Reciprocal Expression of the Endocytic Protein HIP1R and Its Repressor FOXP1 Predicts Outcome in R-CHOP-Treated Diffuse Large B-Cell Lymphoma Patients

Total Page:16

File Type:pdf, Size:1020Kb

Reciprocal Expression of the Endocytic Protein HIP1R and Its Repressor FOXP1 Predicts Outcome in R-CHOP-Treated Diffuse Large B-Cell Lymphoma Patients Leukemia (2014) 28, 362–372 & 2014 Macmillan Publishers Limited All rights reserved 0887-6924/14 www.nature.com/leu ORIGINAL ARTICLE Reciprocal expression of the endocytic protein HIP1R and its repressor FOXP1 predicts outcome in R-CHOP-treated diffuse large B-cell lymphoma patients KK Wong1,2, DM Gascoyne1, PJ Brown1, EJ Soilleux1, C Snell1, H Chen3, L Lyne1, CH Lawrie1,4,5, RD Gascoyne6, LM Pedersen7, MB Møller8, K Pulford1, D Murphy3,9, TM Green8 and AH Banham1 We previously identified autoantibodies to the endocytic-associated protein Huntingtin-interacting protein 1-related (HIP1R) in diffuse large B-cell lymphoma (DLBCL) patients. HIP1R regulates internalization of cell surface receptors via endocytosis, a process relevant to many therapeutic strategies including CD20 targeting with rituximab. In this study, we characterized HIP1R expression patterns, investigated a mechanism of transcriptional regulation and its clinical relevance in DLBCL patients treated with immunochemotherapy (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone, R-CHOP). HIP1R was preferentially expressed in germinal center B-cell-like DLBCL (Po0.0001) and inversely correlated with the activated B-cell-like DLBCL (ABC-DLBCL) associated transcription factor, Forkhead box P1 (FOXP1). HIP1R was confirmed as a direct FOXP1 target gene in ABC-DLBCL by FOXP1-targeted silencing and chromatin immunoprecipitation. Lower HIP1R protein expression (p10% tumoral positivity) significantly correlated with inferior overall survival (OS, P ¼ 0.0003) and progression-free survival (PFS, P ¼ 0.0148) in R-CHOP-treated DLBCL patients (n ¼ 157). Reciprocal expression with X70% FOXP1 positivity defined FOXP1hi/HIP1Rlo patients with particularly poor outcome (OS, P ¼ 0.0001; PFS, P ¼ 0.0016). In an independent R-CHOP-treated DLBCL (n ¼ 233) microarray data set, patients with transcript expression in lower quartile HIP1R and FOXP1hi/HIP1Rlo subgroups exhibited worse OS, P ¼ 0.0044 and P ¼ 0.0004, respectively. HIP1R repression by FOXP1 is strongly associated with poor outcome, thus further understanding of FOXP1-HIP1R and/or endocytic signaling pathways might give rise to novel therapeutic options for DLBCL. Leukemia (2014) 28, 362–372; doi:10.1038/leu.2013.224 Keywords: diffuse large B-cell lymphoma; HIP1R; FOXP1; rituximab; endocytosis; survival INTRODUCTION response rate when treated with bortezomib, a proteasome Diffuse large B-cell lymphoma (DLBCL) is the most common inhibitor that targets the NF-kB pathway, in combination with subtype of non-Hodgkin’s lymphoma and exhibits an aggressive DA-EPOCH (dose-adjusted etoposide, prednisone, vincristine, 8 9 clinical course. Addition of rituximab to conventional CHOP cyclophosphamide and doxorubicin) or R-CHOP regimens. (cyclophosphamide, doxorubicin, vincristine and prednisone) Thus, DLBCL subtyping into ABC- or GCB-DLBCL subgroups chemotherapy regimen has improved DLBCL patient outcome.1,2 represents a predictive marker for selecting patients for However, 20–40% of DLBCL patients receiving R-CHOP survive less personalized targeted therapy, in addition to a prognostic than 5 years,1,3 and stratification of high-risk patients is important marker for response to R-CHOP therapy. for evaluating molecularly targeted therapies. There are a number of marker proteins whose expression either Gene expression profiling (GEP) identified clinically and independently, or in combination, can be used to help routinely biologically distinct DLBCL subtypes, a good prognosis germinal identify the cell-of-origin (COO) in DLBCL, and predict patients’ 10–13 center B-cell-like DLBCL (GCB-DLBCL) subtype and a poor survival in response to R-CHOP therapy. Our laboratory has prognosis activated B-cell-like DLBCL (ABC-DLBCL) subtype.4 been particularly interested in studying Forkhead box P1 (FOXP1), In DLBCL patients treated with R-CHOP regimen, the 5-year a member of the forkhead box family of transcription factors14 overall survival (OS) of patients with GCB-DLBCL remains whose expression independently correlates with a poor response significantly better than ABC-DLBCL.5,6 to CHOP and R-CHOP therapies in DLBCL.13,15 FOXP1 has been Biological and genetic studies have investigated fundamental included in several subtyping algorithms as a marker of ABC- pathogenic mechanisms within DLBCL subtypes that might be DLBCL with a poor response to R-CHOP.12,13,16 FOXP1 is also amenable to therapeutic targeting. Indeed, an IkB kinase inhibitor targeted by recurrent genetic abnormalities in DLBCL,17,18 and 7 was toxic to ABC-DLBCL cells in vitro via inhibition of NF-kB. activation-induced short isoforms (FOXP1S) expressed in both Moreover, non-GCB-DLBCL patients achieved a significantly higher non-malignant peripheral blood B cells and in ABC-DLBCL cells 1NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK; 2Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia; 3Centre for Human Proteomics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; 4Biodonostia Research Institute, San Sebastian, Spain; 5IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; 6Department of Pathology and Experimental Therapeutics, Centre for Lymphoid Cancer, BC Cancer Agency and BC Cancer Research Centre, Vancouver, Canada; 7Department of Haematology, Roskilde Hospital, Roskilde, Denmark; 8Department of Pathology, Odense University Hospital, Odense, Denmark and 9School of Biological Sciences, Dublin Institute of Technology, Dublin 8, Ireland. Correspondence: Professor AH Banham, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, Level 4 Academic Block, John Radcliffe Hospital, University of Oxford, Headington, Oxfordshire OX3 9DU, UK. E-mail: [email protected] Received 16 May 2013; revised 18 July 2013; accepted 19 July 2013; accepted article preview online 25 July 2013; advance online publication, 13 August 2013 HIP1R and FOXP1 expression predict DLBCL outcome KK Wong et al 363 have a potentially important biological role.19 However, Antibodies and plasmid constructs although target genes regulated by FOXP1 have been Details of the anti-HIP1R (clone 44, BD Transduction Laboratories, San Jose, identified in the lung,20 striatal neuronal cells21 and GCB- CA, USA; anti-HIP1R-44 monoclonal antibody, mAb) and anti-HIP1 22 DLBCL, the functional role of FOXP1S in ABC-DLBCL remains (clone 4B10, Abcam, Cambridge, UK; anti-HIP1-4B10 mAb) monoclonal undefined. antibodies and other antibodies including clone names and working Huntingtin-interacting protein 1-related (HIP1R) came to dilutions, for immunohistochemical labeling or western blotting, are provided in Supplementary Table 1. The full-length HIP1R complementary our attention because of its frequent immunological DNA (3.2 kb) was generated by PCR amplification as described in the recognition by DLBCL patients when screening protein Supplementary Methods. The full-length HIP1 expression construct was arrays with DLBCL patients’ sera to identify novel autoanti- obtained from OriGene Technologies Inc. (SC108827; Rockville, MD, USA). gens in the disease.23 HIP1R maps to 12q24.31 and was originally identified on the basis of sequence homology Transfection and recombinant protein expression with its only known mammalian relative, HIP1.24 Although HIP1R itself has not been implicated in lymphomagenesis, HIP1R or HIP1 expression in mammalian cells was achieved by transfecting the plasmid into HEK293T cells. Briefly, plasmid DNA was obtained using HIP1 has been reported as an autoantigen in lymphoid the Qiagen Spin Miniprep Kit (Qiagen, Manchester, UK). pcDNA4/HisMax/ malignancies and has the capacity to transform lymphoid HIP1R, pCMV6-XL4/HIP1 (SC108827; OriGene Technologies Inc., Rockville, 25 cells in vivo. Human B-cell neoplasms frequently expressed MD, USA) or pcDNA4/HisMax vector alone (Invitrogen, Paisley, UK) were elevated levels of HIP1 compared with normal lymph nodes, transfected into HEK293T cells using FuGENE6 transfection reagent leading the authors to propose that the HIP1 pathway could according to the manufacturer’s protocols (Roche, Mannheim, Germany). be explored for diagnostic and therapeutic potential.25 Validation of successful recombinant protein expression is described in HIP1R functions as an endocytic protein in clathrin- Supplementary Methods. mediated endocytosis26 and vesicle trafficking at the trans-Golgi network for lysosome biogenesis.27,28 HIP1R regu- Immunohistochemistry lates trafficking of receptors, including mannose phosphate Immunohistochemical labeling of DLBCL TMAs and reactive tonsils using receptor29 and receptor tyrosine kinases.30 Moreover, clathrin- anti-HIP1R-44 or anti-FOXP1 (clone JC12)14 mAbs was performed, after mediated endocytosis is required for internalization of cell dewaxing and heat-mediated antigen retrieval in 50 mM Tris/EDTA surface receptors including the B-cell receptor that attenuates pH 9.0, using the EnVision kit according to manufacturer’s instructions B-cell receptor signaling,31 suggesting that HIP1R could (DakoCytomation, Glostrup, Denmark). Antigen retrieval for CD10, BCL6, potentially regulate B-cell receptor signaling via its roles in MUM1 and GCET1 was performed in Cell Conditioning 1 (Ventana Medical Systems, Tucson, AZ, USA) buffer. The staining pattern for HIP1R was endocytosis. cytoplasmic, whereas FOXP1 staining showed a well-defined nuclear pattern Although HIP1R has not been previously implicated in (Figure 4a). The HIP1R
Recommended publications
  • Transcriptome Analyses of Rhesus Monkey Pre-Implantation Embryos Reveal A
    Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Transcriptome analyses of rhesus monkey pre-implantation embryos reveal a reduced capacity for DNA double strand break (DSB) repair in primate oocytes and early embryos Xinyi Wang 1,3,4,5*, Denghui Liu 2,4*, Dajian He 1,3,4,5, Shengbao Suo 2,4, Xian Xia 2,4, Xiechao He1,3,6, Jing-Dong J. Han2#, Ping Zheng1,3,6# Running title: reduced DNA DSB repair in monkey early embryos Affiliations: 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 3 Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 4 University of Chinese Academy of Sciences, Beijing, China 5 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China 6 Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China * Xinyi Wang and Denghui Liu contributed equally to this work 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press # Correspondence: Jing-Dong J. Han, Email: [email protected]; Ping Zheng, Email: [email protected] Key words: rhesus monkey, pre-implantation embryo, DNA damage 2 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Pre-implantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA) and cell fate commitment.
    [Show full text]
  • Supplemental Table 1. Complete Gene Lists and GO Terms from Figure 3C
    Supplemental Table 1. Complete gene lists and GO terms from Figure 3C. Path 1 Genes: RP11-34P13.15, RP4-758J18.10, VWA1, CHD5, AZIN2, FOXO6, RP11-403I13.8, ARHGAP30, RGS4, LRRN2, RASSF5, SERTAD4, GJC2, RHOU, REEP1, FOXI3, SH3RF3, COL4A4, ZDHHC23, FGFR3, PPP2R2C, CTD-2031P19.4, RNF182, GRM4, PRR15, DGKI, CHMP4C, CALB1, SPAG1, KLF4, ENG, RET, GDF10, ADAMTS14, SPOCK2, MBL1P, ADAM8, LRP4-AS1, CARNS1, DGAT2, CRYAB, AP000783.1, OPCML, PLEKHG6, GDF3, EMP1, RASSF9, FAM101A, STON2, GREM1, ACTC1, CORO2B, FURIN, WFIKKN1, BAIAP3, TMC5, HS3ST4, ZFHX3, NLRP1, RASD1, CACNG4, EMILIN2, L3MBTL4, KLHL14, HMSD, RP11-849I19.1, SALL3, GADD45B, KANK3, CTC- 526N19.1, ZNF888, MMP9, BMP7, PIK3IP1, MCHR1, SYTL5, CAMK2N1, PINK1, ID3, PTPRU, MANEAL, MCOLN3, LRRC8C, NTNG1, KCNC4, RP11, 430C7.5, C1orf95, ID2-AS1, ID2, GDF7, KCNG3, RGPD8, PSD4, CCDC74B, BMPR2, KAT2B, LINC00693, ZNF654, FILIP1L, SH3TC1, CPEB2, NPFFR2, TRPC3, RP11-752L20.3, FAM198B, TLL1, CDH9, PDZD2, CHSY3, GALNT10, FOXQ1, ATXN1, ID4, COL11A2, CNR1, GTF2IP4, FZD1, PAX5, RP11-35N6.1, UNC5B, NKX1-2, FAM196A, EBF3, PRRG4, LRP4, SYT7, PLBD1, GRASP, ALX1, HIP1R, LPAR6, SLITRK6, C16orf89, RP11-491F9.1, MMP2, B3GNT9, NXPH3, TNRC6C-AS1, LDLRAD4, NOL4, SMAD7, HCN2, PDE4A, KANK2, SAMD1, EXOC3L2, IL11, EMILIN3, KCNB1, DOK5, EEF1A2, A4GALT, ADGRG2, ELF4, ABCD1 Term Count % PValue Genes regulation of pathway-restricted GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, SMAD protein phosphorylation 9 6.34 1.31E-08 ENG pathway-restricted SMAD protein GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, phosphorylation
    [Show full text]
  • Molecular Effects of Isoflavone Supplementation Human Intervention Studies and Quantitative Models for Risk Assessment
    Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis committee Promotors Prof. Dr Pieter van ‘t Veer Professor of Nutritional Epidemiology Wageningen University Prof. Dr Evert G. Schouten Emeritus Professor of Epidemiology and Prevention Wageningen University Co-promotors Dr Anouk Geelen Assistant professor, Division of Human Nutrition Wageningen University Dr Lydia A. Afman Assistant professor, Division of Human Nutrition Wageningen University Other members Prof. Dr Jaap Keijer, Wageningen University Dr Hubert P.J.M. Noteborn, Netherlands Food en Consumer Product Safety Authority Prof. Dr Yvonne T. van der Schouw, UMC Utrecht Dr Wendy L. Hall, King’s College London This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 20 June 2014 at 13.30 p.m. in the Aula. Vera van der Velpen Molecular effects of isoflavone supplementation: Human intervention studies and quantitative models for risk assessment 154 pages PhD thesis, Wageningen University, Wageningen, NL (2014) With references, with summaries in Dutch and English ISBN: 978-94-6173-952-0 ABSTRact Background: Risk assessment can potentially be improved by closely linked experiments in the disciplines of epidemiology and toxicology.
    [Show full text]
  • Signature Redacted Thesis Supervisor Certified By
    Single-Cell Transcriptomics of the Mouse Thalamic Reticular Nucleus by Taibo Li S.B., Massachusetts Institute of Technology (2015) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2017 @ Massachusetts Institute of Technology 2017. All rights reserved. A uthor ... ..................... Department of Electrical Engineering and Computer Science May 25, 2017 Certified by. 3ignature redacted Guoping Feng Poitras Professor of Neuroscience, MIT Signature redacted Thesis Supervisor Certified by... Kasper Lage Assistant Professor, Harvard Medical School Thesis Supervisor Accepted by . Signature redacted Christopher Terman Chairman, Masters of Engineering Thesis Committee MASSACHUSETTS INSTITUTE 0) OF TECHNOLOGY w AUG 14 2017 LIBRARIES 2 Single-Cell Transcriptomics of the Mouse Thalamic Reticular Nucleus by Taibo Li Submitted to the Department of Electrical Engineering and Computer Science on May 25, 2017, in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science Abstract The thalamic reticular nucleus (TRN) is strategically located at the interface between the cortex and the thalamus, and plays a key role in regulating thalamo-cortical in- teractions. Current understanding of TRN neurobiology has been limited due to the lack of a comprehensive survey of TRN heterogeneity. In this thesis, I developed an integrative computational framework to analyze the single-nucleus RNA sequencing data of mouse TRN in a data-driven manner. By combining transcriptomic, genetic, and functional proteomic data, I discovered novel insights into the molecular mecha- nisms through which TRN regulates sensory gating, and suggested targeted follow-up experiments to validate these findings.
    [Show full text]
  • A Chromosome Level Genome of Astyanax Mexicanus Surface Fish for Comparing Population
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.06.189654; this version posted July 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title 2 A chromosome level genome of Astyanax mexicanus surface fish for comparing population- 3 specific genetic differences contributing to trait evolution. 4 5 Authors 6 Wesley C. Warren1, Tyler E. Boggs2, Richard Borowsky3, Brian M. Carlson4, Estephany 7 Ferrufino5, Joshua B. Gross2, LaDeana Hillier6, Zhilian Hu7, Alex C. Keene8, Alexander Kenzior9, 8 Johanna E. Kowalko5, Chad Tomlinson10, Milinn Kremitzki10, Madeleine E. Lemieux11, Tina 9 Graves-Lindsay10, Suzanne E. McGaugh12, Jeff T. Miller12, Mathilda Mommersteeg7, Rachel L. 10 Moran12, Robert Peuß9, Edward Rice1, Misty R. Riddle13, Itzel Sifuentes-Romero5, Bethany A. 11 Stanhope5,8, Clifford J. Tabin13, Sunishka Thakur5, Yamamoto Yoshiyuki14, Nicolas Rohner9,15 12 13 Authors for correspondence: Wesley C. Warren ([email protected]), Nicolas Rohner 14 ([email protected]) 15 16 Affiliation 17 1Department of Animal Sciences, Department of Surgery, Institute for Data Science and 18 Informatics, University of Missouri, Bond Life Sciences Center, Columbia, MO 19 2 Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 20 3 Department of Biology, New York University, New York, NY 21 4 Department of Biology, The College of Wooster, Wooster, OH 22 5 Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 23 6 Department of Genome Sciences, University of Washington, Seattle, WA 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.06.189654; this version posted July 6, 2020.
    [Show full text]
  • The Genetics of Bipolar Disorder
    Molecular Psychiatry (2008) 13, 742–771 & 2008 Nature Publishing Group All rights reserved 1359-4184/08 $30.00 www.nature.com/mp FEATURE REVIEW The genetics of bipolar disorder: genome ‘hot regions,’ genes, new potential candidates and future directions A Serretti and L Mandelli Institute of Psychiatry, University of Bologna, Bologna, Italy Bipolar disorder (BP) is a complex disorder caused by a number of liability genes interacting with the environment. In recent years, a large number of linkage and association studies have been conducted producing an extremely large number of findings often not replicated or partially replicated. Further, results from linkage and association studies are not always easily comparable. Unfortunately, at present a comprehensive coverage of available evidence is still lacking. In the present paper, we summarized results obtained from both linkage and association studies in BP. Further, we indicated new potential interesting genes, located in genome ‘hot regions’ for BP and being expressed in the brain. We reviewed published studies on the subject till December 2007. We precisely localized regions where positive linkage has been found, by the NCBI Map viewer (http://www.ncbi.nlm.nih.gov/mapview/); further, we identified genes located in interesting areas and expressed in the brain, by the Entrez gene, Unigene databases (http://www.ncbi.nlm.nih.gov/entrez/) and Human Protein Reference Database (http://www.hprd.org); these genes could be of interest in future investigations. The review of association studies gave interesting results, as a number of genes seem to be definitively involved in BP, such as SLC6A4, TPH2, DRD4, SLC6A3, DAOA, DTNBP1, NRG1, DISC1 and BDNF.
    [Show full text]
  • RNA-Seq-Based Analysis of Cortisol-Induced Differential Gene
    animals Article RNA-Seq-Based Analysis of Cortisol-Induced Differential Gene Expression Associated with Piscirickettsia salmonis Infection in Rainbow Trout (Oncorhynchus mykiss) Myotubes Rodrigo Zuloaga 1,2, Phillip Dettleff 1 , Macarena Bastias-Molina 3, Claudio Meneses 3, Claudia Altamirano 4, Juan Antonio Valdés 1,2,5 and Alfredo Molina 1,2,5,* 1 Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; [email protected] (R.Z.); [email protected] (P.D.); [email protected] (J.A.V.) 2 Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile 3 Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; [email protected] (M.B.-M.); [email protected] (C.M.) 4 Laboratorio de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362803, Chile; [email protected] 5 Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaíso 2340000, Chile * Correspondence: [email protected]; Tel.: +56-227703067 Simple Summary: Skeletal muscle is the most abundant tissue in fish and the main product of the Citation: Zuloaga, R.; Dettleff, P.; Chilean salmonid aquaculture industry. Intensive farming conditions generate stress and increased Bastias-Molina, M.; Meneses, C.; susceptibility to infectious diseases, such as salmonid rickettsial septicemia (SRS), that
    [Show full text]
  • Clathrin Light Chain a Drives Selective Myosin VI Recruitment to Clathrin-Coated Pits Under Membrane Tension
    ARTICLE https://doi.org/10.1038/s41467-019-12855-6 OPEN Clathrin light chain A drives selective myosin VI recruitment to clathrin-coated pits under membrane tension Matteo Biancospino1,6, Gwen R. Buel 2,6, Carlos A. Niño1,6, Elena Maspero1, Rossella Scotto di Perrotolo1, Andrea Raimondi 3, Lisa Redlingshöfer4, Janine Weber1, Frances M. Brodsky4*, Kylie J. Walters2*& Simona Polo 1,5* 1234567890():,; Clathrin light chains (CLCa and CLCb) are major constituents of clathrin-coated vesicles. Unique functions for these evolutionary conserved paralogs remain elusive, and their role in clathrin-mediated endocytosis in mammalian cells is debated. Here, we find and structurally characterize a direct and selective interaction between CLCa and the long isoform of the actin motor protein myosin VI, which is expressed exclusively in highly polarized tissues. Using genetically-reconstituted Caco-2 cysts as proxy for polarized epithelia, we provide evidence for coordinated action of myosin VI and CLCa at the apical surface where these proteins are essential for fission of clathrin-coated pits. We further find that myosin VI and Huntingtin- interacting protein 1-related protein (Hip1R) are mutually exclusive interactors with CLCa, and suggest a model for the sequential function of myosin VI and Hip1R in actin-mediated clathrin-coated vesicle budding. 1 IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy. 2 Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. 3 Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy. 4 Division of Biosciences, University College London, London WC1E 6BT, UK. 5 Dipartimento di Oncologia ed Emato-oncologia, Universita’ degli Studi di Milano, 20122 Milan, Italy.
    [Show full text]
  • Algorithms for Protein Comparative Modelling and Some Evolutionary Implications
    Algorithms for Protein Comparative Modelling and Some Evolutionary Implications B runo C o n t r e r a s -M oreira 2003 Biomolecular Modelling Laboratory Cancer Research UK, London Research Institute 44 Lincoln’s Inn Fields, London, WC2A 3PX and Department of Biochemistry and Molecular Biology University College London Gower Street, London, WC2E 6BT Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry of the University of London. UMI Number: U602512 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U602512 Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 A mi familia, incluida Pili 3 Abstract Protein comparative modelling (CM) is a predictive technique to build an atomic model for a polypeptide chain, based on the experimentally determined structures of related pro­ teins (templates). It is widely used in Structural Biology, with applications ranging from mutation analysis, protein and drug design to function prediction and analysis, particu­ larly when there are no experimental structures of the protein of interest. Therefore, CM is an important tool to process the amount of data generated by genomic projects.
    [Show full text]
  • Whole Blood Transcriptional Profiling Comparison Between Different Milk Yield of Chinese Holstein Cows Using RNA-Seq Data
    The Author(s) BMC Genomics 2016, 17(Suppl 7):512 DOI 10.1186/s12864-016-2901-1 RESEARCH Open Access Whole blood transcriptional profiling comparison between different milk yield of Chinese Holstein cows using RNA-seq data Xue Bai1, Zhuqing Zheng1,2, Bin Liu1,2,3, Xiaoyang Ji1,2, Yongsheng Bai4* and Wenguang Zhang1,5* From The International Conference on Intelligent Biology and Medicine (ICIBM) 2015 Indianapolis, IN, USA. 13-15 November 2015 Abstract Background: The objective of this research was to investigate the variation of gene expression in the blood transcriptome profile of Chinese Holstein cows associated to the milk yield traits. Results: We used RNA-seq to generate the bovine transcriptome from the blood of 23 lactating Chinese Holstein cows with extremely high and low milk yield. A total of 100 differentially expressed genes (DEGs) (p < 0.05, FDR < 0. 05) were revealed between the high and low groups. Gene ontology (GO) analysis demonstrated that the 100 DEGs were enriched in specific biological processes with regard to defense response, immune response, inflammatory response, icosanoid metabolic process, and fatty acid metabolic process (p < 0.05). The KEGG pathway analysis with 100 DEGs revealed that the most statistically-significant metabolic pathway was related with Toll-like receptor signaling pathway (p < 0.05). The expression level of four selected DEGs was analyzed by qRT-PCR, and the results indicated that the expression patterns were consistent with the deep sequencing results by RNA-Seq. Furthermore, alternative splicing analysis of 100 DEGs demonstrated that there were different splicing pattern between high and low yielders.
    [Show full text]
  • (NF1) As a Breast Cancer Driver
    INVESTIGATION Comparative Oncogenomics Implicates the Neurofibromin 1 Gene (NF1) as a Breast Cancer Driver Marsha D. Wallace,*,† Adam D. Pfefferle,‡,§,1 Lishuang Shen,*,1 Adrian J. McNairn,* Ethan G. Cerami,** Barbara L. Fallon,* Vera D. Rinaldi,* Teresa L. Southard,*,†† Charles M. Perou,‡,§,‡‡ and John C. Schimenti*,†,§§,2 *Department of Biomedical Sciences, †Department of Molecular Biology and Genetics, ††Section of Anatomic Pathology, and §§Center for Vertebrate Genomics, Cornell University, Ithaca, New York 14853, ‡Department of Pathology and Laboratory Medicine, §Lineberger Comprehensive Cancer Center, and ‡‡Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514, and **Memorial Sloan-Kettering Cancer Center, New York, New York 10065 ABSTRACT Identifying genomic alterations driving breast cancer is complicated by tumor diversity and genetic heterogeneity. Relevant mouse models are powerful for untangling this problem because such heterogeneity can be controlled. Inbred Chaos3 mice exhibit high levels of genomic instability leading to mammary tumors that have tumor gene expression profiles closely resembling mature human mammary luminal cell signatures. We genomically characterized mammary adenocarcinomas from these mice to identify cancer-causing genomic events that overlap common alterations in human breast cancer. Chaos3 tumors underwent recurrent copy number alterations (CNAs), particularly deletion of the RAS inhibitor Neurofibromin 1 (Nf1) in nearly all cases. These overlap with human CNAs including NF1, which is deleted or mutated in 27.7% of all breast carcinomas. Chaos3 mammary tumor cells exhibit RAS hyperactivation and increased sensitivity to RAS pathway inhibitors. These results indicate that spontaneous NF1 loss can drive breast cancer. This should be informative for treatment of the significant fraction of patients whose tumors bear NF1 mutations.
    [Show full text]
  • Comparative Proteomic Analysis Uncovers Potential Biomarkers Involved in the Anticancer Effect of Scutellarein in Human Gastric Cancer Cells
    ONCOLOGY REPORTS 44: 939-958, 2020 Comparative proteomic analysis uncovers potential biomarkers involved in the anticancer effect of Scutellarein in human gastric cancer cells VENU VENKATARAME GOWDA SARALAMMA1,2, PREETHI VETRIVEL1, HO JEONG LEE3, SEONG MIN KIM1, SANG EUN HA1, RAJESWARI MURUGESAN4, EUN HEE KIM5, JEONG DOO HEO3 and GON SUP KIM1 1Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828; 2College of Pharmacy, Yonsei University, Incheon 21983; 3Gyeongnam Department of Environment Toxicology and Chemistry, Biological Resources Research Group, Korea Institute of Toxicology, Jinju, Gyeongnam 52834, Republic of Korea; 4Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641043, India; 5Department of Nursing Science, International University of Korea, Jinju, Gyeongnam 52833, Republic of Korea Received December 19, 2019; Accepted May 28, 2020 DOI: 10.3892/or.2020.7677 Abstract. Scutellarein (SCU), a flavone that belongs to the studies also confirmed the binding affinity of SCU towards flavonoid family and abundantly present in Scutellaria these critical proteins. Phosphatidylinositol 4,5‑bisphosphate baicalensis a flowering plant in the family Lamiaceae, has been 3‑kinase catalytic subunit β isoform (PIK3CB) protein expres- reported to exhibit anticancer effects in several cancer cell lines sion was accompanied by a distinct group of cellular functions, including gastric cancer (GC). Although our previous study including cell growth, and proliferation. Cancerous inhibitor documented the mechanisms of Scutellarein‑induced cyto- of protein phosphatase 2A (CIP2A), is one of the oncogenic toxic effects, the literature shows that the proteomic changes molecules that have been shown to promote tumor growth that are associated with the cellular response to SCU have been and resistance to apoptosis and senescence‑inducing thera- poorly understood.
    [Show full text]