Genetic Analysis in Neurology: the Next 10 Years

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Analysis in Neurology: the Next 10 Years NEUROLOGICAL REVIEW Genetic Analysis in Neurology The Next 10 Years Alan Pittman, PhD; John Hardy, PhD n recent years, neurogenetics research had made some remarkable advances owing to the advent of genotyping arrays and next-generation sequencing. These improvements to the technology have allowed us to determine the whole-genome structure and its variation and to examine its effect on phenotype in an unprecedented manner. The identification of rare Idisease-causing mutations has led to the identification of new biochemical pathways and has fa- cilitated a greater understanding of the etiology of many neurological diseases. Furthermore, genome- wide association studies have provided information on how common genetic variability impacts on the risk for the development of various complex neurological diseases. Herein, we review how these technological advances have changed the approaches being used to study the genetic basis of neurological disease and how the research findings will be translated into clinical utility. JAMA Neurol. 2013;70(6):696-702. Published online April 9, 2013. doi:10.1001/jamaneurol.2013.2068 The diploid human genome is around 6 cyclopedia of DNA Elements (ENCODE) billion base pairs (bp) of DNA stored in project suggests that 80% of the human ge- 23 chromosome pairs. The Human Ge- nome is indeed functionally active.1,2 nome Project was initiated in 1990 to se- Several different classes of DNA varia- quence the entire human genome from tion can occur between the genomes of dif- DNA from a number of anonymous indi- ferent individuals. The most common type viduals of predominantly European de- of variation is the single-nucleotide poly- scent. The culmination of this work was morphism. One would expect to find ap- the publication of the draft sequence in proximately 3 million such variants in any 2001, and by 2004, a high-quality refer- given individual compared with that of the ence sequence became available. Work by reference sequence. These single base sub- the Genome Reference Consortium con- stitutions or point mutations arise, on av- tinues to this day to improve the quality erage, every 1000 bp or so, and single- and coverage of low-complexity, repeti- nucleotide polymorphisms that occur in tive, and hard to resolve regions. Following on from the release of the ref- erence genome, extensive analysis was per- CME available online at formed to identify functionally signifi- jamanetworkcme.com cant regions. Although today the exact number of genes is still unknown, it is more than 1% of the population are clas- thought that there are approximately sified as common variants. These are of- 21 000 protein-coding genes (1%-2%) con- ten located in noncoding regions of the tained in the human genome. The remain- genome and tend to have little or no phe- der of the genome consists of RNA genes, notypic effect. The vast majority of these regulatory sequences, and repetitive DNA common single-nucleotide polymor- in which the function is poorly under- phisms have been extensively studied in stood. However, recent work from the En- many ethnically diverse populations by ini- tiatives such as the International HapMap Author Affiliations: Department of Molecular Neuroscience and Reta Lila Weston Project3 and constitute a valuable catalog Laboratories, Institute of Neurology, University College London, England. and resource for genome-wide associa- JAMA NEUROL/ VOL 70 (NO. 6), JUNE 2013 WWW.JAMANEURO.COM 696 ©2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/25/2021 tion studies (GWASs) that investigate the effect of com- 1 000 000 000 mon variation on traits such as risk and susceptibility to Single-molecule common disease (eg, type 2 diabetes mellitus and Alz- 100 000 000 sequencing heimer disease). 10 000 000 The single-nucleotide polymorphisms that occur in less 1 000 000 100 000 than 1% of the population are classified as rare variants, DNA 10 000 Sanger PCR microarrays invented and some of these may have profound phenotypic effects 1000 method Short-read (eg, such base changes can change or alter the sequence 100 next-generation of a protein-coding gene). Genomic variation can also be 10 Capillary gel sequencing caused by multiple base changes for insertion and dele- electrophoresis 1975 1980 1985 1990 1995 2000 2005 2010 2015 Kilobases of DNA per Day Machine tion variants (ie, insertions and deletions of bases that range Year in size from 1 to 1000 bp). Such variants can have a sub- First Generation Second Third stantial effect in coding regions of the genome where they Generation Generation can result in gross alterations to a amino acid sequence or even a “frameshift” of the sequence resulting in a trun- Figure 1. Evolution of DNA sequencing technologies (adapted from Stratton cated protein. Larger insertions or deletions are referred et al4). PCR indicates polymerase chain reaction. to as copy number variants and can be both common and rare. Inversion and translocation events can also occur and plate DNA to generate “clusters” of identical DNA fol- can result in gross structural changes affecting many genes. lowed by sequencing through a stepwise incorporation These types of variation can be present in germline cells of fluorescently labeled nucleotides or oligonucle- or may be acquired somatically. Germline variation is either otides. Since the middle of the last decade, there are 3 inherited directly or occurs de novo during meiosis or just main commercial NGS platforms based on different se- after fertilization. Variation occurring in somatic cells is quencing chemistries.6 The technologies that are being acquired and can arise randomly or through external en- used now in many laboratories are referred to as second- vironmental factors. Extensive somatic mutation is a hall- generation sequencing technologies to distinguish other mark of cancer but has also been implicated in autoim- technologies in the pipeline termed third-generation se- mune and neurodegenerative diseases. quencing technologies. Variation in DNA can also occur that contributes to Massive parallel sequencing has now allowed for an heritable differences in gene expression; this is termed unprecedented interrogation of the variation in the hu- epigenetic vitiation. These modifications to the DNA in- man genome. For example, the 1000 Genomes Project, clude methylation and histone modifications, and they launched in January 2008, is an international collabora- function without altering the DNA sequence itself and tive research project involving the Wellcome Trust Sanger can change over time. Such modifications can have an Institute (England), the Beijing Genomics Institute important effect on disease (eg, the switching off of tu- (China), and the National Human Genome Research In- mor suppressor genes in cancer). stitute (United States), whose goal is to establish by far the most detailed catalog of human genetic variation.7 The “NEXT GENERATION” OF DNA SEQUENCING plan is to sequence the genomes of 2500 anonymous par- ticipants from a number of different ethnic groups world- DNA sequencing in the laboratory has been possible since wide using a combination of methods: low-coverage ge- the 1970s, when the Sanger method was first developed, nome sequencing and targeted resequencing of coding and has steadily improved and developed over time to fa- regions. The primary goals of this project are 3-fold: to cilitate automation and throughput. However, the tech- discover single-nucleotide variants at frequencies of 1% nique remains too laborious and expensive (although or higher in diverse populations; to uncover variants down Ͼ99.9% accurate) for the routine sequencing of whole ge- to frequencies of 0.1% to 0.5% in functional gene re- nomes. Over the past 10 years, a number of new sequenc- gions; and to reveal structural variants, such as copy num- ing technologies have been developed that have signifi- ber variants, insertions, and deletions. The results of a cantly reduced the cost and time required for sequencing pilot project comparing different strategies for sequenc- (Figure 1). These post-Sanger technologies are collec- ing have already been published, and the sequencing of tively described as next-generation sequencing (NGS) tech- more than 1000 genomes was completed in May 2011.8 nologies5 and have been developed with whole-genome This resource is publically available and can be used by sequencing in mind. This, however, is not their sole pur- researchers to identify variants in regions that are sus- pose; they can be used for a wide range of applications, pected of being associated with disease. By identifying such as targeted resequencing and RNA sequencing. and cataloguing most of the common genetic variants in Next-generation sequencing platforms have allowed the populations studied, this project has generated data for massive parallelization of sequencing reactions. Un- that will serve as an invaluable reference for clinical in- like the Sanger method in which each sequencing reac- terpretation of genomic variation. tion represents a single predefined target, the DNA mol- ecules in second-generation platforms are immobilized THIRD-GENERATION SEQUENCING on a solid surface and are sequenced in situ. This allows TECHNOLOGIES for the sequencing of many millions of target molecules in parallel and for a substantial reduction in cost. Cur- Massively parallel sequencing has become the domi- rent NGS platforms use the clonal amplification of tem- nant sequencing technology, but other
Recommended publications
  • Cytogenomic SNP Microarray - Fetal ARUP Test Code 2002366 Maternal Contamination Study Fetal Spec Fetal Cells
    Patient Report |FINAL Client: Example Client ABC123 Patient: Patient, Example 123 Test Drive Salt Lake City, UT 84108 DOB 2/13/1987 UNITED STATES Gender: Female Patient Identifiers: 01234567890ABCD, 012345 Physician: Doctor, Example Visit Number (FIN): 01234567890ABCD Collection Date: 00/00/0000 00:00 Cytogenomic SNP Microarray - Fetal ARUP test code 2002366 Maternal Contamination Study Fetal Spec Fetal Cells Single fetal genotype present; no maternal cells present. Fetal and maternal samples were tested using STR markers to rule out maternal cell contamination. This result has been reviewed and approved by Maternal Specimen Yes Cytogenomic SNP Microarray - Fetal Abnormal * (Ref Interval: Normal) Test Performed: Cytogenomic SNP Microarray- Fetal (ARRAY FE) Specimen Type: Direct (uncultured) villi Indication for Testing: Patient with 46,XX,t(4;13)(p16.3;q12) (Quest: EN935475D) ----------------------------------------------------------------- ----- RESULT SUMMARY Abnormal Microarray Result (Male) Unbalanced Translocation Involving Chromosomes 4 and 13 Classification: Pathogenic 4p Terminal Deletion (Wolf-Hirschhorn syndrome) Copy number change: 4p16.3p16.2 loss Size: 5.1 Mb 13q Proximal Region Deletion Copy number change: 13q11q12.12 loss Size: 6.1 Mb ----------------------------------------------------------------- ----- RESULT DESCRIPTION This analysis showed a terminal deletion (1 copy present) involving chromosome 4 within 4p16.3p16.2 and a proximal interstitial deletion (1 copy present) involving chromosome 13 within 13q11q12.12. This
    [Show full text]
  • File Download
    ADP Ribosylation Factors 1 and 4 and Group VIA Phospholipase A(2) Regulate Morphology and Intraorganellar Traffic in the Endoplasmic Reticulum-Golgi Intermediate Compartment Houchaima Ben-Tekaya, University of Basel Richard Kahn, Emory University Hans-Peter Hauri, University of Basel Journal Title: Molecular Biology of the Cell Volume: Volume 21, Number 23 Publisher: American Society for Cell Biology | 2010-12-01, Pages 4130-4140 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.1091/mbc.E10-01-0022 Permanent URL: https://pid.emory.edu/ark:/25593/ttrdd Final published version: http://dx.doi.org/10.1091/mbc.E10-01-0022 Copyright information: © 2010 H. Ben-Tekaya et al. This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/). Accessed September 28, 2021 7:22 PM EDT Molecular Biology of the Cell Vol. 21, 4130–4140, December 1, 2010 ADP Ribosylation Factors 1 and 4 and Group VIA Phospholipase A2 Regulate Morphology and Intraorganellar Traffic in the Endoplasmic Reticulum–Golgi Intermediate Compartment Houchaima Ben-Tekaya,* Richard A. Kahn,† and Hans-Peter Hauri* *Biozentrum, University of Basel, CH-4056 Basel, Switzerland; and †Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 Submitted January 8, 2010; Revised September 15, 2010; Accepted September 22, 2010 Monitoring Editor: Adam Linstedt Organelle morphology of the endomembrane system is critical for optimal organelle function. ADP ribosylation factors (Arfs), a family of small GTPases, are required for maintaining the structure of the Golgi and endosomes.
    [Show full text]
  • Transcriptome Analyses of Rhesus Monkey Pre-Implantation Embryos Reveal A
    Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Transcriptome analyses of rhesus monkey pre-implantation embryos reveal a reduced capacity for DNA double strand break (DSB) repair in primate oocytes and early embryos Xinyi Wang 1,3,4,5*, Denghui Liu 2,4*, Dajian He 1,3,4,5, Shengbao Suo 2,4, Xian Xia 2,4, Xiechao He1,3,6, Jing-Dong J. Han2#, Ping Zheng1,3,6# Running title: reduced DNA DSB repair in monkey early embryos Affiliations: 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 3 Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 4 University of Chinese Academy of Sciences, Beijing, China 5 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China 6 Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China * Xinyi Wang and Denghui Liu contributed equally to this work 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press # Correspondence: Jing-Dong J. Han, Email: [email protected]; Ping Zheng, Email: [email protected] Key words: rhesus monkey, pre-implantation embryo, DNA damage 2 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Pre-implantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA) and cell fate commitment.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Supplemental Table 1. Complete Gene Lists and GO Terms from Figure 3C
    Supplemental Table 1. Complete gene lists and GO terms from Figure 3C. Path 1 Genes: RP11-34P13.15, RP4-758J18.10, VWA1, CHD5, AZIN2, FOXO6, RP11-403I13.8, ARHGAP30, RGS4, LRRN2, RASSF5, SERTAD4, GJC2, RHOU, REEP1, FOXI3, SH3RF3, COL4A4, ZDHHC23, FGFR3, PPP2R2C, CTD-2031P19.4, RNF182, GRM4, PRR15, DGKI, CHMP4C, CALB1, SPAG1, KLF4, ENG, RET, GDF10, ADAMTS14, SPOCK2, MBL1P, ADAM8, LRP4-AS1, CARNS1, DGAT2, CRYAB, AP000783.1, OPCML, PLEKHG6, GDF3, EMP1, RASSF9, FAM101A, STON2, GREM1, ACTC1, CORO2B, FURIN, WFIKKN1, BAIAP3, TMC5, HS3ST4, ZFHX3, NLRP1, RASD1, CACNG4, EMILIN2, L3MBTL4, KLHL14, HMSD, RP11-849I19.1, SALL3, GADD45B, KANK3, CTC- 526N19.1, ZNF888, MMP9, BMP7, PIK3IP1, MCHR1, SYTL5, CAMK2N1, PINK1, ID3, PTPRU, MANEAL, MCOLN3, LRRC8C, NTNG1, KCNC4, RP11, 430C7.5, C1orf95, ID2-AS1, ID2, GDF7, KCNG3, RGPD8, PSD4, CCDC74B, BMPR2, KAT2B, LINC00693, ZNF654, FILIP1L, SH3TC1, CPEB2, NPFFR2, TRPC3, RP11-752L20.3, FAM198B, TLL1, CDH9, PDZD2, CHSY3, GALNT10, FOXQ1, ATXN1, ID4, COL11A2, CNR1, GTF2IP4, FZD1, PAX5, RP11-35N6.1, UNC5B, NKX1-2, FAM196A, EBF3, PRRG4, LRP4, SYT7, PLBD1, GRASP, ALX1, HIP1R, LPAR6, SLITRK6, C16orf89, RP11-491F9.1, MMP2, B3GNT9, NXPH3, TNRC6C-AS1, LDLRAD4, NOL4, SMAD7, HCN2, PDE4A, KANK2, SAMD1, EXOC3L2, IL11, EMILIN3, KCNB1, DOK5, EEF1A2, A4GALT, ADGRG2, ELF4, ABCD1 Term Count % PValue Genes regulation of pathway-restricted GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, SMAD protein phosphorylation 9 6.34 1.31E-08 ENG pathway-restricted SMAD protein GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, phosphorylation
    [Show full text]
  • Molecular Effects of Isoflavone Supplementation Human Intervention Studies and Quantitative Models for Risk Assessment
    Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis committee Promotors Prof. Dr Pieter van ‘t Veer Professor of Nutritional Epidemiology Wageningen University Prof. Dr Evert G. Schouten Emeritus Professor of Epidemiology and Prevention Wageningen University Co-promotors Dr Anouk Geelen Assistant professor, Division of Human Nutrition Wageningen University Dr Lydia A. Afman Assistant professor, Division of Human Nutrition Wageningen University Other members Prof. Dr Jaap Keijer, Wageningen University Dr Hubert P.J.M. Noteborn, Netherlands Food en Consumer Product Safety Authority Prof. Dr Yvonne T. van der Schouw, UMC Utrecht Dr Wendy L. Hall, King’s College London This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 20 June 2014 at 13.30 p.m. in the Aula. Vera van der Velpen Molecular effects of isoflavone supplementation: Human intervention studies and quantitative models for risk assessment 154 pages PhD thesis, Wageningen University, Wageningen, NL (2014) With references, with summaries in Dutch and English ISBN: 978-94-6173-952-0 ABSTRact Background: Risk assessment can potentially be improved by closely linked experiments in the disciplines of epidemiology and toxicology.
    [Show full text]
  • Anti-Phospholipase A2 (Ipla2) (C-Terminal Region) Produced in Rabbit, Affinity Isolated Antibody
    Anti-Phospholipase A2 (iPLA2) (C-terminal region) produced in rabbit, affinity isolated antibody Product Number SAB4200130 Product Description iPLA2 group VIA comprises at least 5 alternatively Anti-Phospholipase A2 (iPLA2) (C-terminal region) is spliced isoforms. Isoforms LH-iPLA2 (90 kDa), and produced in rabbit using as the immunogen a synthetic SH-iPLA2 (85 kDa) iPLA2 have been implicated in peptide corresponding to a sequence at the C-terminal phospholipid remodeling, nitric oxide-induced or of human iPLA2 (GeneID 8398), conjugated to KLH. vasopressin-induced arachidonic acid release, and in The corresponding sequence is highly conserved in leukotriene and prostaglandin production. Mutations in mouse iPLA2 (83% identity) and in rat iPLA2 (72% the PLA2G6 gene are the cause of two childhood identity). The antibody is affinity-purified using the neurologic disorders, neurodegeneration with brain iron immunizing peptide immobilized on agarose. accumulation (NBIA) and infantile neuroaxonal 4,5 dystrophy 1 (INAD1). Recent evidence suggests that Anti-Phospholipase A2 (iPLA2) (C-terminal region), both cPLA2 and iPLA2 may play a central role in specifically recognizes human and rat iPLA2. The memory deficits at early stages of AD and in the AD antibody can be used in several immunochemical neurodegenerative process.6 techniques including immunoblotting (85 kDa human iPLA2, and 95 kDa rat iPLA2). Detection of the iPLA2 Reagent bands by immunoblotting is specifically inhibited by the Supplied as a solution in 0.01 M phosphate buffered iPLA2 immunizing peptide. saline, pH 7.4, containing 15 mM sodium azide. 2+ Ca -independent phospholipase A2 (iPLA2, also known Antibody concentration: 1.5 mg/mL as PLA2G6, INAD1, PARK14, PNPLA9) is a member of the PLA2 superfamily that catalyzes the cleavage of Precautions and Disclaimer fatty acids from the sn-2 position of phospholipids.1,2 For R&D use only.
    [Show full text]
  • The Economic Impact and Functional Applications of Human Genetics and Genomics
    The Economic Impact and Functional Applications of Human Genetics and Genomics Commissioned by the American Society of Human Genetics Produced by TEConomy Partners, LLC. Report Authors: Simon Tripp and Martin Grueber May 2021 TEConomy Partners, LLC (TEConomy) endeavors at all times to produce work of the highest quality, consistent with our contract commitments. However, because of the research and/or experimental nature of this work, the client undertakes the sole responsibility for the consequence of any use or misuse of, or inability to use, any information or result obtained from TEConomy, and TEConomy, its partners, or employees have no legal liability for the accuracy, adequacy, or efficacy thereof. Acknowledgements ASHG and the project authors wish to thank the following organizations for their generous support of this study. Invitae Corporation, San Francisco, CA Regeneron Pharmaceuticals, Inc., Tarrytown, NY The project authors express their sincere appreciation to the following indi- viduals who provided their advice and input to this project. ASHG Government and Public Advocacy Committee Lynn B. Jorde, PhD ASHG Government and Public Advocacy Committee (GPAC) Chair, President (2011) Professor and Chair of Human Genetics George and Dolores Eccles Institute of Human Genetics University of Utah School of Medicine Katrina Goddard, PhD ASHG GPAC Incoming Chair, Board of Directors (2018-2020) Distinguished Investigator, Associate Director, Science Programs Kaiser Permanente Northwest Melinda Aldrich, PhD, MPH Associate Professor, Department of Medicine, Division of Genetic Medicine Vanderbilt University Medical Center Wendy Chung, MD, PhD Professor of Pediatrics in Medicine and Director, Clinical Cancer Genetics Columbia University Mira Irons, MD Chief Health and Science Officer American Medical Association Peng Jin, PhD Professor and Chair, Department of Human Genetics Emory University Allison McCague, PhD Science Policy Analyst, Policy and Program Analysis Branch National Human Genome Research Institute Rebecca Meyer-Schuman, MS Human Genetics Ph.D.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Lipid Related Genes Altered in NASH Connect Inflammation in Liver Pathogenesis Progression to HCC: a Canonical Pathway
    Lipid related genes altered in NASH connect inflammation in liver pathogenesis progression to HCC: a canonical pathway Christophe Desterke1, Franck Chiappini2* 1 Inserm, U935, Villejuif, F-94800, France 2 Cell Growth and Tissue Repair (CRRET) Laboratory, Université Paris-Est Créteil (UPEC), EA 4397 / ERL CNRS 9215, F-94010, Créteil, France. Corresponding author: *Franck Chiappini. Laboratoire du CRRET (Croissance, Réparation et Régénération Tissulaires), Université Paris-Est Créteil, 61 avenue du Général de Gaulle F- 94010, Créteil Cedex, Val de Marne, France. Email address: [email protected]; Tel: +33(0)145177080; Fax: +33(0)145171816 Supplementary Information Supplementary Datasets Table S1: Text-mining list of genes associated in PubMed literature with lipid related keywords. Supplementary Datasets Table S2: Expression fold change of lipid related genes found differentially expressed between NASH and healthy obese liver samples. Supplementary Datasets Table S3: Liver as principal filter for prioritization of lipid related genes found differentially expressed in NASH. Supplementary Datasets Table S4: Gene prioritization secondary filters (immunological, inflammation, liver pathogenesis progression) table found with lipid related genes differentially expressed in NASH. Supplementary Datasets Table S5: Identification of protein partners of YWHAZ gene using InnateDB database. Supplementary Datasets Table S1: Text-mining list of genes associated in PubMed literature with lipid related keywords. Ranking of "lipidic" textmining Gene symbol
    [Show full text]
  • NIH Public Access Provided by Digital.CSIC Author Manuscript Bioessays
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE NIH Public Access provided by Digital.CSIC Author Manuscript Bioessays. Author manuscript; available in PMC 2007 October 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Bioessays. 2007 April ; 29(4): 356±370. GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo Xosé R. Bustelo*, Vincent Sauzeau, and Inmaculada M. Berenjeno Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-University of Salamanca, Salamanca, Spain. Summary Rho/Rac proteins constitute a subgroup of the Ras superfamily of GTP hydrolases. Although originally implicated in the control of cytoskeletal events, it is currently known that these GTPases coordinate diverse cellular functions, including cell polarity, vesicular trafficking, the cell cycle and transcriptomal dynamics. In this review, we will provide an overview on the recent advances in this field regarding the mechanism of regulation and signaling, and the roles in vivo of this important GTPase family. Introduction The isolation of rhoA,(1) the first member of the Rho/Rac family ever identified, was achieved by Richard Axel’s group in 1985 during the search for ras -related genes in Aplysia.(1) The subsequent use of conventional cloning techniques and the more-recent characterization of genomes revealed that the original gene is not alone, having numerous family counterparts in other species including, among many others, S. cerevisiae(7 genes), A. taliana(11 genes), C. elegans(9 genes), D. melanogaster(9 genes) and H.
    [Show full text]