Schedule VIII Species for Risk of Invasiveness
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Research Funding (Total $2,552,481) $15,000 2019
CURRICULUM VITAE TENNESSEE AQUARIUM CONSERVATION INSTITUTE 175 BAYLOR SCHOOL RD CHATTANOOGA, TN 37405 RESEARCH FUNDING (TOTAL $2,552,481) $15,000 2019. Global Wildlife Conservation. Rediscovering the critically endangered Syr-Darya Shovelnose Sturgeon. $10,000 2019. Tennessee Wildlife Resources Agency. Propagation of the Common Logperch as a host for endangered mussel larvae. $8,420 2019. Tennessee Wildlife Resources Agency. Monitoring for the Laurel Dace. $4,417 2019. Tennessee Wildlife Resources Agency. Examining interactions between Laurel Dace (Chrosomus saylori) and sunfish $12,670 2019. Trout Unlimited. Southern Appalachian Brook Trout propagation for reintroduction to Shell Creek. $106,851 2019. Private Donation. Microplastic accumulation in fishes of the southeast. $1,471. 2019. AZFA-Clark Waldram Conservation Grant. Mayfly propagation for captive propagation programs. $20,000. 2019. Tennessee Valley Authority. Assessment of genetic diversity within Blotchside Logperch. $25,000. 2019. Riverview Foundation. Launching Hidden Rivers in the Southeast. $11,170. 2018. Trout Unlimited. Propagation of Southern Appalachian Brook Trout for Supplemental Reintroduction. $1,471. 2018. AZFA Clark Waldram Conservation Grant. Climate Change Impacts on Headwater Stream Vertebrates in Southeastern United States $1,000. 2018. Hamilton County Health Department. Step 1 Teaching Garden Grants for Sequoyah School Garden. $41,000. 2018. Riverview Foundation. River Teachers: Workshops for Educators. $1,000. 2018. Tennessee Valley Authority. Youth Freshwater Summit $20,000. 2017. Tennessee Valley Authority. Lake Sturgeon Propagation. $7,500 2017. Trout Unlimited. Brook Trout Propagation. $24,783. 2017. Tennessee Wildlife Resource Agency. Assessment of Percina macrocephala and Etheostoma cinereum populations within the Duck River Basin. $35,000. 2017. U.S. Fish and Wildlife Service. Status surveys for conservation status of Ashy (Etheostoma cinereum) and Redlips (Etheostoma maydeni) Darters. -
12 REVISED J Caveorum Profile
Document SPRFMO-III-SWG-12 Information describing Jasus caveorum fisheries relating to the South Pacific Regional Fisheries Management Organisation REVISED 20 February 2007 DRAFT 1. Overview.......................................................................................................................2 2. Taxonomy.....................................................................................................................3 2.1 Phylum..................................................................................................................3 2.2 Class.....................................................................................................................3 2.3 Order.....................................................................................................................3 2.4 Family...................................................................................................................3 2.5 Genus and species.................................................................................................3 2.6 Scientific synonyms...............................................................................................3 2.7 Common names.....................................................................................................3 2.8 Molecular (DNA or biochemical) bar coding.........................................................3 3. Species characteristics....................................................................................................3 3.1 Global distribution -
Habitat Suitability and Detection Probability of Longnose Darter (Percina Nasuta) in Oklahoma
HABITAT SUITABILITY AND DETECTION PROBABILITY OF LONGNOSE DARTER (PERCINA NASUTA) IN OKLAHOMA By COLT TAYLOR HOLLEY Bachelor of Science in Natural Resource Ecology and Management Oklahoma State University Stillwater, OK 2016 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 2018 HABITAT SUITABILITY AND DETECTION PROBABILITY OF LONGNOSE DARTER (PERCINA NASUTA) IN OKLAHOMA Thesis Approved: Dr. James M. Long Thesis Advisor Dr. Shannon Brewer Dr. Monica Papeş ii ACKNOWLEDGEMENTS I am truly thankful for the support of my advisor, Dr. Jim Long, throughout my time at Oklahoma State University. His motivation and confidence in me was invaluable. I also thank my committee members Dr. Shannon Brewer and Dr. Mona Papeş for their contributions to my education and for their comments that improved this thesis. I thank the Oklahoma Department of Wildlife Conservation (ODWC) for providing the funding for this project and the Oklahoma Cooperative Fish and Wildlife Research Unit (OKCFWRU) for their logistical support. I thank Tommy Hall, James Mier, Bill Rogers, Dick Rogers, and Mr. and Mrs. Terry Scott for allowing me to access Lee Creek from their properties. Much of my research could not have been accomplished without them. My field technicians Josh, Matt, and Erick made each field season enjoyable and I could not have done it without their help. The camaraderie of my friends and fellow graduate students made my time in Stillwater feel like home. I consider Dr. Andrew Taylor to be a mentor, fishing partner, and one of my closest friends. -
Information on the NCWRC's Scientific Council of Fishes Rare
A Summary of the 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes in North Carolina Submitted by Bryn H. Tracy North Carolina Division of Water Resources North Carolina Department of Environment and Natural Resources Raleigh, NC On behalf of the NCWRC’s Scientific Council of Fishes November 01, 2014 Bigeye Jumprock, Scartomyzon (Moxostoma) ariommum, State Threatened Photograph by Noel Burkhead and Robert Jenkins, courtesy of the Virginia Division of Game and Inland Fisheries and the Southeastern Fishes Council (http://www.sefishescouncil.org/). Table of Contents Page Introduction......................................................................................................................................... 3 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes In North Carolina ........... 4 Summaries from the 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes in North Carolina .......................................................................................................................... 12 Recent Activities of NCWRC’s Scientific Council of Fishes .................................................. 13 North Carolina’s Imperiled Fish Fauna, Part I, Ohio Lamprey .............................................. 14 North Carolina’s Imperiled Fish Fauna, Part II, “Atlantic” Highfin Carpsucker ...................... 17 North Carolina’s Imperiled Fish Fauna, Part III, Tennessee Darter ...................................... 20 North Carolina’s Imperiled Fish Fauna, Part -
Endangered Species
FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S. -
Part IV: Scoring Criteria for the Index of Biotic Integrity to Monitor
Part IV: Scoring Criteria for the Index of Biotic Integrity to Monitor Fish Communities in Wadeable Streams in the Coosa and Tennessee Drainage Basins of the Ridge and Valley Ecoregion of Georgia Georgia Department of Natural Resources Wildlife Resources Division Fisheries Management Section 2020 Table of Contents Introduction………………………………………………………………… ……... Pg. 1 Map of Ridge and Valley Ecoregion………………………………..……............... Pg. 3 Table 1. State Listed Fish in the Ridge and Valley Ecoregion……………………. Pg. 4 Table 2. IBI Metrics and Scoring Criteria………………………………………….Pg. 5 References………………………………………………….. ………………………Pg. 7 Appendix 1…………………………………………………………………. ………Pg. 8 Coosa Basin Group (ACT) MSR Graphs..………………………………….Pg. 9 Tennessee Basin Group (TEN) MSR Graphs……………………………….Pg. 17 Ridge and Valley Ecoregion Fish List………………………………………Pg. 25 i Introduction The Ridge and Valley ecoregion is one of the six Level III ecoregions found in Georgia (Part 1, Figure 1). It is drained by two major river basins, the Coosa and the Tennessee, in the northwestern corner of Georgia. The Ridge and Valley ecoregion covers nearly 3,000 square miles (United States Census Bureau 2000) and includes all or portions of 10 counties (Figure 1), bordering the Piedmont ecoregion to the south and the Blue Ridge ecoregion to the east. A small portion of the Southwestern Appalachians ecoregion is located in the upper northwestern corner of the Ridge and Valley ecoregion. The biotic index developed by the GAWRD is based on Level III ecoregion delineations (Griffith et al. 2001). The metrics and scoring criteria adapted to the Ridge and Valley ecoregion were developed from biomonitoring samples collected in the two major river basins that drain the Ridge and Valley ecoregion, the Coosa (ACT) and the Tennessee (TEN). -
Draft Environmental Assessment for Transmission System
Document Type: EA-Administrative Record Index Field: Draft Environmental Assessment Project Name: FY22 & FY23 Transmission System Vegetation Management Project Number: 2020-22 TRANSMISSION SYSTEM ROUTINE PERIODIC VEGETATION MANAGEMENT FISCAL YEARS 2022 AND 2023 DRAFT ENVIRONMENTAL ASSESSMENT Prepared by: TENNESSEE VALLEY AUTHORITY Chattanooga, Tennessee July 2021 To request further information, contact: Anita E. Masters NEPA Program Tennessee Valley Authority 1101 Market St., BR2C Chattanooga, Tennessee 37402 E-mail: [email protected] This page intentionally left blank Contents Table of Contents CHAPTER 1 – PURPOSE AND NEED FOR ACTION ......................................................................... 1 1.2 Introduction and Background ................................................................................................... 1 1.2.1 TVA’s Transmission System .............................................................................................. 1 1.2.2 The Need for Transmission System Reliability .................................................................. 2 1.2.3 TVA’s Vegetation Management Program .......................................................................... 2 1.2.4 Vegetation Management Practices ................................................................................... 5 1.2.5 Emphasis on Integrated Vegetation Management ............................................................ 7 1.2.6 Selection of Vegetation Control Methods ......................................................................... -
Delving Deeper Critical Challenges for 21St Century Deep-Sea Research
EUROPEAN MARINE BOARD Delving Deeper Critical challenges for 21st century deep-sea research Position Paper 22 Wandelaarkaai 7 I 8400 Ostend I Belgium Tel.: +32(0)59 34 01 63 I Fax: +32(0)59 34 01 65 E-mail: [email protected] www.marineboard.eu www.marineboard.eu European Marine Board The Marine Board provides a pan-European platform for its member organizations to develop common priorities, to advance marine research, and to bridge the gap between science and policy in order to meet future marine science challenges and opportunities. The Marine Board was established in 1995 to facilitate enhanced cooperation between European marine science organizations towards the development of a common vision on the research priorities and strategies for marine science in Europe. Members are either major national marine or oceanographic institutes, research funding agencies, or national consortia of universities with a strong marine research focus. In 2015, the Marine Board represents 36 Member Organizations from 19 countries. The Board provides the essential components for transferring knowledge for leadership in marine research in Europe. Adopting a strategic role, the Marine Board serves its member organizations by providing a forum within which marine research policy advice to national agencies and to the European Commission is developed, with the objective of promoting the establishment of the European marine Research Area. www.marineboard.eu European Marine Board Member Organizations UNIVERSITÉS MARINES Irish Marine Universities National Research Council of Italy Consortium MASTS Delving Deeper: Critical challenges for 21st century deep-sea research European Marine Board Position Paper 22 This position paper is based on the activities of the European Marine Board Working Group Deep-Sea Research (WG Deep Sea) Coordinating author and WG Chair Alex D. -
Molecular Systematics of Western North American Cyprinids (Cypriniformes: Cyprinidae)
Zootaxa 3586: 281–303 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:0EFA9728-D4BB-467E-A0E0-0DA89E7E30AD Molecular systematics of western North American cyprinids (Cypriniformes: Cyprinidae) SUSANA SCHÖNHUTH 1, DENNIS K. SHIOZAWA 2, THOMAS E. DOWLING 3 & RICHARD L. MAYDEN 1 1 Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO 63103, USA. E-mail S.S: [email protected] ; E-mail RLM: [email protected] 2 Department of Biology and Curator of Fishes, Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602, USA. E-mail: [email protected] 3 School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA. E-mail: [email protected] Abstract The phylogenetic or evolutionary relationships of species of Cypriniformes, as well as their classification, is in a era of flux. For the first time ever, the Order, and constituent Families are being examined for relationships within a phylogenetic context. Relevant findings as to sister-group relationships are largely being inferred from analyses of both mitochondrial and nuclear DNA sequences. Like the vast majority of Cypriniformes, due to an overall lack of any phylogenetic investigation of these fishes since Hennig’s transformation of the discipline, changes in hypotheses of relationships and a natural classification of the species should not be of surprise to anyone. Basically, for most taxa no properly supported phylogenetic hypothesis has ever been done; and this includes relationships with reasonable taxon and character sampling of even families and subfamilies. -
Endangered Species Act Section 7 Consultation Final Programmatic
Endangered Species Act Section 7 Consultation Final Programmatic Biological Opinion and Conference Opinion on the United States Department of the Interior Office of Surface Mining Reclamation and Enforcement’s Surface Mining Control and Reclamation Act Title V Regulatory Program U.S. Fish and Wildlife Service Ecological Services Program Division of Environmental Review Falls Church, Virginia October 16, 2020 Table of Contents 1 Introduction .......................................................................................................................3 2 Consultation History .........................................................................................................4 3 Background .......................................................................................................................5 4 Description of the Action ...................................................................................................7 The Mining Process .............................................................................................................. 8 4.1.1 Exploration ........................................................................................................................ 8 4.1.2 Erosion and Sedimentation Controls .................................................................................. 9 4.1.3 Clearing and Grubbing ....................................................................................................... 9 4.1.4 Excavation of Overburden and Coal ................................................................................ -
America's Top
America’s Top 40: A Call to Action for the Nation’s Most Imperiled Species A Report from WildEarth Guardians By Nicole Rosmarino, PhD April 2009 MISSION STATEMENT WildEarth Guardians protects and restores the wildlife, wild places and wild rivers of the American West. Inquiries about this report and WildEarth Guardians’ work can be made directly to: Nicole Rosmarino, PhD WildEarth Guardians 1536 Wynkoop St., Suite 301 Denver, CO 80202 303-573-4898 [email protected] Photos: Front cover (left column, top to bottom): crimson Hawaiian damselfly (Hawaii Biological Survey/Bishop Museum); Lanai tree snail (William Mull 1976, provided by University of Hawaii, Hawaii Biodiversity & Mapping Project); Cyanea calycina (J.K. Obata, provided by University of Hawaii); (middle column, top to bottom): Texas golden glade cress (Center for Plant Conservation/Mercer Arboretum and Botanic Gardens); Cyanea kuhihewa (Smithsonian Institute, Department of Botany, David H. Lorence); large-flowered Balsamo (Maya LeGrande, provided by University of Hawaii); Phyllostegia floribunda (C.H. Lamoureux, provided by University of Hawaii); (right column, top to bottom): chucky madtom (Conservation Fisheries, Inc.); jack bean (M. LeGrande, provided by University of Hawaii); Akikiki or Kauai creeper (National Biological Information Infrastructure/Pacific Basin Information Node); Nesiotes Megalagrion damselfly (Hawaii Biological Survey/Bishop Museum); Akoko (M. LeGrande, provided by University of Hawaii); Back cover, Papala (Jay Tutchton). ©WildEarth Guardians. All rights reserved. America’s Top 40 Executive Summary The U.S. Fish and Wildlife Service (Service) keeps a list of species called its “Top 40,” which are the most imperiled candidates for Endangered Species Act (ESA) listing in the U.S. -
PHYLOGENY and ZOOGEOGRAPHY of the SUPERFAMILY COBITOIDEA (CYPRINOIDEI, Title CYPRINIFORMES)
PHYLOGENY AND ZOOGEOGRAPHY OF THE SUPERFAMILY COBITOIDEA (CYPRINOIDEI, Title CYPRINIFORMES) Author(s) SAWADA, Yukio Citation MEMOIRS OF THE FACULTY OF FISHERIES HOKKAIDO UNIVERSITY, 28(2), 65-223 Issue Date 1982-03 Doc URL http://hdl.handle.net/2115/21871 Type bulletin (article) File Information 28(2)_P65-223.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP PHYLOGENY AND ZOOGEOGRAPHY OF THE SUPERFAMILY COBITOIDEA (CYPRINOIDEI, CYPRINIFORMES) By Yukio SAWADA Laboratory of Marine Zoology, Faculty of Fisheries, Bokkaido University Contents page I. Introduction .......................................................... 65 II. Materials and Methods ............... • • . • . • . • • . • . 67 m. Acknowledgements...................................................... 70 IV. Methodology ....................................•....•.........•••.... 71 1. Systematic methodology . • • . • • . • • • . 71 1) The determinlttion of polarity in the morphocline . • . 72 2) The elimination of convergence and parallelism from phylogeny ........ 76 2. Zoogeographical methodology . 76 V. Comparative Osteology and Discussion 1. Cranium.............................................................. 78 2. Mandibular arch ...................................................... 101 3. Hyoid arch .......................................................... 108 4. Branchial apparatus ...................................•..••......••.. 113 5. Suspensorium.......................................................... 120 6. Pectoral