Raka Mustaphi Mitra

Total Page:16

File Type:pdf, Size:1020Kb

Raka Mustaphi Mitra RAKA MUSTAPHI MITRA Department of Biology Ph: (507) 222-4120 Carleton College Fax: (507) 222-5757 One North College Street http://apps.carleton.edu/people/rmitra/ Northfield, MN 55057 U.S.A. POSITION 2008-Present Assistant Professor, Biology Department, Carleton College EDUCATION 1996-2003 Stanford University, Stanford, CA Ph.D., Biological Sciences 1992-1996 Massachusetts Institute of Technology, Cambridge, MA S.B., Biology. G.P.A. 4.8 / 5.0 RESEARCH EXPERIENCE 2004-2008 Postdoctoral Fellow, University of Minnesota (Research Advisor: Dr. Jane Glazebrook) Studies of the plant defense response to pathogens of leaves and roots. 2003-2004 Postdoctoral Researcher, Stanford University (Research Advisor: Dr. Sharon Long) Studies of plant symbiotic gene expression and identification of the Medicago truncatula DMI3 gene using transcript-based gene cloning. 1996-2003 Graduate Research, Stanford University (Research Advisor: Dr. Sharon Long) Studies of early plant gene expression and calcium signaling in the Rhizobium-legume symbiosis. 1995-1996 Research Assistant, Massachusetts Institute of Technology (Research Advisor: Dr. Harvey Lodish) Investigation of the role of Rab4 and Rab5 in recycling of the Glut4 glucose transporter in adipocytes. 1994-1995 Research Assistant, Massachusetts Institute of Technology (Research Advisor: Dr. Jonathan King) Studies of the effects of mutant scaffolding proteins on the assembly of bacteriophage P22. 1993-1994 Research Assistant, University of Minnesota (Research Advisor: Dr. Glenn Furnier) RAPD analyses of genetic variation of the Butternut canker fungus Sirococcus clavigignenti-juglandacearum. 1991-1992 Research Assistant, University of Minnesota (Research Advisor: Dr. Glenn Furnier) Isozyme analyses of Eurasian watermilfoil (Myriophyllum spicatum L.) 8/25/14 R. Mitra TEACHING EXPERIENCE Winter 2009 - present Supervisor Undergraduate Biology Research, Carleton College Responsibilities include designing and supervising undergraduate research projects to examine the role of pathogenic effectors of the bacterial pathogen of plants, Ralstonia solanacearum. Total number of students supervised to date: 18. Spring 2009 - present Course Instructor, Carleton College Course: Cell Biology. A mid-level course that examines of the structures and processes that underlie life in prokaryotic and eukaryotic cells. Includes two weekly lab components in which students perform original research investigating the cell biology of plant microbe interactions. Winter 2009 - present Course Instructor, Carleton College Course: Introductory Biology; Energy Flow. An introductory course designed for both majors and non-majors. Explores the flow of energy in biological systems from molecules to ecosystems. Includes a weekly lab component. Fall 2008 – present Course Instructor, Carleton College Course: Microbial Pathology. An upper level course, for juniors and seniors. Goals include teaching students how to critically read and understand primary research papers in the field of microbial pathology. Students learn about the scientific publication process, pathogenesis proteins, biological processes and scientific techniques used to study microbial pathogenesis. Winter 2009 –present Course Advisor, Carleton College Course: Biology Integrative Exercise. A senior capstone project where students investigate a particular biological question. Fall 2006 Course Instructor, University of Minnesota Course: Genetically Modified Plants, the Science and the Controversy Collaborated with two other postdoctoral instructors to design and teach a course for undergraduate and graduate students. Responsibilities include presenting lectures, teaching a lab, facilitating discussion, grading papers and composing exams. Fall 2005, 2006 Guest Lecturer, University of Minnesota Course: Genetics Presented lectures on various topics including Genomics and DNA replication. 2005-Present Supervisor Undergraduate Directed Research Projects, University of Minnesota Responsibilities include designing undergraduate research projects to identify plant genes important for pathogen defense, and advising several undergraduate students. Winter 1999 Teaching Assistant, Stanford University Course: Cell Biology: Molecular Organization Responsibilities included leading a weekly one-hour discussion section, conducting problem solving demonstrations, grading and composing problems for exams, and tutoring individual students. page 2 R. Mitra Spring 1999 Teaching Assistant, Stanford University Course: Cell Biology: Cellular Dynamics Responsibilities included leading a two-hour paper discussion section every other week, meeting with students individually to discuss presentations and grading exams. Winter 1998 Teaching Assistant, Stanford University Course: Biochemistry, Molecular Biology and Cell Biology Responsibilities included leading two one-hour discussion sections per week, preparing handouts, grading exams and tutoring individual students. GRANTS, AWARDS AND FELLOWSHIPS National Science Foundation Biology Division of Integrative Organismal Systems “RUI: The role of Ralstonia solanacearum effector protein Rsp1281 in bacterial wilt disease.” Howard Hughes Medical Institute Predoctoral Fellowship Frances Lou Kallman Award for Graduate Study in Biological Sciences, Stanford University National Institutes of Health Postdoctoral Fellowship Curricular Development Grant, Carleton College Howard Hughes Medical Institute Curricular Project Grant, Carleton College Faculty Development Grant, Carleton College Mellon Fellowship, Carleton College Class of ’49 Fellowship, Carleton College American Society of Plant Biology Travel Award American Society of Cell Biology Faculty Travel Award American Society of Cell Biology Childcare Award PUBLICATIONS Jacobs JM, Milling A, Mitra RM, Hogan CS, Florent Ailloud F, Prior P, Allen C. Ralstonia solanacearum requires PopS, an ancient AvrE-family effector, for virulence and to overcome salicylic acid-mediated defenses during tomato pathogenesis. MBio. 2013 Nov 26;4(6). Wang L, Mitra RM, Hasselmann KD, Sato M, Lenarz-Wyatt L, Cohen JD, Katagiri F, Glazebrook J. The genetic network controlling the Arabidopsis transcriptional response to Pseudomonas syringae pv. maculicola: roles of major regulators and the phytotoxin coronatine. Mol Plant Microbe Interact. 2008 Nov;21(11):1408-20. Middleton P, Jakab J, Penmetsa V, Starker C, Doll J, Kalo P, Prabhu R, Marsh J, Mitra RM, Kerestz A, Dudas B, VandenBosch K, Long SR, Cook D, Kiss G, Oldroyd GED. An ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction. Plant Cell. 2007 Apr; 19(4):1221- 34. Marsh JF, Rakocevic A, Mitra RM, Brocard L, Sun J, Eschstruth A, Long SR, Schultze M, Ratet P, Oldroyd GED. Medicago truncatula NIN is essential for nodule organogenesis induced by autoactive calcium/calmodulin dependent protein kinase. Plant Physiol. 2007 May; 144(1) 324-335. Sato M, Mitra RM, Coller J, Wang D, Spivey NW, Dewdney J, Denoux C, Glazebrook J., Katagiri F. A high performance, small-scale microarray for expression profiling of many samples in Arabidopsis- pathogen studies. Plant J. 2007 Feb; 49 (3) 565-567. Starker CG, Parra-Colmenares AL, Smith L, Mitra RM, Long SR. Nitrogen fixation mutants of Medicago truncatula fail to support plant and bacterial symbiotic gene expression. Plant Physiol. 2006 Feb; 140 (2): 671-680. page 3 R. Mitra Kaló P, Gleason C, Edwards A, Marsh J, Mitra RM, Hirsch S, Jakab J, Sims S, Long SR, Rogers J, Kiss GB, Downie JA, Oldroyd GE. Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science. 2005 Jun 17;308(5729):1786-1789. Mitra RM, Shaw SL, Long SR. Six nonnodulating plant mutants defective for Nod factor-induced transcriptional changes associated with the legume-rhizobia symbiosis. Proc. Natl. Acad. Sci. U.S.A. 2004 Jul 6;101(27):10217-10222. Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA, Oldroyd GE, Long SR. A Ca2+/calmodulin- dependent protein kinase required for symbiotic nodule development: Gene identification by transcript- based cloning. Proc. Natl. Acad. Sci. U.S.A. 2004 Mar 30;101(13):4701-4705. Mitra RM, Long SR. Plant and bacterial symbiotic mutants define three transcriptionally distinct stages in the development of the Medicago truncatula/Sinorhizobium meliloti symbiosis. Plant Physiol. 2004 Feb; 134 (2): 595-604. Engstrom EM, Ehrhardt DW, Mitra RM, Long SR. Pharmacological analysis of Nod factor-induced calcium spiking in Medicago truncatula. Plant Physiol. 2002 Apr; 128(4):1390-1401. Oldroyd GE, Mitra RM, Wais RJ, Long SR. Evidence for structurally specific negative feedback in the Nod factor signal transduction pathway. Plant J. 2001 Oct; 28(2):191-199. Furnier GR, Stoltz AM, Mustaphi RM, Ostry ME. Genetic evidence that butternut canker was recently introduced into North America. Can. J. Bot. 1999 June; 77(6):783-785. Furnier GR, Mustaphi MM. Isozyme variation in Minnesota populations of Eurasian watermilfoil. Aquatic Bot. 1992 Oct; 43(3):305-309. MEETINGS August 2014 2014 American Phytopathological Society, Canadian Phytopathological Society Joint Meeting December 2013 American Society of Cell Biology 2013 Annual Meeting July 2012 Plant Biology 2012 August 2011 Plant Biology 2011 July 2009 14th International Congress on Molecular Plant-Microbe Interactions November 2008 Council on Undergraduate Research Institute: Beginning a Research Program in the Natural Sciences at Predominantly Undergraduate Institutions. November 2008 NSF iPlant collaborative
Recommended publications
  • Department of Biology, Report to the President 2016-2017
    Department of Biology Academic year 2016–2017 was exciting and productive for the Department of Biology. The department is considered one of the best biological science departments in the world. Our superb faculty members are leaders in biological research and education. Some of the news regarding our faculty, research, and educational programs is highlighted below. Faculty Count and Departures During AY2017, the Department of Biology had 56 faculty members: 44 full professors, eight associate professors, and four assistant professors. Research homes are distributed among Building 68, the Broad Institute, the Koch Institute for Integrative Cancer Research, the Picower Institute for Learning and Memory, and the Whitehead Institute for Biomedical Research. In addition to 56 primary faculty members, there were six faculty members with secondary appointments in Biology. These joint faculty members provide important connections to other departments, including Brain and Cognitive Sciences, Chemistry, Biological Engineering, and Civil and Environmental Engineering. We are saddened by the loss of Professor Susan Lindquist, who passed away in October 2016. Hidde Ploegh (Whitehead Institute) moved to Children’s Hospital in January 2017. Professor William (Chip) Quinn (Biology/Brain and Cognitive Sciences) retired in July 2016. Faculty Awards Department of Biology faculty members are widely recognized for their contributions to the field. Among our core faculty are three Nobel Laureates, 30 members of the National Academy of Sciences, 28 members of the American Academy of Arts and Sciences, 14 fellows of the American Association for the Advancement of Science, four recipients of the National Science Foundation National Medal of Science, and 15 Howard Hughes Medical Institute (HHMI) investigators.
    [Show full text]
  • ANNUAL REPORT 2019 1 Contents Director’S Letter 1
    Whitehead Institute ANNUAL REPORT 2019 1 Contents Director’s Letter 1 Chair’s Letter 3 Members & Fellows 4–5 Science 6 Community 44 Philanthropy 56 2 The Changing Face of Discovery For 37 years, Whitehead Institute has demonstrated an ability to drive scientific discovery and to chart paths into new frontiers of knowledge. Its continuing achievements are due, in substan- tial part, to the unique capacities and dedication of Members who joined the Institute in the 1980s and ‘90s — from Founding Members Gerald Fink, Harvey Lodish, Rudolf Jaenisch, and Robert Weinberg to those who followed, including David Bartel, David Sabatini, Hazel Sive, Terry Orr-Weaver, Richard Young, and me. Those long-serving Members continue to do pioneering science and to be committed teachers and mentors. Yet we have begun an inevitable genera- tional transition: In the last two years, Gerry and Terry have closed their labs, and Harvey will do so this coming year. The exigencies of time mean that, increasingly, Whitehead Institute’s ability to maintain its vigorous scientific leadership depends on our next generation of researchers. As I move toward the conclusion of my term as director, I am particularly proud of the seven current Members and the 14 Whitehead Institute Fellows we recruited during the last 16 years. The newest of those stellar researchers joined us in 2019: Whitehead Institute Member Pulin Li and Whitehead Fellow Kipp Weiskopf. Pulin studies how circuits of interacting genes in individu- al cells enable multicellular functions, such as self-organizing into complex tissues, and her research brilliantly combines approaches from synthetic biology, developmental and stem cell biology, biophysics, and bioengineering to study these multicellular behaviors.
    [Show full text]
  • DC Welcomes ASBMB APRIL 28–MAY 2
    ASBMB ANNUAL MEETING PULLOUT GUIDE INSIDE April 2007 DC Welcomes ASBMB APRIL 28–MAY 2 American Society for Biochemistry and Molecular Biology Scientists helping scientists… It costs no more to choose the very best for your custom peptides and antibodies… Ac-C T P R Q I pS F N F K-OH ◆ All peptides are made in our laboratories 1461.640 with the most rigorous QC in the industry – pSFNFK-H3PO4 -98 623.245 We sequence every purified -H3PO4 peptide we manufacture! ◆ PhD scientists with over 70 years of 623.0 626.5 combined experience in Chemistry, Mass 293.141 2 Cell Biology and Immunology 1218.599 1169.510 1347.658 536.784 740.405 809.426 1317.591 246.072 499.227 972.531 400 600 800 1000 1200 1400 Mass ◆ Complete antibody protocols and no hidden charges. Phosphospecific antibody experts! ◆ Custom peptides up to 100 AAs in length and at purities up to >98%. Peptides for epitope mapping as low as $4/AA. ◆ Modifications include phosphorylated amino acids, dye-labeling, cyclic peptides, and peptides with stable isotopes. Experience for yourself why research scientists around the world trust 21st Century Biochemicals for their custom peptides and antibodies! Come speak with our scientists at: Experimental Biology, Washington, DC - Booth 130 Apr. 28 – May 2 ARVO, Association for Research in Vision & Ophthalmology, Ft. Lauderdale, FL - Booth 102 May 6 – 9 The American Association of Immunologists, Miami Beach, FL - Booth 427 May 18 – May 22 www.21stcenturybio.com 33 Locke Drive, Marlboro, MA 01752 Made in the P: 508.303.8222 Toll-free: 877.217.8238 U.S.A.
    [Show full text]
  • Harvey Lodish, Phd Professor Biology and Professor of Bioengineering
    Harvey Lodish, PhD Professor Biology and Professor of Bioengineering Academic Entrepreneurs, New Technologies, and Building a Biotechnology Ecosystem: A Personal History A leader in the field of molecular and cellular biology, Dr. Harvey F. Lodish has isolated and cloned numerous surface membrane proteins that play a role in blood development, cell signaling, glucose transport, and lipid metabolism. He earned his PhD at the Rockefeller University in 1966. A Founding Member of the Whitehead Institute, Dr. Lodish joined the MIT faculty in 1968 and has been a professor of biology since 1976 and professor of biological engineering since 1999. Dr. Lodish is also the lead author of the widely used textbook Molecular Cell Biology. The book has been translated into 14 languages and the ninth edition appeared in January, 2021. He is a Member of the National Academy of Sciences, a Fellow of the American Association for the Advancement of Science, the American Academy of Arts and Sciences, and the American Academy of Microbiology, and an Associate (Foreign) Member of the European Molecular Biology Organization. He received the 2010 Mentoring Award from the American Society of Hematology, the 2016 American Society for Cell Biology WICB Sandra K. Masur Senior Leadership Mentoring Award, the 2016 Pioneer Award from the Diamond Blackfan Anemia Foundation, and the Metcalf Lifetime Achievement Award from the International Society for Experimental Hematology in 2020. Dr. Lodish is a member of the Board of Trustees of Children’s Hospital, Boston, where he was Chair of the Research Committee of the Board of Trustees. From 2007 - 2014 he was Founding Chair of the Scientific Advisory Board of the Massachusetts Life Sciences Center, the group charged with oversight of the state’s 10- year $1 billion investment in the life sciences.
    [Show full text]
  • Fire Departments of Pathology and Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Room L235, Stanford, CA 94305-5324, USA
    GENE SILENCING BY DOUBLE STRANDED RNA Nobel Lecture, December 8, 2006 by Andrew Z. Fire Departments of Pathology and Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Room L235, Stanford, CA 94305-5324, USA. I would like to thank the Nobel Assembly of the Karolinska Institutet for the opportunity to describe some recent work on RNA-triggered gene silencing. First a few disclaimers, however. Telling the full story of gene silencing would be a mammoth enterprise that would take me many years to write and would take you well into the night to read. So we’ll need to abbreviate the story more than a little. Second (and as you will see) we are only in the dawn of our knowledge; so consider the following to be primer... the best we could do as of December 8th, 2006. And third, please understand that the story that I am telling represents the work of several generations of biologists, chemists, and many shades in between. I’m pleased and proud that work from my labo- ratory has contributed to the field, and that this has led to my being chosen as one of the messengers to relay the story in this forum. At the same time, I hope that there will be no confusion of equating our modest contributions with those of the much grander RNAi enterprise. DOUBLE STRANDED RNA AS A BIOLOGICAL ALARM SIGNAL These disclaimers in hand, the story can now start with a biography of the first main character. Double stranded RNA is probably as old (or almost as old) as life on earth.
    [Show full text]
  • June 2007 ASCB Newsletter Member Profile
    ASCB Profile Gerald Rubin You need to be careful about what you wish for Janelia is focused on basic neurobiology and Gerry Rubin has been careful indeed. In and cutting-edge imaging technology and 2002, the Howard Hughes Medical Institute computational analysis needed to understand (HHMI) gave Rubin the scientific equivalent of neuronal circuitry. Completely funded from a magic lantern full of wishes: anything Rubin HHMI’s private coffers, Janelia is divorced from needed to create a breakthrough research insti- the vagaries and prejudices of the public funding tute. Late last year, the world got its first tenta- system. tive look at what Rubin has been wishing for: In designing Janelia, Rubin explains that he Janelia Farm, the new HHMI interdisciplinary tried to draw on the best aspects of places he’s neurobiology and imaging research campus in worked such as the Medical Research Council suburban Northern Virginia. (MRC) Laboratory for Molecular Biology in Janelia represents an initial $500 million Cambridge, England (where Rubin did his investment by HHMI in land, buildings, and Ph.D. work with Sydney Brenner) and the Photo by Paul Fetters Photo by Paul people, and a subsequent, projected annual Cold Spring Harbor Laboratory (CSHL; where Gerald Rubin operating cost of $100 million. The site just Rubin studied and did summer lab internships south of the Potomac River in exploding while an MIT undergraduate). He also was suburban Northern Virginia covers 689 acres; inspired by places that he’d admired from afar, only 60 are being developed currently. The like the famed AT&T Bell Labs in Murray Hill, central Landscape Building, at 317,000 square NJ.
    [Show full text]
  • Lecture Slides
    (J. American Chemical Association, 78, 3458-3459) The Secondary Structure of Complementary RNA E. Peter Geiduschek, John W. Moohr, and Smauel B. Weiss, Proceedings of The National Academy of Sciences, 48, 1078-1086, 1962. R.H. DOI RH, and S. SPIEGELMAN Homology test between the nucleic acid of an RNA virus and the DNA in the host cell. Science 1962 Dec 14 1270-2. MONTAGNIER L, SANDERS FK. REPLICATIVE FORM OF ENCEPHALOMYOCARDITIS VIRUS RIBONUCLEIC ACID. Nature. 1963 Aug 17;199:664-7. (Science 143, 1034-1036, March 6, 1964) WARNER RC, SAMUELS HH, ABBOTT MT, KRAKOW JS. (1963) Ribonucleic acid polymerase of Azotobacter vinelandii, II. Formation of DNA- RNA hybrids with single-stranded DNA as primer. Proc Natl Acad Sci U S A. 49:533-8. Double Stranded RNA as a Specific Biological Effector December 8, 2006 Karolinska Institute, Stockholm, Sweden Viral interference (Interferon) effects in animals M. Hoskins (1935) A protective action of neurotropic against viscerotropic yellow fever virus in Macacus rhesus. American Journal of Tropical Medicine, 15, 675-680 G. Findlay and F. MacCallum (1937) An interference phenomenon in relation to yellow fever and other viruses. J. Path. Bact. 44, 405-424. A. Isaacs and J. Lindenmann (1957) Virus Interference. I. The Interferon Proc. Royal Soc. B 147, 268-273. Proceedings of the National Academy of Sciences, USA, Volume 58, Pages 782-789. 1967 Promoter Make transgenic worms geneX Antisense Transcripts Interference (Development 113:503 [1991]) geneX Promoter Make transgeneic worms geneX SENSE Transcripts Also Interference! (Development 113:503 [1991]) In Vitro Promoter Make RNA in vitro geneX Antisense RNA Inject worm gonad Interference! (Guo and Kemphues, 1995) In Vitro geneX Promoter Make RNA in vitro geneX SENSE RNA Inject worm gonad Also Interference! (Guo and Kemphues, 1995) Craig Mello's RNAi Workshop: 1997 C.
    [Show full text]
  • David Baltimore, 1975 the Rockefeller University
    Rockefeller University Digital Commons @ RU Harvey Society Lectures 1976 David Baltimore, 1975 The Rockefeller University Follow this and additional works at: https://digitalcommons.rockefeller.edu/harvey-lectures Recommended Citation The Rockefeller University, "David Baltimore, 1975" (1976). Harvey Society Lectures. 51. https://digitalcommons.rockefeller.edu/harvey-lectures/51 This Book is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Harvey Society Lectures by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. THE STRATEGY OF RNA VIRUSES* DAVID BALTIMORE Department of Biology and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts I. INTRODUCTION N this presentation I shall contrast three types of animal viruses that I in their extracellular state appear very similar, but as replicating viruses are very different.The three types of viruses are: picornaviruses, typified by poliovirus; rhabdoviruses, typified by vesicular stomatitis virus (VSV), and RNA tumor viruses. The virions of all three of these viruses contain a single strand of RNA which is 2.5 to_ 4 X 106 daltons in length (on the order of 10 kilobases). While these viruses _might appear superficially similar because of the similarity of their genome structure, there are enormous differences in the modes of nucleic acid synthesis used by the viruses, the organiza­ tion of their messenger RNA (mRNA), the types of polymerases in­ volved in replicating them, and the way in which they utilize the hospitality of the host cell. Although many experimental observations have contributed to our understanding of these viruses, generally a single experiment provided the clue that signaled the unique features of a given virus.
    [Show full text]
  • Akhilesh Pandey, M.D., Ph.D. Associate Professor Institute Of
    BIOGRAPHICAL SKETCH NAME POSITION TITLE Akhilesh Pandey, M.D., Ph.D. Associate Professor Institute of Genetic Medicine, Biological Chemistry, Oncology and Pathology EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, and include postdoctoral training.) INSTITUTION AND LOCATION DEGREE YEAR(s) FIELD OF STUDY (if applicable) Armed Forces Medical College, Pune, India M.D. 1988 Medicine University of Michigan, Ann Arbor, MI Ph.D. 1995 Pathology PROFESSIONAL EXPERIENCE Associate Professor 2006-Present McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Oncology and Pathology, Johns Hopkins University, Baltimore, MD Assistant Professor 2002-2006 McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Oncology and Pathology, Johns Hopkins University, Baltimore, MD Instructor 1998-2002 Department of Pathology, Harvard Medical School, Boston, MA Visiting Scientist 1999-2002 Laboratory of Matthias Mann, Center for Experimental Bioinformatics, University of Southern Denmark, Odense, Denmark Postdoctoral Fellow 1996-1999 Laboratory of Harvey Lodish, Whitehead Institute for Biomedical Research, Cambridge, MA Postdoctoral Fellow 1995-1996 Laboratory of Vishva Dixit, University of Michigan, Ann Arbor, MI Residency 1996-1998 Department of Pathology, Brigham and Women’s Hospital, Harvard (Clinical Pathology) Medical School, Boston, MA Internship 1989-1990 Kilpauk Medical College, Madras, India PROFESSIONAL SOCIETIES American Society for Biochemistry
    [Show full text]
  • [Val12]HRAS Downregulates GLUT2 in I6 Cells of Transgenic Mice
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 5744-5748, July 1992 Cell Biology [Val12]HRAS downregulates GLUT2 in I6 cells of transgenic mice without affecting glucose homeostasis MICHAEL TAL*t, Y-JIAN Wut, MARGARITA LEISER§¶, MANJU SURANA§H, HARVEY LODISH*II NORMAN FLEISCHER§¶, GORDON WEIRS, AND SHIMON EFRAT$I,**,tt *Whitehead Institute for Biomedical Research, Cambridge, MA 02142; *Joslin Diabetes Center, Boston, MA 02215; Departments of §Medicine and **Molecular Pharmacology, and 1Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, NY 10461; and I1Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 Contributed by Harvey Lodish, February 26, 1992 ABSTRACT Glucose-induced insulin release from pancre- transgenic lineages, the disease develops predominantly in atic I cells depends on the (-cell metabolism of glucose, which male mice 5-8 months old and is characterized by the generates intracellular signals for secretion. The (3-cell glucose appearance of large cavities in the islets of Langerhans, transporter isotype GLUT2 and the glucose phosphorylating hypoinsulinemia, and hyperglycemia, without an autoim- enzyme glucokinase have both been implicated in coupling mune response. Most transgenic females do not manifest this insulin secretion to extracellular glucose levels. Here we present phenotype (11, 12). Ovariectomy and hormone replacement evidence that a pronounced decrease in P-cell GLUT2 has no reveal a protective effect of estrogen, whereas androgens immediate effect on glucose homeostasis. Analysis oftransgenic appear not to be involved in the increased male susceptibility mice overexpressing human [Val'2]HRAS oncoprotein under (12). Ultrastructural abnormalities, including engorged rough control of the insulin promoter reveals a great reduction in endoplasmic reticulum and accumulation of clear vesicles in plasma-membrane GLUT2 levels.
    [Show full text]
  • Biotechnology Process Engineering Center
    Biotechnology Process Engineering Center The Biotechnology Process Engineering Center (BPEC), as a National Science Foundation (NSF) engineering research center, is a multidisciplinary body with faculty members from the MIT departments of Biology, Chemistry, and Chemical Engineering, the Biological Engineering Division, and the Whitehead Institute for Biomedical Research, along with the University of Toronto Department of Chemical Engineering, Boston Children’s Hospital, and the Brown University School of Medicine Liver Center. Goals, Objectives, and Priorities BPEC remains committed to its core mission of fusing engineering with molecular cell biology by emphasizing strategic problem solving in interdisciplinary research, education, and biotechnology industry interaction. The center’s vision over the past six years has been to define the engineering/biology partnership needed to create a “therapeutic gene” biotechnology industry, a vision modeled on its past success in influencing the ongoing “therapeutic protein” biotechnology industry. This vision is now evolving to a more comprehensive strategy for molecular and cellular therapeutics. Key components of achieving this goal are innovations in research, the graduating of highly prepared students into important roles at biotech companies, and our active exchanges with key partners in the industry. BPEC’s strategic plan focuses on two major engineered‐system objectives to achieve successful transgene delivery and expression to blood and tissue cells. The first is an ex vivo approach employing genetically engineered stem cells to lay a basis for replacement therapies of injured tissues. Examples of treatment potential include degenerative diseases such as diabetes and the repair of tissues injured through trauma or stress, as in spinal cord injuries. The second is an in vivo approach employing targeted viral or synthetic vectors.
    [Show full text]
  • A Natomy of Taste
    248 Years Strong PS& Columbia Spring/SUmmer 2015 Medicine Columbia University College of Physicians & Surgeons DARK CHOCOLATE BiTTER POTATO CHIPS SALTY of Tas my te to a n JELLY BEANS A SWeeT LEMONS & LIMES SOUr Tomatoes UmAmi • FROM THE DEAN ColumbiaMedicine Chairman, editorial Board Thomas Q. Morris, MD Dear Readers, Alumni Professor Emeritus of Clinical Medicine editor itelson Bonita Eaton Enochs F Excellence and success are two terms we proudly use to ike describe our programs and the individuals and teams that staff Science editor / M Susan Conova them. Neuroscience is one of many fields at Columbia in which imes T the two terms intersect, and we measure our excellence and Contributing Writers success in discoveries, grants, published papers, national and Alla Katsnelson Joseph Neighbor anhattan international recognition of our faculty, and reputation. M Sharon Tregaskis We also increasingly use the term partnership to describe our research, patient care, and community programs, and that term also applies to Alumni news editor Marianne Wolff, MD Columbia neuroscience, a field that has become increasingly interdisciplinary. The P&S faculty who are members of the Mortimer B. Zuckerman Mind Brain Behavior Institute Alumni Writer Peter Wortsman will move to the Jerome L. Greene Science Center when it opens in the next few years on Columbia’s new Manhattanville campus. The move of many of our neuroscience labs Design and Art Direction to Manhattanville will enable Morningside and CUMC colleagues to work in partnership Eson Chan and in close proximity. It also will free up space on our campus that will enable us to editorial Board undertake the largest faculty recruitment effort in nearly 20 years, as much impact as Alex Bandin’16 Stephen Nicholas, MD building an entire new research building.
    [Show full text]