Apical Membrane Expression of Distinct Sulfated Glycans Represents a Novel Marker of Cholangiolocellular Carcinoma

Total Page:16

File Type:pdf, Size:1020Kb

Apical Membrane Expression of Distinct Sulfated Glycans Represents a Novel Marker of Cholangiolocellular Carcinoma Laboratory Investigation (2016) 96, 1246–1255 © 2016 USCAP, Inc All rights reserved 0023-6837/16 Apical membrane expression of distinct sulfated glycans represents a novel marker of cholangiolocellular carcinoma Hitomi Hoshino1, Makoto Ohta2, Makoto Ito3, Kenji Uchimura4, Yasuhiro Sakai5, Takeshi Uehara6, Shulin Low1, Mana Fukushima5 and Motohiro Kobayashi1 Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver neoplasm, followed by hepatocellular carcinoma. ICC can be further subclassified as (i) perihilar and (ii) peripheral types, the latter histologically resembling small-sized intrahepatic bile ducts, such as interlobular bile ducts, cholangioles/ductules and the canals of Hering. Cholangiolocellular carcinoma (CoCC), now classified by the World Health Organization as a subtype of combined hepatocellular-cholangiocarcinoma, is currently regarded as a subtype of peripheral-type ICC. The present study was undertaken to determine whether sulfated glycans recognized by the MECA-79 monoclonal antibody could serve as a CoCC marker. Using immunohistochemistry, we show that MECA-79 sulfated glycans are preferentially expressed at the apical membrane of cholangiocytes found in small-sized intrahepatic bile ducts in normal liver and in canalicular structures formed in CoCC. We also report that apical membrane MECA-79 sulfated glycan expression colocalizes with that of mucin 1 (MUC1) core proteins. We also present immunoblotting of Chinese hamster ovary cells overexpressing FLAG- tagged MUC1 to show that MUC1 serves as a MECA-79 scaffold. Furthermore, we report that SSP-25 human ICC cells overexpressing N-acetylglucosamine-6-O-sulfotransferase 2 (GlcNAc6ST-2), but not GlcNAc6ST-1, exhibit membrane expression of MECA-79 sulfated glycans, suggesting that GlcNAc6ST-2 catalyzes MECA-79 epitope biosynthesis in cholangiocytes. Moreover, both wild-type and GlcNAc6ST-1 knockout mice exhibit apical membrane MECA-79 expression in small-sized intrahepatic bile ducts, namely interlobular bile ducts, whereas MECA-79 expression was completely absent in comparable tissues from GlcNAc6ST-1 and GlcNAc6ST-2 double knockout mice. These data collectively indicate that apical membrane localization of MUC1 proteins decorated with GlcNAc6ST-2-dependent MECA-79 sulfated glycans may mark cholangiocytes with cholangiolar/ductular differentiation and could serve as a useful CoCC marker. Laboratory Investigation (2016) 96, 1246–1255; doi:10.1038/labinvest.2016.104; published online 17 October 2016 Intrahepatic cholangiocarcinoma (ICC) is the second most type originates in peripheral small-sized intrahepatic bile common primary liver neoplasm, followed by hepatocellular ducts, such as interlobular bile ducts, cholangioles/ductules, carcinoma (HCC).1,2 ICC can be further subclassified into (i) and the canals of Hering,8 which are lined with non-mucous- perihilar type (also called large bile duct type) and (ii) producing cuboidal cholangiocytes.1,2 peripheral type (also called small bile duct type or Cholangiolocellular carcinoma (CoCC) (also called bile cholangiolar type),2–6 and both subtypes are thought to arise ductular carcinoma3), classified as cholangiolocellular type of from topologically different intrahepatic bile ducts.5 As combined hepatocellular-cholangiocarcinoma with stem cell named, perihilar type emerges from perihilar large-sized features in the latest (4th) edition of the World Health intrahepatic bile ducts, such as segmental and septal bile Organization (WHO) classification,9 was first described by ducts, which are lined with mucous-producing tall cylindrical Steiner and Higginson in 1959.10 For over a half century since cholangiocytes (biliary epithelial cells),7 whereas peripheral then, CoCC has been categorized as a special subtype of 1Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan; 2Department of Pathology, Fukui Red Cross Hospital, Fukui, Japan; 3Department of Pathology and Laboratory Medicine, Kariya Toyota General Hospital, Kariya, Japan; 4Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; 5Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Japan and 6Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan Correspondence: Professor M Kobayashi, MD, PhD, Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui 910-1193, Japan. E-mail: [email protected] Received 8 March 2016; revised 25 August 2016; accepted 30 August 2016 1246 Laboratory Investigation | Volume 96 December 2016 | www.laboratoryinvestigation.org Apical sulfated glycan expression in CoCC H Hoshino et al peripheral-type ICC.5,6,11 Histologically, CoCC is described as Previously, we demonstrated that HEV-like vessels induced well-differentiated adenocarcinoma forming anastomosed in type 1 autoimmune pancreatitis were positively immuno- antler-like glands with edematous fine fibrous stroma, stained by MECA-79 monoclonal antibody.33 In that study, resembling a ductular reaction seen in several acute and we unexpectedly discovered a sizable fraction of interlobular chronic liver diseases, including massive hepatic necrosis.10–12 pancreatic ducts that were also MECA-79 positive.33 Thus, we CoCC is thought to originate in the peripherally distributed concluded that the biliary system, which is connected to the biliary ductular system, including cholangioles/ductules pancreatic duct system to form the pancreaticobiliary system,7 and the canals of Hering,8 where hepatic progenitor cells is also decorated with MECA-79 sulfated glycans. It remained (HPCs) are located.5,11,12 As HPCs can differentiate into unknown whether MUC1 was the scaffold protein for those either hepatocytes or cholangiocytes,11 they are thought to be glycans. the origin of combined hepatocellular-cholangiocarcinoma. In the present study, we demonstrate that MECA-79 However, the histogenesis of CoCC and combined sulfated glycans are preferentially expressed in apical hepatocellular-cholangiocarcinoma remains controversial, membranes of small-sized intrahepatic bile ducts as well as and definite conclusions relevant to diagnostic criteria for on canalicular structures in CoCC. Moreover, apical mem- these diseases have not yet been reached. brane MECA-79 positivity colocalized with MUC1 core Several molecules have been proposed as CoCC markers, proteins. These findings suggest that apical membrane including cytokeratin 19,12,13 neural cell adhesion molecule localization of MUC1 protein decorated with MECA-79 1,14 N-cadherin,1 and mucin 1 (MUC1).7,15,16 Among them, sulfated glycans may be a distinct feature of cholangiocytes MUC1, also known as epithelial membrane antigen (EMA), is with cholangiolar/ductular differentiation and serve as a generally thought to be most useful to distinguish CoCC from CoCC marker. perihilar-type ICC: CoCC shows an apical membrane MUC1 staining pattern, whereas MUC1 staining is diffuse and MATERIALS AND METHODS cytoplasmic in perihilar-type ICC.7,15,16 Human Tissue Samples Transmembrane MUC1 protein is present in the apical In the present study, the diagnosis of CoCC was made when membrane of glandular epithelial cells in numerous organs cases of peripheral-type ICC (in a broad sense) fulfilled all and tissues, where it functions primarily in lubrication and four criteria as follows: (i) well-differentiated adenocar- cell protection.17,18 MUC1 is translated as a single polypeptide cinoma forming small monotonous and/or anastomosing chain that undergoes autoproteolytic cleavage to form two glands, (ii) which are composed of cuboidal non-mucous- subunits that interact non-covalently.19 The large N-terminal producing neoplastic cholangiocytes, (iii) with fine fibrous subunit consists of a long extracellular domain, and the small stroma, and (iv) luminal surface of canalicular structures were C-terminal subunit contains a short extracellular domain, a positively immunostained by MUC1. Formalin-fixed, transmembrane region and a cytoplasmic tail.20 The larger paraffin-embedded tissue blocks of CoCC liver tissue subunit harbors a serine/threonine-rich region with a highly (n = 20; 6 males and 14 females; age range, 48–85 years; polymorphic sequence motif termed the variable number of median, 71 years) were retrieved from the pathological tandem repeats (VNTR), which is often extensively O- archives of Shinshu University Hospital and its affiliated glycosylated with a battery of Lewis blood group-related hospitals. Liver tissue blocks with peripheral-type ICC carbohydrate antigens, such as sialyl Lewis A (also known as (n = 26; 15 males and 11 females; age range, 28–85 years; CA19-9) and sialyl Lewis X.17,21,22 median, 70 years), perihilar-type ICC (n = 25; 18 males and 7 A sulfated form of sialyl Lewis X, specifically 6-sulfo sialyl females; age range, 54–85 years; median, 65 years) and HCC Lewis X, is displayed on high endothelial venules (HEVs) in (n = 25; 24 males and 1 female; age range, 44–85 years; secondary lymphoid organs such as lymph nodes, tonsils and median, 68 years) were also retrieved as controls. Detailed Peyer’s patches, and functions in physiological recirculation clinicopathological information, including background liver of lymphocytes from the bloodstream into lymphoid organs, a diseases, of these patients is listed in Supplementary Table 1. process termed lymphocyte 'homing.'23 Although absent Analysis of human
Recommended publications
  • Expression of the Hematopoietic Stem Cell Antigen CD34 on Blood and Bone Marrow Monoclonal Plasma Cells from Patients with Multiple Myeloma
    Bone Marrow Transplantation, (1997) 19, 553–556 1997 Stockton Press All rights reserved 0268–3369/97 $12.00 Expression of the hematopoietic stem cell antigen CD34 on blood and bone marrow monoclonal plasma cells from patients with multiple myeloma T Kimlinger1 and TE Witzig2 1Department of Laboratory Medicine and 2Division of Internal Medicine and Hematology, Mayo Clinic and Mayo Foundation, Rochester, MN, USA Summary: led to strategies to deplete the tumor cells from the harvest product prior to reinfusion of the stem cells. Monoclonal plasma cells (CD38+CD45−/dim) are typi- One of the current attempts at purifying the harvest pro- cally present in the blood of patients with active mye- duct uses antibody to the CD34 antigen to positively select loma and can contaminate stem cell harvests. This has and enrich hematopoietic stem cells and in the process led to strategies that select CD34+ cells for use in auto- purge the stem cell product of tumor cells and T cells.11–13 logous stem cell transplantation with the goal of The CD34 antigen identifies a lymphohematopoietic stem decreasing tumor cell contamination. The aim of this cell, is present on 1–5% of adult bone marrow cells, and study was to learn if the CD34 antigen is expressed on is expressed on early B cells. The characteristics of this monoclonal plasma cells in the blood or marrow of important antigen and its clinical relevance have recently patients with multiple myeloma. We used three-color been reviewed.14 CD34+ hematopoietic cells from blood or flow cytometry (surface CD38;CD45 and cytoplasmic marrow can reconstitute hematopoiesis after high-dose kappa or lambda) to identify monoclonal plasma cells therapy programs.15 The number of CD34+ cells reinfused in the blood (n = 24) and marrow (n = 37) from patients predicts the time to engraftment.16,17 with plasma cell proliferative disorders.
    [Show full text]
  • MUC1 Is a Potential Target for the Treatment of Acute Myeloid Leukemia Stem Cells
    Published OnlineFirst July 18, 2013; DOI: 10.1158/0008-5472.CAN-13-0677 Cancer Tumor and Stem Cell Biology Research MUC1 Is a Potential Target for the Treatment of Acute Myeloid Leukemia Stem Cells Dina Stroopinsky1, Jacalyn Rosenblatt1, Keisuke Ito1, Heidi Mills1, Li Yin2, Hasan Rajabi2, Baldev Vasir2, Turner Kufe1, Katarina Luptakova1, Jon Arnason1, Caterina Nardella1, James D. Levine1, Robin M. Joyce1, Ilene Galinsky2, Yoram Reiter3, Richard M. Stone2, Pier Paolo Pandolfi1, Donald Kufe2, and David Avigan1 Abstract Acute myeloid leukemia (AML) is a malignancy of stem cells with an unlimited capacity for self-renewal. MUC1 is a secreted, oncogenic mucin that is expressed aberrantly in AML blasts, but its potential uses to target AML þ À stem cells have not been explored. Here, we report that MUC1 is highly expressed on AML CD34 /lineage / À CD38 cells as compared with their normal stem cell counterparts. MUC1 expression was not restricted to AML þ À CD34 populations as similar results were obtained with leukemic cells from patients with CD34 disease. Engraftment of AML stem cell populations that highly express MUC1 (MUC1high) led to development of leukemia in NOD-SCID IL2Rgammanull (NSG) immunodeficient mice. In contrast, MUC1low cell populations established normal hematopoiesis in the NSG model. Functional blockade of the oncogenic MUC1-C subunit with the peptide inhibitor GO-203 depleted established AML in vivo, but did not affect engraftment of normal hematopoietic cells. Our results establish that MUC1 is highly expressed in AML stem cells and they define the MUC1-C subunit as a valid target for their therapeutic eradication.
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • The Role of CD40/CD40 Ligand Interactions in Bone Marrow Granulopoiesis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Review Article TheScientificWorldJOURNAL (2011) 11, 2011–2019 ISSN 1537-744X; doi:10.1100/2011/671453 The Role of CD40/CD40 Ligand Interactions in Bone Marrow Granulopoiesis Irene Mavroudi1, 2 and Helen A. Papadaki1 1Department of Hematology, University of Crete School of Medicine, P.O. Box 1352, 71110 Heraklion, Crete, Greece 2Graduate Program “Molecular Basis of Human Disease”, University of Crete School of Medicine, 71003 Heraklion, Greece Received 29 August 2011; Accepted 5 October 2011 Academic Editor: Marco Antonio Cassatella The CD40 ligand (CD40L) and CD40 are two molecules belonging to the TNF/TNF receptor super- family, and their role in adaptive immune system has widely been explored. However, the wide range of expression of these molecules on hematopoietic as well as nonhematopoietic cells has revealed multiple functions of the CD40/CD40L interactions on different cell types and processes such as granulopoiesis. CD40 triggering on stromal cells has been documented to enhance the expression of granulopoiesis growth factors such as granulocyte-colony-stimulating factor (G- CSF) and granulocyte/monocyte-colony-stimulating factor (GM-CSF), and upon disruption of the CD40/CD40L-signaling pathway, as in the case of X-linked hyperimmunoglobulin M (IgM) syn- drome (XHIGM), it can lead to neutropenia. In chronic idiopathic neutropenia (CIN) of adults, however, under the influence of an inflammatory microenvironment, CD40L plays a role in granu- locytic progenitor cell depletion, providing thus a pathogenetic cause of CIN. KEYWORDS: CD40L, CD40, granulopoiesis, G-CSF, GM-CSF, Flt3-L, neutropenia, apoptosis, tumor necrosis factor family, and granulocytic progenitor cells Correspondence should be addressed to Helen A.
    [Show full text]
  • Precursors in Human Bone Marrow Identifies Autonomously
    A Feeder-Free Differentiation System Identifies Autonomously Proliferating B Cell Precursors in Human Bone Marrow This information is current as Helene Kraus, Sandra Kaiser, Konrad Aumann, Peter of September 30, 2021. Bönelt, Ulrich Salzer, Dietmar Vestweber, Miriam Erlacher, Mirjam Kunze, Meike Burger, Kathrin Pieper, Heiko Sic, Antonius Rolink, Hermann Eibel and Marta Rizzi J Immunol 2014; 192:1044-1054; Prepublished online 30 December 2013; Downloaded from doi: 10.4049/jimmunol.1301815 http://www.jimmunol.org/content/192/3/1044 Supplementary http://www.jimmunol.org/content/suppl/2013/12/30/jimmunol.130181 http://www.jimmunol.org/ Material 5.DCSupplemental References This article cites 55 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/192/3/1044.full#ref-list-1 Why The JI? Submit online. by guest on September 30, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852
    [Show full text]
  • Liver • Gallbladder
    NORMAL BODY Microscopic Anatomy! Accessory Glands of the GI Tract,! lecture 2! ! • Liver • Gallbladder John Klingensmith [email protected] Objectives! By the end of this lecture, students will be able to: ! • trace the flow of blood and bile within the liver • describe the structure of the liver in regard to its functions • indicate the major cell types of the liver and their functions • distinguish the microanatomy of exocrine and endocrine function by the hepatocytes • explain the functional organization of the gallbladder at the cellular level (Lecture plan: overview of structure and function, then increasing resolution of microanatomy and cellular function) Liver and Gallbladder Liver October is “Liver Awareness Month” -- http://www.liverfoundation.org Liver • Encapsulated by CT sheath and mesothelium • Lobes largely composed of hepatocytes in parenchyma • Receives blood from small intestine and general circulation Major functions of the liver • Production and secretion of digestive fluids to small intestine (exocrine) • Production of plasma proteins and lipoproteins (endocrine) • Storage and control of blood glucose • Detoxification of absorbed compounds • Source of embyronic hematopoiesis The liver lobule • Functional unit of the parenchyma • Delimited by CT septa, invisible in humans (pig is shown) • Surrounds the central vein • Bordered by portal tracts Central vein, muralia and sinusoids Parenchyma: Muralia and sinusoids • Hepatocyte basolateral membrane faces sinusoidal lumen • Bile canaliculi occur between adjacent hepatocytes • Cords anastomose Vascularization of the liver • Receives veinous blood from small intestine via portal vein • Receives freshly oxygenated blood from hepatic artery • Discharges blood into vena cava via hepatic vein Blood flow in the liver lobes • flows in via the portal vein and hepatic artery • oozes through the liver lobules to central veins • flows out via the hepatic vein Portal Tract! (aka portal triad) • Portal venule • Hepatic arteriole • Bile duct • Lymph vessel • Nerves • Connective tissue Central vein! (a.k.a.
    [Show full text]
  • Isolation of Small Polarized Bile Duct Units A
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 6527-6531, July 1995 Physiology Isolation of small polarized bile duct units A. MENNONE*, D. ALVAROt, W. CHO*, AND J. L. BOYER*t *Department of Medicine and Liver Center, Yale University School of Medicine, P.O. Box 208019, 333 Cedar Street, New Haven, CT (06520-8019; and tViale Dell'Universita' 37, 00185 Rome, Italy Communicated by Edward Adelberg, New Haven, CT, February 27, 1995 ABSTRACT Fragments of small interlobular bile ducts BB salt, forskolin, dideoxyforskolin, and N6,2'-O-dibutyryl- averaging 20 ,um in diameter can be isolated from rat liver. adenosine 3' :5 '-cyclic monophosphate (dibutyryl cAMP; These isolated bile duct units form luminal spaces that are Bt2cAMP) were purchased from Sigma. 2,7-Bis(carboxy- impermeant to dextran-40 and expand in size when cultured methyl)-5-(and-6)-carboxyfluorescein, acetomethyl ester in 10 ,uM forskolin for 24-48 hr. Secretion is Cl- and HCO3 (BCECF-AM), and H2DIDS were obtained from Molecular dependent and is stimulated by forskolin > dibutyryl cAMP Probes. Matrigel was from Collaborative Research, collage- > secretin but not by dideoxyforskolin, as assessed by video nase D was from Boehringer Mannheim Biochemicals, and imaging techniques. Secretin stimulates Cl-/HCOi exchange Pronase was from Calbiochem. Liebowitz-15 (L-15), minimum activity, and intraluminal pH increases after forskolin ad- essential medium (MEM), a-MEM, L-glutamine, gentamicin, ministration. These studies establish that small polarized and fetal calf serum were from GIBCO. N-(,y-1-Glutamyl)-4- physiologically intact interlobular bile ducts can be isolated methoxy-2-naphthylamide was obtained from Polyscience.
    [Show full text]
  • Cell Activation Subsets of Human Dendritic Cells Tunes NK
    Distinctive Lack of CD48 Expression in Subsets of Human Dendritic Cells Tunes NK Cell Activation This information is current as Barbara Morandi, Roberta Costa, Michela Falco, Silvia of September 29, 2021. Parolini, Andrea De Maria, Giovanni Ratto, Maria Cristina Mingari, Giovanni Melioli, Alessandro Moretta and Guido Ferlazzo J Immunol 2005; 175:3690-3697; ; doi: 10.4049/jimmunol.175.6.3690 Downloaded from http://www.jimmunol.org/content/175/6/3690 References This article cites 46 articles, 32 of which you can access for free at: http://www.jimmunol.org/content/175/6/3690.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 29, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Distinctive Lack of CD48 Expression in Subsets of Human Dendritic Cells Tunes NK Cell Activation1 Barbara Morandi,* Roberta Costa,† Michela Falco,‡ Silvia Parolini,§ Andrea De Maria,¶ Giovanni Ratto,ʈ Maria Cristina Mingari,*¶ Giovanni Melioli,‡ Alessandro Moretta,¶# and Guido Ferlazzo*2** CD48 is a glycosyl phosphatidylinositol anchor protein known to be virtually expressed by all human leukocytes.
    [Show full text]
  • And Tumor Cells in Kaposi's Sarcoma
    Americani Joirnal ofPathology, Vol. 148, No. 5, May 1996 Copyfight X) American Societyfor Investigative Pathology CD40 Antigen Is Expressed by Endothelial Cells and Tumor Cells in Kaposi's Sarcoma Johannes Pammer,* Andreas Plettenberg,t of CD40 by Kaposi sarcoma tumor ceUs might Wolfgang Weninger,t Barbara Diller,t play an important role in thepathogenesis ofthis Michael Mildner,t Aumaid Uthman,t neoplasm. (AmJPathol 1996, 148:1387-1396) Wolfgang lssing,$ Michael Sturzl,§ and Erwin Tschachlert From the Division ofImmunology,t Allergy, and Infectious The CD40 antigen is a 45- to 50-kd transmembrane Diseases, Department ofDermatology, and Institute of glycoprotein that belongs to the nerve growth factor Clinical Pathology,* University of Vienna Medical School, receptor (NGFR)/tumor necrosis factor receptor Vienna, Austria, and the Department of Otolaryngology,t (TNFR)-superfamily.1 2 Members of this superfamily Grosshadern Clinic, Ludwig Maximilians University, are intimately involved in the regulation of cell sur- Munich, and the Max Planck Institute ofBiochemistry,j vival and include the T cell activation antigen CD27, Martinsnied, Germany the lymphocyte activation antigen CD30, the low af- finity NGFR, the FAS antigen CD95, the TNFRs CD12012 and the lymphotoxin-f3 receptor.3 CD40 was initially described on B cells and certain carci- The CD40 antigen is a member of the tumor ne- nomas.4'5 It has since become clear that it is also crosis factor receptor/nerve growth factor re- expressed on dendritic cells,6 monocytes,7 thymus ceptor superfamily
    [Show full text]
  • Extracellular Matrix and Α5β1 Integrin Signaling Control the Maintenance
    www.nature.com/scientificreports OPEN Extracellular matrix and α5β1 integrin signaling control the maintenance of bone formation Received: 05 December 2016 Accepted: 07 February 2017 capacity by human adipose-derived Published: 14 March 2017 stromal cells Nunzia Di Maggio1,*, Elisa Martella2,3,*, Agne Frismantiene4, Therese J. Resink4, Simone Schreiner1, Enrico Lucarelli2,3, Claude Jaquiery5, Dirk J. Schaefer6, Ivan Martin1 & Arnaud Scherberich1 Stromal vascular fraction (SVF) cells of human adipose tissue have the capacity to generate osteogenic grafts with intrinsic vasculogenic properties. However, adipose-derived stromal/stem cells (ASC), even after minimal monolayer expansion, display poor osteogenic capacity in vivo. We investigated whether ASC bone-forming capacity may be maintained by culture within a self-produced extracellular matrix (ECM) that recapitulates the native environment. SVF cells expanded without passaging up to 28 days (Unpass-ASC) deposited a fibronectin-rich extracellular matrix and displayed greater clonogenicity and differentiation potentialin vitro compared to ASC expanded only for 6 days (P0-ASC) or for 28 days with regular passaging (Pass-ASC). When implanted subcutaneously, Unpass-ASC produced bone tissue similarly to SVF cells, in contrast to P0- and Pass-ASC, which mainly formed fibrous tissue. Interestingly, clonogenic progenitors from native SVF and Unpass-ASC expressed low levels of the fibronectin receptorα 5 integrin (CD49e), which was instead upregulated in P0- and Pass-ASC. Mechanistically, induced activation of α5β1 integrin in Unpass-ASC led to a significant loss of bone formation in vivo. This study shows that ECM and regulation of α5β1-integrin signaling preserve ASC progenitor properties, including bone tissue-forming capacity, during in vitro expansion.
    [Show full text]
  • A Molecular Signature of Dormancy in CD34+CD38- Acute Myeloid Leukaemia Cells
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 67), pp: 111405-111418 Research Paper A molecular signature of dormancy in CD34+CD38- acute myeloid leukaemia cells Mazin Gh. Al-Asadi1,2, Grace Brindle1, Marcos Castellanos3, Sean T. May3, Ken I. Mills4, Nigel H. Russell1,5, Claire H. Seedhouse1 and Monica Pallis5 1University of Nottingham, School of Medicine, Academic Haematology, Nottingham, UK 2University of Basrah, College of Medicine, Basrah, Iraq 3University of Nottingham, School of Biosciences, Nottingham, UK 4Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, UK 5Clinical Haematology, Nottingham University Hospitals, Nottingham, UK Correspondence to: Claire H. Seedhouse, email: [email protected] Keywords: AML; dormancy; gene expression profiling Received: September 19, 2017 Accepted: November 14, 2017 Published: November 30, 2017 Copyright: Al-Asadi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Dormant leukaemia initiating cells in the bone marrow niche are a crucial therapeutic target for total eradication of acute myeloid leukaemia. To study this cellular subset we created and validated an in vitro model employing the cell line TF- 1a, treated with Transforming Growth Factor β1 (TGFβ1) and a mammalian target of rapamycin inhibitor. The treated cells showed decreases in total RNA, Ki-67 and CD71, increased aldehyde dehydrogenase activity, forkhead box 03A (FOX03A) nuclear translocation and growth inhibition, with no evidence of apoptosis or differentiation. Using human genome gene expression profiling we identified a signature enriched for genes involved in adhesion, stemness/inhibition of differentiation and tumour suppression as well as canonical cell cycle regulation.
    [Show full text]
  • Arteriohepatic Dysplasia
    ANNALS OF CLINICAL AND LABORATORY SCIENCE, Vol. 14, No. 6 Copyright © 1984, Institute for Clinical Science, Inc. Arteriohepatic Dysplasia (Alagille’s Syndrome): A Common Cause of ConJugated Hyperbilirubinemia ELLEN KAHN, M.D.* and FREDRIC DAUM, M.D.f *Department of Laboratories and Department of Pediatrics, f Division of Pediatric Gastroenterology, Department of Pediatrics, North Shore University Hospital, Manhasset, NY 11030 Cornell University Medical College, New York, NY 10021 ABSTRACT Syndromatic paucity of interlobular bile ducts is a common cause of conjugated hyperbilirubinemia in children. The clinical presentation is not always obvious. Therefore, the liver biopsy may be a useful diagnostic tool in the definition of this entity. The hepatic and biliary morphology of five children with arteriohepatic dysplasia (Alagille’s syndrome) is described. Prior to diagnosis, four un­ derwent Kasai procedures after intraoperative cholangiograms failed to demonstrate patency of the extrahepatic bile ducts. In three patients, a focal proximal hypoplasia of the common hepatic duct was demonstrated. Hypoplasia of the gallbladder occurred in two patients. Hepatic features of seQuential liver biopsies obtained in the five patient^ were divided into early and late changes. From birth to four months of age, the pathology consisted of cholestasis and bile duct destruction. After four months of age, there was persistent cholestasis, paucity of interlobular bile ducts and portal fibrosis. The etiology of arteriohepatic dysplasia is unclear. The main pathoge­ nic mechanisms are discussed. It is felt that the syndromatic duct paucity represents an acquired primary ductal defect resulting from a genetically determined immune response to as yet undefined agent or agents. Introduction and may not be obvious in the newborn.
    [Show full text]