation, of which 39 exhibited reduced methylation in memory cells coupled with increased gene expression upon activation compared with naive cells. These reveal a class of primed genes more rapidly expressed in memory compared with naive cells and putatively regulated by DNA methylation. These findings define a DNA methylation sig- nature unique to memory CD4 T cells that correlates with activation-induced gene expression. The Journal of Immunology, 2015, 194: 1565–1579. ifferentiation into fast-acting memory cells following Ag have a demethylated IL-4 gene promoter (10), do not express IFN-g, recognition is a central tenet of T cell immunology. -
Innate and Adaptive Immune Functions of Peyer's Patch
Innate and Adaptive Immune Functions of Peyer’s Patch Monocyte-Derived Cells Article Innate and Adaptive Immune Functions of Peyer’s Patch Monocyte-Derived Cells Johnny Bonnardel, Clément da Silva, Sandrine Henri, Samira Tamoutounour, Lionel Chasson, Frederic Montañana-Sanchis, Jean-Pierre Gorvel, Hugues Lelouard To cite this version: Johnny Bonnardel, Clément da Silva, Sandrine Henri, Samira Tamoutounour, Lionel Chasson, et al.. Innate and Adaptive Immune Functions of Peyer’s Patch Monocyte-Derived Cells Article Innate and Adaptive Immune Functions of Peyer’s Patch Monocyte-Derived Cells. Cell Reports, Elsevier Inc, 2015, pp.770-784. 10.1016/j.celrep.2015.03.067. hal-01212685 HAL Id: hal-01212685 https://hal-amu.archives-ouvertes.fr/hal-01212685 Submitted on 7 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Article Innate and Adaptive Immune Functions of Peyer’s Patch Monocyte-Derived Cells Graphical Abstract Authors Johnny Bonnardel, Cle´ ment Da Silva, ..., Jean-Pierre Gorvel, Hugues Lelouard Correspondence [email protected] In Brief Bonnardel et al. provide a comprehensive analysis of the phenotype, distribution, ontogeny, lifespan, function, and transcriptional profile of Peyer’s patch (PP) mononuclear phagocyte system. -
Timd4 Rat Monoclonal Antibody [Clone ID: RMT4-54] Product Data
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for AM60019PU-S Timd4 Rat Monoclonal Antibody [Clone ID: RMT4-54] Product data: Product Type: Primary Antibodies Clone Name: RMT4-54 Applications: FC, IF, IHC Recommended Dilution: Flow cytometry: 1/25-1/200, use 10µl of this suggested working dilution to label 10e6 cells in 100µl. Immunofluorescence. Immunohistochemistry on Paraffin sections. Positive control: Mouse spleen. For functional assays Cat.-No. AM60019LE-N is recommended. Reactivity: Mouse Host: Rat Isotype: IgG2a Clonality: Monoclonal Immunogen: Mouse TIMD4 (amino acids 1-288), coupled with the Fc portion of mouse IgG2a Specificity: Clone RMT4-54 specifically recognises mouse Tim-4. Studies have shown that clone RMT4-54 significantly inhibits the efficient phagocytosis of apoptotic cells by PRMs (peritoneal resident Mac1+ cells), but not PEMs (peritoneal exudate Mac1+ cells) [Nakayama, 2009]. Formulation: PBS containing 0.09% Sodium azide State: Purified State: Liquid purified IgG Concentration: lot specific Purification: Affinity chromatography on Protein G Conjugation: Unconjugated Storage: Store undiluted at 2-8°C for one month or (in aliquots) at -20°C for longer. Avoid repeated freezing and thawing. Stability: Shelf life: one year from despatch. Gene Name: T cell immunoglobulin and mucin domain containing 4 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 Timd4 Rat Monoclonal Antibody [Clone ID: RMT4-54] – AM60019PU-S Database Link: Entrez Gene 276891 Mouse Q6U7R4 Background: TIMD4 / TIM-4 (T-cell immunoglobulin mucin 4), a transmembrane glycoprotein and member of the immunoglobulin superfamily, exclusively expressed by antigen-presenting cells, which acts as the natural ligand of TIM-1, involved in T-cell expansion and cytokine production. -
TIMD4 Rs6882076 SNP Is Associated with Decreased Levels Of
Int. J. Med. Sci. 2019, Vol. 16 864 Ivyspring International Publisher International Journal of Medical Sciences 2019; 16(6): 864-871. doi: 10.7150/ijms.31729 Research Paper TIMD4 rs6882076 SNP Is Associated with Decreased Levels of Triglycerides and the Risk of Coronary Heart Disease and Ischemic Stroke Eksavang Khounphinith1, Rui-Xing Yin1,2,3,, Xiao-Li Cao2,3,4, Feng Huang1,2,3, Jin-Zhen Wu1, Hui Li5 1. Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China. 2. Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, 6 Shuangyong Road, Nanning 530021, Guangxi, China. 3. Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 6 Shuangyong Road, Nanning 530021, Guangxi, China. 4. Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China. 5. Clinical Laboratory of the Affiliated Cancer Hospital, Guangxi Medical University, 71 Hedi Road, Nanning 530021, Guangxi, China. Corresponding author: Rui-Xing Yin; [email protected] © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.11.22; Accepted: 2019.04.03; Published: 2019.06.02 Abstract Background: The T-cell immunoglobulin and mucin domain 4 gene (TIMD4) rs6882076 single nucleotide polymorphism (SNP) has been associated with serum total cholesterol, low-density lipoprotein cholesterol and triglycerides (TG) levels, but the results are inconsistent. -
Functionally Diverse Human T Cells Recognize Non-Microbial Antigens Presented By
RESEARCH ARTICLE Functionally diverse human T cells recognize non-microbial antigens presented by MR1 Marco Lepore1, Artem Kalinichenko1, Salvatore Calogero1, Pavanish Kumar2, Bhairav Paleja2, Mathias Schmaler1, Vipin Narang2, Francesca Zolezzi2, Michael Poidinger2,3, Lucia Mori1,2, Gennaro De Libero1,2* 1Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland; 2Singapore Immunology Network, A*STAR, Singapore, Singapore; 3Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore Abstract MHC class I-related molecule MR1 presents riboflavin- and folate-related metabolites to mucosal-associated invariant T cells, but it is unknown whether MR1 can present alternative antigens to other T cell lineages. In healthy individuals we identified MR1-restricted T cells (named MR1T cells) displaying diverse TCRs and reacting to MR1-expressing cells in the absence of microbial ligands. Analysis of MR1T cell clones revealed specificity for distinct cell-derived antigens and alternative transcriptional strategies for metabolic programming, cell cycle control and functional polarization following antigen stimulation. Phenotypic and functional characterization of MR1T cell clones showed multiple chemokine receptor expression profiles and secretion of diverse effector molecules, suggesting functional heterogeneity. Accordingly, MR1T cells exhibited distinct T helper-like capacities upon MR1-dependent recognition of target cells expressing physiological levels of surface MR1. These data extend the role of -
The Genomic and Clinical Landscape of Fetal Akinesia
© American College of Medical Genetics and Genomics ARTICLE The genomic and clinical landscape of fetal akinesia Matthias Pergande, MSc1,2, Susanne Motameny, PhD3, Özkan Özdemir, PhD1,2, Mona Kreutzer1,2, Haicui Wang, PhD1,2, Hülya-Sevcan Daimagüler, MSc1,2, Kerstin Becker, PhD1,2, Mert Karakaya, MD1,4, Harald Ehrhardt, MD5, Nursel Elcioglu, MD, Prof6,7, Slavica Ostojic, MD8, Cho-Ming Chao, MD, PhD5, Amit Kawalia, PhD3, Özgür Duman, MD, Prof9, Anne Koy, MD2, Andreas Hahn, MD, Prof10, Jens Reimann, MD11, Katharina Schoner, MD12, Anne Schänzer, MD13, Jens H. Westhoff, MD14, Eva Maria Christina Schwaibold, MD15, Mireille Cossee, MD16, Marion Imbert-Bouteille, MSc17, Harald von Pein, MD18, Göknur Haliloglu, MD, Prof19, Haluk Topaloglu, MD, Prof19, Janine Altmüller, MD1,3, Peter Nürnberg, PhD, Prof1,3, Holger Thiele, MD3, Raoul Heller, MD, PhD4,20,21 and Sebahattin Cirak, MD 1,2,21 Purpose: Fetal akinesia has multiple clinical subtypes with over Conclusion: Our analysis indicates that genetic defects leading to 160 gene associations, but the genetic etiology is not yet completely primary skeletal muscle diseases might have been underdiagnosed, understood. especially pathogenic variants in RYR1. We discuss three novel Methods: In this study, 51 patients from 47 unrelated families putative fetal akinesia genes: GCN1, IQSEC3 and RYR3. Of those, were analyzed using next-generation sequencing (NGS) techniques IQSEC3, and RYR3 had been proposed as neuromuscular aiming to decipher the genomic landscape of fetal akinesia (FA). disease–associated genes recently, and our findings endorse them Results: We have identified likely pathogenic gene variants in 37 as FA candidate genes. By combining NGS with deep clinical cases and report 41 novel variants.