D Phase II Report

Total Page:16

File Type:pdf, Size:1020Kb

D Phase II Report PHASE II REPORT Venera-D: Expanding Our Horizon of Terrestrial Planet Climate and Geology Through the Comprehensive Exploration of Venus REPORT OF THE VENERA-D JOINT SCIENCE DEFINITION TEAM JANUARY 31, 2019 Venera-D: Expanding Our Horizon of Terrestrial Planet Climate and Geology Through the Comprehensive Exploration of Venus Phase II Final Report Report of the Venera-D Joint Science Definition Team January 31, 2019 Venera-D Phase II Final Report iii Acknowledgments The Venera-D Joint Science Definition Team (VDJSDT) is deeply grateful to: Jim Green (National Aeronautics and Space Administration (NASA)) and Lev Zelenyi (Institut Kosmicheskih Issledovanyi ((Space Research Institute) IKI) for creating the VDJSDT; David Senske (NASA Jet Propulsion Laboratory (JPL)) and Lori Glaze (NASA) for serving as past U.S. Co-Chairs of the JSDT; Larry Esposito and Rob Landis for lending their support to the JSDT endeavor; Justin Tilman, Elena Mole, and Shannon Ewan for making it easy for the U.S. JSDT members to meet face-to-face with the Russian JSDT members; Rafat Ansari (NASA Glenn Research Center (GRC)) for technical support; Tamara Gugkova, Alexadner Kosov, Irina Kovanleko, and Sergey Shuvalov (IKI) for helping to prepare the report and conducting studies on spacecraft orbit; and Linda Nero, Lorie Passe. and Tom Lavelle (Alcyon Technical Services Joint Venture (ATS-JV) at NASA GRC) for editing this report in record time. Thank you for all of your patience, help, and support in completing this Phase II report. “The blue distance, the mysterious Heavens, the example of birds and insects flying everywhere —are always beckoning Humanity to rise into the air.” --Konstantin Tsiolkovsky “We tend to hear much more about the splendors returned than the ships that brought them or the shipwrights… These spacecraft, their designers, builders, navigators and controllers are examples of what science and engineering, set free for well-defined peaceful purposes, can accomplish.” --Carl Sagan Venera-D Phase II Final Report iv Contents Summary ....................................................................................................................................................... 1 1 Executive Summary—Motivation for the Venera-D Mission: Understanding Venus as a System Through Time ............................................................................................................................ 3 2 Summary of Phase I and Workshop Updates ......................................................................................... 9 2.1 Introduction .................................................................................................................................. 9 2.2 Venera-D Mission Concept and Science Priorities ....................................................................... 9 2.2.1 Mission Elements .............................................................................................................. 9 2.2.2 Prioritized Overarching Science Goals ........................................................................... 10 2.3 Venera-D Joint Science Definition Team (JSDT) ...................................................................... 14 3 Science Investigation Targets ............................................................................................................... 18 3.1 Updated Review of Venera-D Atmospheric Science Goals and Objectives and Traceability ... 18 3.1.1 What We Know About the Venus Atmosphere and Open Questions ............................. 18 3.1.2 Measurements Needed to Understand the Dynamics, Structure, and Composition of the Venus Atmosphere and Magnetosphere................................................................ 36 3.2 Updates to Venera-D Surface Science Goals and Objectives ..................................................... 38 3.2.1 Venus Surface Geology ................................................................................................... 38 3.2.2 Venus Geochemistry ....................................................................................................... 54 3.2.3 Venus Interior and Seismology ....................................................................................... 59 3.3 Traceability ................................................................................................................................. 60 3.4 Science Enhancements and Enablements From Augmentations ................................................ 67 3.5 Venera-D Science Relative to Ongoing and Potential Future Missions ..................................... 67 4 Mission Architecture ............................................................................................................................ 69 4.1 General Summary ....................................................................................................................... 69 4.1.1 The Baseline Venera-D Architecture .............................................................................. 69 4.1.2 Orbiter Design ................................................................................................................. 76 4.1.3 Main Lander Design ........................................................................................................ 79 4.1.4 Long-Lived In-Situ Solar System Explorer (LISSE): Small Surface Stations ................ 82 4.2 Mission Level ............................................................................................................................. 86 4.2.1 Concept of Operations (CONOPS) ................................................................................. 86 4.2.2 Communications ............................................................................................................. 89 4.2.3 Orbital Mechanics ........................................................................................................... 90 4.2.4 Ground Support ............................................................................................................... 96 4.2.5 Hardware Development, Integration, and Testing .......................................................... 96 5 Ground Support and Communication Links ......................................................................................... 98 6 Top-Level Technology Assessment and Considerations for Baseline Mission ................................... 99 6.1 Major Technology Demonstrations/Targets ............................................................................... 99 7 Supporting Laboratory Studies ........................................................................................................... 108 7.1 Baseline Mission Needs ............................................................................................................ 108 7.2 Other Potential Mission Component (Augmentation) Needs ................................................... 108 8 Potential Contributions to the Baseline Venera-D (Trade Space and Scientific Priority Order) ................................................................................................................................................. 109 8.1 Introduction and Overview ....................................................................................................... 109 8.2 Aerial Platform (AP) ................................................................................................................ 109 8.2.1 NASA Aerial Platforms (APs) Study Summary ........................................................... 112 Venera-D Phase II Final Report v 8.2.2 Insights Regarding the Venera-D Mass Allocations Relative to the NASA-Based Aerial Platform (AP) Study ........................................................................................... 116 8.2.3 Altitude and Local Solar Time (LST) Access Summary .............................................. 117 8.2.4 Summary of Development Requirements for the Seven NASA-Studied Vehicles ....... 118 8.2.5 Risk Versus Cost Assessments from the NASA Aerial Platform (AP) Study .............. 120 8.2.6 Recommendations Relative to the Venera-D Timeline and Priorities .......................... 120 8.3 Seismic and Atmospheric Exploration of Venus (SAEVe) ...................................................... 120 8.3.1 Seismic and Atmospheric Exploration of Venus (SAEVe) Key Parameters ................ 121 8.3.2 Seismic and Atmospheric Exploration of Venus (SAEVe) Science Objectives ........... 122 8.3.3 Mission Scenario and Requirements for Orbiter ........................................................... 122 8.3.4 Seismic and Atmospheric Exploration of Venus (SAEVe) Accommodation Flexibility ...................................................................................................................... 123 8.3.5 Seismic and Atmospheric Exploration of Venus (SAEVe) Technology Readiness ..... 124 8.4 Secondary Small Satellite ......................................................................................................... 124 8.4.1 Science Motivations and Objectives ............................................................................. 124 8.4.2 Orbit Options and Insertion Requirements .................................................................... 127 8.4.3 Additional Advantages of Small Satellites Around Lagrange Points 1 and 2 (L1 and L2) ................................................................................................................... 129 9 Assessment of Risk Structure
Recommended publications
  • Copyrighted Material
    Index Abulfeda crater chain (Moon), 97 Aphrodite Terra (Venus), 142, 143, 144, 145, 146 Acheron Fossae (Mars), 165 Apohele asteroids, 353–354 Achilles asteroids, 351 Apollinaris Patera (Mars), 168 achondrite meteorites, 360 Apollo asteroids, 346, 353, 354, 361, 371 Acidalia Planitia (Mars), 164 Apollo program, 86, 96, 97, 101, 102, 108–109, 110, 361 Adams, John Couch, 298 Apollo 8, 96 Adonis, 371 Apollo 11, 94, 110 Adrastea, 238, 241 Apollo 12, 96, 110 Aegaeon, 263 Apollo 14, 93, 110 Africa, 63, 73, 143 Apollo 15, 100, 103, 104, 110 Akatsuki spacecraft (see Venus Climate Orbiter) Apollo 16, 59, 96, 102, 103, 110 Akna Montes (Venus), 142 Apollo 17, 95, 99, 100, 102, 103, 110 Alabama, 62 Apollodorus crater (Mercury), 127 Alba Patera (Mars), 167 Apollo Lunar Surface Experiments Package (ALSEP), 110 Aldrin, Edwin (Buzz), 94 Apophis, 354, 355 Alexandria, 69 Appalachian mountains (Earth), 74, 270 Alfvén, Hannes, 35 Aqua, 56 Alfvén waves, 35–36, 43, 49 Arabia Terra (Mars), 177, 191, 200 Algeria, 358 arachnoids (see Venus) ALH 84001, 201, 204–205 Archimedes crater (Moon), 93, 106 Allan Hills, 109, 201 Arctic, 62, 67, 84, 186, 229 Allende meteorite, 359, 360 Arden Corona (Miranda), 291 Allen Telescope Array, 409 Arecibo Observatory, 114, 144, 341, 379, 380, 408, 409 Alpha Regio (Venus), 144, 148, 149 Ares Vallis (Mars), 179, 180, 199 Alphonsus crater (Moon), 99, 102 Argentina, 408 Alps (Moon), 93 Argyre Basin (Mars), 161, 162, 163, 166, 186 Amalthea, 236–237, 238, 239, 241 Ariadaeus Rille (Moon), 100, 102 Amazonis Planitia (Mars), 161 COPYRIGHTED
    [Show full text]
  • Transit of Venus Presentation
    http://sunearthday.nasa.gov/2012/transit/webcast.php Venus visible Venus with the unaided eye: "morning star" or the Earth "evening star. • Similar to Earth: – diameter: 12,103 km – 0.95 Earth’s – mass 0.89 of Earth's – few craters -- young surface – densities, chemical compositions are similar • rotation unusually slow (Venus day = 243 Earth days -- longer than Venus' year) • rotation retrograde • periods of Venus' rotation and of its orbit are synchronized -- always same face toward Earth when the two planets are at their closest approach • greenhouse effect -- surface temperature hot enough to melt lead M ikhail Lomonosov, june 5, 1761 discovered, during a transit, that V enus has an atmosphere The atmosphere is is composed mostly of carbon dioxide. There are several layers of clouds, many kilometers thick, composed of sulfuric acid. Mariner 10 Image of Venus V enera 13 Venus’ orbit is inclined (by 3.39 degrees) relative to the ecliptic If in the same plane we would have 5 transits in 8 years Venus: 13 years , Earth: 8 years Each time Earth completes 1.6 orbits, Venus catches up to it after 2.6 of its orbits Progress of the 2004 Transit of Venus pictured from NASA's Soho solar observatory. Credit: NASA Ascending (A) or Duration since last transit Date of transit Descending (D) node (years and months) 6 December 1631 A 4 December 1639 A 8 yrs 6 June 1761 D 121 yrs 6 months 3 June 1769 D 8 yrs 9 December 1874 A 105 yrs 6 months 6 December 1882 A 8 yrs 8 June 2004 D 121 yrs 6 months 5 June 2012 D 8 yrs 11 December 2117 A 105 yrs 6 months 8 December 2125 A 8 yrs In 6000 years 81 transits only Venus’ Role in History Copernican System vs Ptolemaic System http://astro.unl.edu/classaction/animations/renaissance/venusphases.html Venus’ Role in History Size of the Solar System - Revealed! • Kepler predicted the transit of December 1631 (though not observed!) and 120 year cycle.
    [Show full text]
  • Round 3 Michael Etzkorn • Brad Fischer • Clare Keenan • Mike Laudermith • Lauren Onel Noah Prince • Jacob Simmons • Kristin Strey • Tyler Vaughan
    2017 SCOP MS 8 Round 3 Michael Etzkorn • Brad Fischer • Clare Keenan • Mike Laudermith • Lauren Onel Noah Prince • Jacob Simmons • Kristin Strey • Tyler Vaughan Tossups (1) This astronomical body, which was called Hesperus when it appeared as the Evening Star, has surface features called Maxwell Montes, Lakshmi Planum, and Ishtar Terra that are obscured by a permanent cover of (*) sulfuric acid clouds. A 96% carbon dioxide atmosphere led to a runaway greenhouse effect on, for ten points, what second planet in the Solar System? ANSWER: Venus (2) A holder of this title controversially pushed his people away from polytheism in favor of a solar god worshiped at Amarna. Lord Carnavon funded Howard Carter’s 1922 expedition to discover the burial grounds of one of these people at (*) Luxor, and found a sarcophagus containing a solid gold funerary mask and mummified remains. For ten points, name this title given to Akenhaten, King Tut, and other ancient Egyptian rulers. ANSWER: Egyptian pharaohs (3) A composer from this country wrote about the unlucky servant Ninetta in The Thieving Magpie, and included a “cavalry charge” galop in his (*) William Tell overture. For ten points, name this home country of Gioachino Rossini as well as Giacomo Puccini, who set his opera Tosca in Rome. ANSWER: Italy (accept Italia; accept Italian Republic or Repubblica italiana) (4) The Rydberg formula inspired one model of these objects, and the first sub-parts of these objects were detected by a deflection of cathode rays observed by JJ Thomson. A (*) gold foil experiment determined that these things possess a dense central mass, disproving their “plum pudding” model.
    [Show full text]
  • Google Cloud Platform Integration
    Solidatus FACTSHEET Google Cloud Platform Integration The Solidatus Google Cloud Platform (GCP) integration suite helps to discover data structures and lineage in GCP and automatically create and maintain Solidatus models describing these assets when they are added to GCP and when they are changed. As of January 2019, the GCP integration supports the following scenarios: • Through the Solidatus UI: – Load BigQuery dataset schemas as Solidatus objects on-demand. • Automatically using a Solidatus Agent: – Detect new BigQuery schemas and add to a Solidatus model. – Detect changes to BigQuery schemas and update a Solidatus model. – Detect new files in Google Cloud Storage (GCS) and add to a Solidatus model. – Automatically detect changes to files in GCS and update a Solidatus model. • Automatically at build time: – Extract structure and lineage from a Google Cloud Dataflow and create or update a Solidatus model. FEATURES BigQuery Loader Apache Beam (GCP Dataflow) Lineage A user can import a BigQuery table definition, directly Mapper from Google, as an object into a Solidatus model. A developer can visualise their Apache Beam job’s The import supports both nested and flat structures, pipeline in a Solidatus model. The model helps both and also includes meta data about the table and developers and analysts to see that data from sources dataset. Objects created via the BigQuery Loader is correctly mapped through transforms to their sinks, can be easily updated by a right-clicking on an providing a data lineage model of the pipeline. object in Solidatus. Updating models using this Generating the models can be ad-hoc (on-demand by feature provides the ability to visualise differences in the developer) or built into a CI/CD process.
    [Show full text]
  • Google's Mission
    & Big Data & Rocket Fuel Dr Raj Subramani, HSBC Reza Rokni, Google Cloud, Solutions Architect Adrian Poole, Google Cloud, Google’s Mission Organize the world’s information and make it universally accessible and useful Eight cloud products with ONE BILLION Users Increasing Marginal Cost of Change $ Traditional Architectures Prohibitively Expensive change Marginal cost of 18 years of Google R&D / Investment Google Cloud Native Architectures (GCP) Increasing complexity of systems and processes Containers at Google Number of running jobs Enabled Google to grow our fleet over 10x faster than we grew our ops team Core Ops Team 2004 2016 4 Google’s innovation in data Millwheel F1 Spanner TensorFlow MapReduce Dremel Flume GFS Bigtable Colossus Megastore Pub/Sub Dataflow 2002 2004 2006 2008 2010 2012 2013 2016 Proprietary + Confidential5 Google’s innovation in data Dataflow Spanner NoSQL Spanner Cloud ML Dataproc BigQuery Dataflow GCS Bigtable GCS Datastore Pub/Sub Dataflow 2002 2004 2006 2008 2010 2012 2013 2016 Proprietary + Confidential6 Now available on Google Cloud Platform Compute Storage & Databases App Engine Container Compute Storage Bigtable Spanner Cloud SQL Datastore Engine Engine Big Data Machine Learning BigQuery Pub/Sub Dataflow Dataproc Datalab Vision API Machine Speech API Translate API Learning Lesson of the last 10 years... ● Democratise ML ● Big datasets beat fancy algorithms ● Good Models ● Lots of compute Google BigQuery BigQuery is Google's fully managed, petabyte scale, low cost enterprise data warehouse for analytics. BigQuery is serverless. There is no infrastructure to manage and you don't need a database administrator, so you can focus on analyzing data to find meaningful insights using familiar SQL.
    [Show full text]
  • Winds in the Lower Cloud Level on the Nightside of Venus from VIRTIS-M (Venus Express) 1.74 Μm Images
    atmosphere Article Winds in the Lower Cloud Level on the Nightside of Venus from VIRTIS-M (Venus Express) 1.74 µm Images Dmitry A. Gorinov * , Ludmila V. Zasova, Igor V. Khatuntsev, Marina V. Patsaeva and Alexander V. Turin Space Research Institute, Russian Academy of Sciences, 117997 Moscow, Russia; zasova@iki.rssi.ru (L.V.Z.); khatuntsev@iki.rssi.ru (I.V.K.); marina@irn.iki.rssi.ru (M.V.P.); turin@rssi.ru (A.V.T.) * Correspondence: dmitry_gorinov@rssi.ru Abstract: The horizontal wind velocity vectors at the lower cloud layer were retrieved by tracking the displacement of cloud features using the 1.74 µm images of the full Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS-M) dataset. This layer was found to be in a superrotation mode with a westward mean speed of 60–63 m s−1 in the latitude range of 0–60◦ S, with a 1–5 m s−1 westward deceleration across the nightside. Meridional motion is significantly weaker, at 0–2 m s−1; it is equatorward at latitudes higher than 20◦ S, and changes its direction to poleward in the equatorial region with a simultaneous increase of wind speed. It was assumed that higher levels of the atmosphere are traced in the equatorial region and a fragment of the poleward branch of the direct lower cloud Hadley cell is observed. The fragment of the equatorward branch reveals itself in the middle latitudes. A diurnal variation of the meridional wind speed was found, as east of 21 h local time, the direction changes from equatorward to poleward in latitudes lower than 20◦ S.
    [Show full text]
  • A Systematic Concept Exploration Methodology Applied to Venus in Situ Explorer
    Session III: Probe Missions to the Giant Planets, Titan and Venus A Systematic Concept Exploration Methodology Applied to Venus In Situ Explorer Jarret M. Lafleur *, Gregory Lantoine *, Andrew L. Hensley *, Ghislain J. Retaureau *, Kara M. Kranzusch *, Joseph W. Hickman *, Marc N. Wilson *, and Daniel P. Schrage † Georgia Institute of Technology Atlanta, Georgia 30332 ABSTRACT One of the most critical tasks in the design of a complex system is the initial conversion of mission or program objectives into a baseline system architecture. Presented in this paper is a methodology to aid in this process that is frequently used for aerospace problems at the Georgia Institute of Technology. In this paper, the methodology is applied to initial concept formulation for the Venus In Situ Explorer (VISE) mission. Five primary steps are outlined which encompass program objective definition through evaluation of candidate designs. Tools covered include the Analytic Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), and morphological matrices. Direction is given for the application of modeling and simulation as well as for subsequent iterations of the process. The paper covers both theoretical and practical aspects of the tools and process in the context of the VISE example, and it is hoped that this methodology may find future use in interplanetary probe design. 1. INTRODUCTION One of the most critical tasks in the design of a complex engineering system is the initial conversion of mission or program objectives and requirements into a baseline system architecture. In completing this task, the challenge exists to comprehensively but efficiently explore the global trade space of potential designs.
    [Show full text]
  • SFSC Search Down to 4
    C M Y K www.newssun.com EWS UN NHighlands County’s Hometown-S Newspaper Since 1927 Rivalry rout Deadly wreck in Polk Harris leads Lake 20-year-old woman from Lake Placid to shutout of AP Placid killed in Polk crash SPORTS, B1 PAGE A2 PAGE B14 Friday-Saturday, March 22-23, 2013 www.newssun.com Volume 94/Number 35 | 50 cents Forecast Fire destroys Partly sunny and portable at Fred pleasant High Low Wild Elementary Fire alarms “Myself, Mr. (Wally) 81 62 Cox and other administra- Complete Forecast went off at 2:40 tors were all called about PAGE A14 a.m. Wednesday 3 a.m.,” Waldron said Wednesday morning. Online By SAMANTHA GHOLAR Upon Waldron’s arrival, sgholar@newssun.com the Sebring Fire SEBRING — Department along with Investigations into a fire DeSoto City Fire early Wednesday morning Department, West Sebring on the Fred Wild Volunteer Fire Department Question: Do you Elementary School cam- and Sebring Police pus are under way. Department were all on think the U.S. govern- The school’s fire alarms the scene. ment would ever News-Sun photo by KATARA SIMMONS Rhoda Ross reads to youngsters Linda Saraniti (from left), Chyanne Carroll and Camdon began going off at approx- State Fire Marshal seize money from pri- Carroll on Wednesday afternoon at the Lake Placid Public Library. Ross was reading from imately 2:40 a.m. and con- investigator Raymond vate bank accounts a children’s book she wrote and illustrated called ‘A Wildflower for all Seasons.’ tinued until about 3 a.m., Miles Davis was on the like is being consid- according to FWE scene for a large part of ered in Cyprus? Principal Laura Waldron.
    [Show full text]
  • "Is There Life on Venus?" Pdf File
    Home / Space / Specials Is there life on Venus? We call them "Martians" because, in science fiction, Mars has always been the natural home of extraterrestrials. In fact, of all the planets in the solar system, Mars is the prime candidate to host life, after Earth, of course. Indeed, Mars is on the outer edge of the habitable zone, that area around the Sun that delimits the space where the temperature is low enough to ensure that the water remains in a liquid state. And where there's water, it is well known, there's probably life. Yet it's cold on Mars today, and so far, all the probes and rovers we have sent to the surface of the red planet have found no signs of life. Planet Venus At the opposite end of the habitable belt there is Venus, similar in size and "geological" characteristics to our planet – that is, like Earth, it is a rocky planet. However, unlike Earth, Venus is probably one of the most inhospitable places in the Solar System: the temperature on the ground is about 500°C, higher than that recorded on Mercury, the planet closest to the Sun, so the Sun is not directly responsible for that infernal climate. The blame lies with the very extreme greenhouse effect on Venus. We know that the greenhouse effect is due to the presence of gases that trap solar radiation and heat the atmosphere. The main greenhouse gases are carbon dioxide (CO2), methane, water vapour and nitrogen oxides. On Earth we are rightly concerned because the amount of carbon dioxide is increasing due to human activities and with the increase in CO2, temperatures are rising.
    [Show full text]
  • Venus in Two Acts Saidiya Hartman
    Venus in Two Acts Saidiya Hartman Small Axe, Number 26 (Volume 12, Number 2), June 2008, pp. 1-14 (Article) Published by Duke University Press For additional information about this article https://muse.jhu.edu/article/241115 Access provided by University Of Maryland @ College Park (13 Mar 2017 20:04 GMT) Venus in Two Acts Saidiya Hartman ABSTR A CT : This essay examines the ubiquitous presence of Venus in the archive of Atlantic slavery and wrestles with the impossibility of discovering anything about her that hasn’t already been stated. As an emblematic figure of the enslaved woman in the Atlantic world, Venus makes plain the convergence of terror and pleasure in the libidinal economy of slavery and, as well, the intimacy of history with the scandal and excess of literature. In writing at the limit of the unspeak- able and the unknown, the essay mimes the violence of the archive and attempts to redress it by describing as fully as possible the conditions that determine the appearance of Venus and that dictate her silence. In this incarnation, she appears in the archive of slavery as a dead girl named in a legal indict- ment against a slave ship captain tried for the murder of two Negro girls. But we could have as easily encountered her in a ship’s ledger in the tally of debits; or in an overseer’s journal—“last night I laid with Dido on the ground”; or as an amorous bed-fellow with a purse so elastic “that it will contain the largest thing any gentleman can present her with” in Harris’s List of Covent- Garden Ladies; or as the paramour in the narrative of a mercenary soldier in Surinam; or as a brothel owner in a traveler’s account of the prostitutes of Barbados; or as a minor character in a nineteenth-century pornographic novel.1 Variously named Harriot, Phibba, Sara, Joanna, Rachel, Linda, and Sally, she is found everywhere in the Atlantic world.
    [Show full text]
  • The Pancam Instrument for the Exomars Rover
    ASTROBIOLOGY ExoMars Rover Mission Volume 17, Numbers 6 and 7, 2017 Mary Ann Liebert, Inc. DOI: 10.1089/ast.2016.1548 The PanCam Instrument for the ExoMars Rover A.J. Coates,1,2 R. Jaumann,3 A.D. Griffiths,1,2 C.E. Leff,1,2 N. Schmitz,3 J.-L. Josset,4 G. Paar,5 M. Gunn,6 E. Hauber,3 C.R. Cousins,7 R.E. Cross,6 P. Grindrod,2,8 J.C. Bridges,9 M. Balme,10 S. Gupta,11 I.A. Crawford,2,8 P. Irwin,12 R. Stabbins,1,2 D. Tirsch,3 J.L. Vago,13 T. Theodorou,1,2 M. Caballo-Perucha,5 G.R. Osinski,14 and the PanCam Team Abstract The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier.
    [Show full text]
  • The Earth-Based Radar Search for Volcanic Activity on Venus
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 2339.pdf THE EARTH-BASED RADAR SEARCH FOR VOLCANIC ACTIVITY ON VENUS. B. A. Campbell1 and D. B. Campbell2, 1Smithsonian Institution Center for Earth and Planetary Studies, MRC 315, PO Box 37012, Washington, DC 20013-7012, campbellb@si.edu; 2Cornell University, Ithaca, NY 14853. Introduction: Venus is widely expected to have geometry comes from shifts in the latitude of the sub- ongoing volcanic activity based on its similar size to radar point, which spans the range from about 8o S Earth and likely heat budget. How lithospheric (2017) to 8o N (2015). Observations in 1988, 2012, and thickness and volcanic activity have varied over the 2020 share a similar sub-radar point latitude of ~3o S. history of the planet remains uncertain. While tessera Coverage of higher northern and southern latitudes may highlands locally represent a period of thinner be obtained during favorable conjunctions (Fig. 1), but lithosphere and strong deformation, there is no current the shift in incidence angle must be recognized in means to determine whether they formed synchronously analysis of surface features over time. The 2012 data on hemispheric scales. Understanding the degree to were collected in an Arecibo-GBT bistatic geometry which mantle plumes currently thin and uplift the crust that led to poorer isolation between the hemispheres. to create deformation and effusive eruptions will better inform our understanding of the “global” versus Searching for Change. Ideally, surface change “localized” timing of heat transport. Ground-based detection could be achieved by co-registering and radar mapping of one hemisphere of Venus over the past differencing any pair of radar maps.
    [Show full text]