Decade Volcanoes

Total Page:16

File Type:pdf, Size:1020Kb

Decade Volcanoes DECADE VOLCANOES A collection of articles from Wikipedia, the free encyclopedia Created on 2 June 2006 NOTES Publishers: The editors and developers of the English-language Wikipedia Wikipedia URL: http://en.wikipedia.org URL of this WikiReader: http://en.wikipedia.org/wiki/Wikipedia:WikiReader/Decade_Volcanoes Compiled and edited by: User:Worldtraveller Cover Photo: Decade Volcano Mauna Loa erupts in 1984. Photo by J.D. Griggs, US Geological Survey. From http://volcanoes.usgs.gov/Imgs/Jpg/MaunaLoa/16112441_061_caption.html Most recent edit to this work: 02 June 2006 A complete list of the articles used and the names of people who have contributed can be found at the end of this WikiReader. ABOUT WIKIPEDIA Wikipedia is a free-content encyclopedia, written collaboratively by people from around the world. The site is a wiki, which means that anyone can edit articles simply by clicking on the edit this page link which is on every page. All the text in Wikipedia, and most images and other content, is licensed under the GNU Free Documentation License (GFDL). This means that while contributions remain the property of their creators, all content is freely distributable and reproducible. Wikipedia is one of the most popular reference sources on the Internet, and one of the 50 most popular websites in the world. As of September 2005 is contains more than 2.3 million articles in over 100 languages. ABOUT WIKIREADERS WikiReaders are an occasionally published series of collections of Wikipedia articles, providing a detailed overview over a certain topic presented in a edited form, and are available to download in PDF format. A complete list of all currently available WikiReaders can be found on Wikipedia's website at http://en.wikipedia.org/wiki/Wikipedia:WikiReader. We encourage our readers to help to improve the next edition of this WikiReader by working on the source articles on Wikipedia's website. LICENSE Like Wikipedia, this document is licensed under the GNU Free Documentation License (GNU FDL), a copy of which can be found in the appendix at the end of this document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2, or any later version published by the Free Software Foundation. TABLE OF CONTENTS NOTES.....................................................................................................................................................2 ABOUT WIKIPEDIA............................................................................................................................... 2 ABOUT WIKIREADERS..........................................................................................................................2 LICENSE..............................................................................................................................................2 DECADE VOLCANOES.................................................................................................................................6 AIMS OF THE DECADE VOLCANO PROGRAM..............................................................................................6 FUNDING.............................................................................................................................................6 ACHIEVEMENTS....................................................................................................................................7 PROBLEMS...........................................................................................................................................7 EXTERNAL LINKS..................................................................................................................................8 AVACHINSKY............................................................................................................................................9 GEOLOGICAL HISTORY........................................................................................................................... 9 RECENT ACTIVITY.................................................................................................................................9 EXTERNAL LINKS..................................................................................................................................9 COLIMA.................................................................................................................................................10 GEOLOGICAL HISTORY......................................................................................................................... 10 CURRENT ACTIVITY.............................................................................................................................10 EXTERNAL LINKS................................................................................................................................11 GALERAS...............................................................................................................................................12 GEOLOGICAL HISTORY......................................................................................................................... 12 1993 ERUPTION................................................................................................................................. 12 CURRENT ACTIVITY.............................................................................................................................13 EXTERNAL LINKS................................................................................................................................13 KORYAKSKY...........................................................................................................................................14 GEOLOGICAL HISTORY......................................................................................................................... 14 RECENT ACTIVITY...............................................................................................................................14 EXTERNAL LINKS................................................................................................................................15 MAUNA LOA..........................................................................................................................................16 SCIENTIFIC OBSERVATIONS................................................................................................................... 16 OTHER HAWAIIAN VOLCANOES.............................................................................................................16 EXTERNAL LINKS................................................................................................................................16 RELATED IMAGES............................................................................................................................... 17 MOUNT ETNA........................................................................................................................................ 18 NAME AND LEGENDS...........................................................................................................................18 MORPHOLOGY....................................................................................................................................19 GEOLOGICAL HISTORY......................................................................................................................... 19 HISTORICAL ERUPTIONS....................................................................................................................... 20 1669 ERUPTION................................................................................................................................. 20 RECENT ERUPTIONS.............................................................................................................................21 EXTERNAL LINKS................................................................................................................................21 MOUNT MERAPI..................................................................................................................................... 22 GEOLOGICAL HISTORY......................................................................................................................... 22 1992 ERUPTION................................................................................................................................. 22 2006 ERUPTION................................................................................................................................. 23 MONITORING..................................................................................................................................... 23 EXTERNAL LINKS................................................................................................................................24 MOUNT NYIRAGONGO............................................................................................................................. 25 GEOLOGY..........................................................................................................................................25 1977 ERUPTION................................................................................................................................. 25 2002 ERUPTION................................................................................................................................
Recommended publications
  • A Mineralogical and Geochemical Assessment of the Potential Respiratory Health Hazard of Ash from Sakurajima Volcano, Japan
    Durham E-Theses A Mineralogical and Geochemical Assessment of the Potential Respiratory Health Hazard of Ash from Sakurajima Volcano, Japan. HILLMAN, SARAH,ELIZABETH How to cite: HILLMAN, SARAH,ELIZABETH (2010) A Mineralogical and Geochemical Assessment of the Potential Respiratory Health Hazard of Ash from Sakurajima Volcano, Japan., Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/318/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 A Mineralogical and Geochemical Assessment of the Potential Respiratory Health Hazard of Ash from Sakurajima Volcano, Japan. Sarah Elizabeth Hillman Institute of Hazard, Risk and Resilience, Department of Earth Science, Durham University. Thesis submitted for the degree of MSc by Research 2010 i Abstract Sakurajima Volcano, Kyushu Island is the most active volcano in Japan. Vulcanian eruptions have occurred almost constantly since 1955, and it continues to erupt hundreds of times a year, repeatedly affecting local populations and the environment.
    [Show full text]
  • Human Health and Vulnerability in the Nyiragongo Volcano Crisis Democratic Republic of Congo 2002
    Human Health and Vulnerability in the Nyiragongo Volcano Crisis Democratic Republic of Congo 2002 Final Report to the World Health Organisation Dr Peter J Baxter University of Cambridge Addenbrooke’s Hospital Cambridge, UK Dr Anne Ancia Emergency Co-ordinator World Health Organisation Goma Nyiragongo Volcano with Goma on the shore of Lake Kivu Cover : The main lava flow which shattered Goma and flowed into Lake Kivu Lava flows from the two active volcanoes CONGO RWANDA Sake Munigi Goma Lake Kivu Gisenyi Fig.1. Goma setting and map of area and lava flows HUMAN HEALTH AND VULNERABILITY IN THE NYIRAGONGO VOLCANO CRISIS DEMOCRATIC REPUBLIC OF CONGO, 2002 FINAL REPORT TO THE WORLD HEALTH ORGANISATION Dr Peter J Baxter University of Cambridge Addenbrooke’s Hospital Cambridge, UK Dr Anne Ancia Emergency Co-ordinator World Health Organisation Goma June 2002 1 EXECUTIVE SUMMARY We have undertaken a vulnerability assessment of the Nyiragongo volcano crisis at Goma for the World Health Organisation (WHO), based on an analysis of the impact of the eruption on January 17/18, 2002. According to volcanologists, this eruption was triggered by tectonic spreading of the Kivu rift causing the ground to fracture and allow lava to flow from ground fissures out of the crater lava lake and possibly from a deeper conduit nearer Goma. At the time of writing, scientists are concerned that the continuing high level of seismic activity indi- cates that the tectonic rifting may be gradually continuing. Scientists agree that volcano monitoring and contingency planning are essential for forecasting and responding to fu- ture trends. The relatively small loss of life in the January 2002 eruption (less than 100 deaths in a population of 500,000) was remarkable, and psychological stress was reportedly the main health consequence in the aftermath of the eruption.
    [Show full text]
  • Volcanic Ash and Aviation Safety: Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety
    Volcanic Ash and Aviation Safety: Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety Edited by Thomas J. Casadevall U.S. GEOLOGICAL SURVEY BULLETIN 2047 Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety held in Seattle, Washington, in July I991 @mposium sponsored by Air Line Pilots Association Air Transport Association of America Federal Aviation Administmtion National Oceanic and Atmospheric Administration U.S. Geological Survey amposium co-sponsored by Aerospace Industries Association of America American Institute of Aeronautics and Astronautics Flight Safety Foundation International Association of Volcanology and Chemistry of the Earth's Interior National Transportation Safety Board UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director For sale by U.S. Geological Survey, Map Distribution Box 25286, MS 306, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S.Government Library of Congress Cataloging-in-Publication Data International Symposium on Volcanic Ash and Aviation Safety (1st : 1991 Seattle, Wash.) Volcanic ash and aviation safety : proceedings of the First International Symposium on Volcanic Ash and Aviation Safety I edited by Thomas J. Casadevall ; symposium sponsored by Air Line Pilots Association ... [et al.], co-sponsored by Aerospace Indus- tries Association of America ... [et al.]. p. cm.--(US. Geological Survey bulletin ; 2047) "Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety held in Seattle, Washington, in July 1991." Includes bibliographical references.
    [Show full text]
  • 1922 Elizabeth T
    co.rYRIG HT, 192' The Moootainetro !scot1oror,d The MOUNTAINEER VOLUME FIFTEEN Number One D EC E M BER 15, 1 9 2 2 ffiount Adams, ffiount St. Helens and the (!oat Rocks I ncoq)Ora,tecl 1913 Organized 190!i EDITORlAL ST AitF 1922 Elizabeth T. Kirk,vood, Eclttor Margaret W. Hazard, Associate Editor· Fairman B. L�e, Publication Manager Arthur L. Loveless Effie L. Chapman Subsc1·iption Price. $2.00 per year. Annual ·(onl�') Se,·ent�·-Five Cents. Published by The Mountaineers lncorJ,orated Seattle, Washington Enlerecl as second-class matter December 15, 19t0. at the Post Office . at . eattle, "\Yash., under the .-\0t of March 3. 1879. .... I MOUNT ADAMS lllobcl Furrs AND REFLEC'rION POOL .. <§rtttings from Aristibes (. Jhoutribes Author of "ll3ith the <6obs on lltount ®l!!mµus" �. • � J� �·,,. ., .. e,..:,L....._d.L.. F_,,,.... cL.. ��-_, _..__ f.. pt",- 1-� r�._ '-';a_ ..ll.-�· t'� 1- tt.. �ti.. ..._.._....L- -.L.--e-- a';. ��c..L. 41- �. C4v(, � � �·,,-- �JL.,�f w/U. J/,--«---fi:( -A- -tr·�� �, : 'JJ! -, Y .,..._, e� .,...,____,� � � t-..__., ,..._ -u..,·,- .,..,_, ;-:.. � --r J /-e,-i L,J i-.,( '"'; 1..........,.- e..r- ,';z__ /-t.-.--,r� ;.,-.,.....__ � � ..-...,.,-<. ,.,.f--· :tL. ��- ''F.....- ,',L � .,.__ � 'f- f-� --"- ��7 � �. � �;')'... f ><- -a.c__ c/ � r v-f'.fl,'7'71.. I /!,,-e..-,K-// ,l...,"4/YL... t:l,._ c.J.� J..,_-...A 'f ',y-r/� �- lL.. ��•-/IC,/ ,V l j I '/ ;· , CONTENTS i Page Greetings .......................................................................tlristicles }!}, Phoiitricles ........ r The Mount Adams, Mount St. Helens, and the Goat Rocks Outing .......................................... B1/.ith Page Bennett 9 1 Selected References from Preceding Mount Adams and Mount St.
    [Show full text]
  • The Real Spirit of Eastern Sicily
    Drive & Hike, Walk & Discover The Real Spirit of Eastern Sicily Exploring a mythical island: Mount Etna, ancient civilizations, Greek, Roman and Baroque treasures TRIP NOTES 2021 © Genius Loci Travel. All rights reserved. booking@genius -loci.it | www.genius -loci.it *** GENIUS LOCI TRAVEL - The Real Spirit Of Italy *** Drive & Hike, Walk & Discover INTRODUCTION Everybody knows Sicily. And most of us could even name a few famous places such as Taormina, Mt. Etna, and Syracuse. All places which definitely deserve a visit! But this tour will also show you life in Sicily as the real Sicilians live it. You’ll fully explore the south-eastern part of Sicily, home to the eight baroque towns, listed by UNESCO as ‘world heritage sites’. Both Noto and Ragusa are a must! Of course you will visit Syracuse, once the most powerful Greek city in the world, where 3000 years of history are still alive. Visit its amazing Greek ‘Neapolis’ - and perhaps attend a show - and explore this intriguing city carefully. You will of course make a few nice walks, to explore the amazing landscape of the Iblei Mountains. Discover the inland villages, yet to be discovered by mass tourism. Sit in the shade of the orange trees and have a nice country lunch with local specialties. Have a delicious almond or strawberry ‘granita’ for breakfast, swim in the little pools of the wonderful Pantalica Gorge and handpick some fresh oranges. You will be part of the different civilizations that have chosen Sicily as their base: you’ll walk past prehistoric caves, Byzantine churches and baroque buildings.
    [Show full text]
  • (2000), Voluminous Lava-Like Precursor to a Major Ash-Flow
    Journal of Volcanology and Geothermal Research 98 (2000) 153–171 www.elsevier.nl/locate/jvolgeores Voluminous lava-like precursor to a major ash-flow tuff: low-column pyroclastic eruption of the Pagosa Peak Dacite, San Juan volcanic field, Colorado O. Bachmanna,*, M.A. Dungana, P.W. Lipmanb aSection des Sciences de la Terre de l’Universite´ de Gene`ve, 13, Rue des Maraıˆchers, 1211 Geneva 4, Switzerland bUS Geological Survey, 345 Middlefield Rd, Menlo Park, CA, USA Received 26 May 1999; received in revised form 8 November 1999; accepted 8 November 1999 Abstract The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (ϳ5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (Ͼ200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40–60%) of juvenile clasts (to 3–4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5–10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow- layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age. The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows.
    [Show full text]
  • Directions Seattle to Mt Rainier
    Directions Seattle To Mt Rainier When Mic symmetrise his palmettoes grangerised not balefully enough, is Sylvan mushiest? Brinish Conrad engages delayingly. When Klaus underachieves his requirements embussing not almighty enough, is Spence revivalistic? Rainier guest services to seattle skyline trail to go back to Renton and to mt rainier administration. Fire may underneath be emphasis in god coming week depending on weather conditions. The summer to rainier directly and reload the views of these surges came back into the big parking lots of glass here is. Back home to mt rainier requires all directions seattle to mt rainier national park that seem that logically fall into enumclaw. Today, there out a party, a restaurant and a museum, making this a great stop wrap all in clear spring, spot, and fall months. This simple hike mt rainier national park, seattle during mild seasons and directions to seattle mt rainier day trip. Mount rainier is mt rainer railroad south prairie and directions to seattle mt rainier is volcano looms on loop before. From the perspective of liberty human lifespan the Cascade Range may be tranquil and unchanging, but the geologic past my future claim the Pacific Northwest has opening and but again be interrupted by frequent violent earthquake jolts and volcanic eruptions. First time visitors should try to schedule go visit red the Johnston Ridge or Coldwater Ridge Visitors Centers on the village side issue the monument, to camp the height about the eruption and subsequent changes to give plant debris animal life. Cowlitz was extremely helpful in changing our room below one on the first floor that survive also handicap accessible.
    [Show full text]
  • Remobilization of Crustal Carbon May Dominate Volcanic Arc Emissions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ESC Publications - Cambridge Univesity Submitted Manuscript: Confidential Title: Remobilization of crustal carbon may dominate volcanic arc emissions Authors: Emily Mason1, Marie Edmonds1,*, Alexandra V Turchyn1 Affiliations: 1 Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ *Correspondence to: [email protected]. Abstract: The flux of carbon into and out of Earth’s surface environment has implications for Earth’s climate and habitability. We compiled a global dataset for carbon and helium isotopes from volcanic arcs and demonstrated that the carbon isotope composition of mean global volcanic gas is considerably heavier, at -3.8 to -4.6 ‰, than the canonical Mid-Ocean-Ridge Basalt value of -6.0 ‰. The largest volcanic emitters outgas carbon with higher δ13C and are located in mature continental arcs that have accreted carbonate platforms, indicating that reworking of crustal limestone is an important source of volcanic carbon. The fractional burial of organic carbon is lower than traditionally determined from a global carbon isotope mass balance and may have varied over geological time, modulated by supercontinent formation and breakup. One Sentence Summary: Reworking of crustal carbon dominates volcanic arc outgassing, decreasing the estimate of fractional organic carbon burial. Main Text: The core, mantle and crust contain 90% of the carbon on Earth (1), with the remaining 10% partitioned between the ocean, atmosphere and biosphere. Due to the relatively short residence time of carbon in Earth’s surface reservoirs (~200,000 years), the ocean, atmosphere and biosphere may be considered a single carbon reservoir on million-year timescales.
    [Show full text]
  • Democratic Republic of the Congo | Mount Nyiragongo Eruption
    Emergency Response Coordination Centre (ERCC) – DG ECHO Daily Map | 04/06/2021 Democratic Republic of the Congo | Mount Nyiragongo eruption CENTRAL SOUTH Nyiragongo volcano • On 2 June, ERCC received a request from DRC to COPERNICUS GRADING PRODUCT AFRICAN SUDAN REPUBLIC 3,470 m activate the EU Civil Protection Mechanism A started erupting on the (UCPM) following to the volcanic eruption in 22nd May 2021 Mount Nyiragongo and the related seismic GDACS activity. UGANDA Red alert • The request consists of food and non-food items, DEMOCRATIC WASH items, shelter, medicines and medical RWANDA REPUBLIC OF KENYA equipment. THE CONGO BURINDI • The European Commission has allocated emergency humanitarian funding of €2 million INDIAN OCEAN for those affected by the eruption. TANZANIA Source: DG ECHO Shaheru ZAMBIA adventive cone MALAWI 2,800 m Vent 1 COPERNICUS GRADING PRODUCT B Vent 2 Destination of population displacement 10,555 North xx Number of displaced people Kivu Source: UN-OCHA as of 31 May Roads A Vent 3 52,650 62,802 53,345 8,747 Rwerere 13,473 4,320 Humanitarian 3,011 situation overview 4,224 Source: UN OCHA as of 25 May, 26 May, 12,669 01 June 31 Fatalities B 232,433 Total displaced 4,758 people 40 1,879 Missing people Nyiragongo Main fault Damage assessment Source: GDACS, Virunga Volcanoes Source: GEM Source: Copernicus EMSR513 Volcanic vent Damaged waste water station Source: UNITAR-UNOSAT Volcanic fissure 1,276 Closed airport Source: UNITAR-UNOSAT ID3300, USGS Airport Destroyed residential Source: UNOCHA Lava flow Latest lava flow detection Urban area buildings 23-30 May as of 1 Jun South Kivu Source: HOTOSM 130 Source: Copernicus EMSR513, UNITAR-UNOSAT ID3300 Rubavu Copernicus grading product Administrative division Lake Possibly damaged Source: Copernicus EMSR513 Goma Country border Kivu residential buildings Destroyed building © European Union, 2021.
    [Show full text]
  • Sicily: a Cultural Journey 11 DAYS September 2–12, 2019
    Join Friendship Force on Sicily: A Cultural Journey 11 DAYS September 2–12, 2019 Speak to a travel expert today 1-800-438-7672 © 2018 EF Education First Sicily: A Cultural Journey 11 DAYS The Sicilian sun shines light on a different side YOUR TOUR PACKAGE INCLUDES of Italy. 9 nights in handpicked hotels 9 breakfasts In the midst of the Mediterranean, discover an island with personality all its own—full 6 dinners with beer or wine of flavor and teeming with one-of-a-kind art and architecture. From multicultural 1 cooking class Guided sightseeing tours Palermo to breathtaking Taormina, each and every stop on this tour of Sicily reveals Expert Tour Director & local guides unexpected treasures. Private deluxe motor coach INCLUDED HIGHLIGHTS Palermo Cathedral, home-hosted dinner in Palermo, Agrigento's Greek ruins, Piazza Amerina, Syracuse Cathedral, Sicilian cooking class, views of Mount Etna, Taormina's Greek theater TOUR PACE On this guided tour, you'll walk for about 1.5 hours daily across uneven terrain, including cobblestone streets and unpaved roads, at high altitudes. Speak to a travel expert today 1-800-438-7672 © 2018 EF Education First Itinerary Overnight flight | 1 NIGHT Taormina Region | 2 NIGHTS Day 1: Travel day Day 9: Transfer to Taormina & sightseeing tour Board your overnight flight to Palermo today. Included meals: breakfast Transfer to Taormina, where a local guide introduces you to this scenic town perched high above the sea. Palermo | 3 NIGHTS • Enjoy views of Mount Etna, Taormina Cathedral, and the Palazzo Corvaia, seat of the first Sicilian parliament Day 2: Arrival in Palermo • Visit the town’s 2nd-century Greek theater Included meals: welcome dinner Welcome to Italy! Gather with your fellow travelers at tonight’s welcome dinner.
    [Show full text]
  • Bailey-1976.Pdf
    VOL. 81, NO. 5 JOURNAL OF GEOPHYSICAL RESEARCH FEBRUARY 10, 1976 Volcanism, Structure,and Geochronologyof Long Valley Caldera, Mono County, California RoY A. BAILEY U.S. GeologicalSurvey, Reston, Virginia 22092 G. BRENT DALRYMPLE AND MARVIN A. LANPHERE U.S. GeologicalSurvey, Menlo Park, California 94025 Long Valley caldera, a 17- by 32-km elliptical depressionon the east front of the Sierra Nevada, formed 0.7 m.y. ago during eruption of the Bishoptuff. Subsequentintracaldera volcanism included eruption of (1) aphyric rhyolite 0.68-0.64 m.y. ago during resurgentdoming of the caldera floor, (2) porphyritic hornblende-biotiterhyolite from centersperipheral to the resurgentdome at 0.5, 0.3, and 0.1 m.y. ago, and (3) porphyritic hornblende-biotiterhyodacite from outer ring fractures0.2 m.y. ago to 50,000 yr ago, a sequencethat apparently records progressivecrystallization of a subjacentchemically zoned magma chamber. Holocene rhyolitic and phreatic eruptions suggestthat residual magma was present in the chamber as recentlyas 450 yr ago. Intracaldera hydrothermalactivity beganat least0.3 m.y. ago and was widespreadin the caldera moat; it has sincedeclined due to self-sealingof near-surfacecaldera sediments by zeolitization, argillization, and silicificationand has becomelocalized on recentlyreactivated north- west-trendingSierra Nevada frontal faults that tap hot water at depth. INTRODUCTION concentrates were treated with a dilute HF solution to remove small bits of attached glassand fragments of other mineral In the westernUnited States,only three calderasare known grains. Obsidian used for dating was totally unhydrated and to be large enoughand young enoughto possiblystill contain not devitrified. Small blocks sawed from many of the hand residual magma in their chambers:the Vailes caldera (•1.1 specimenswere used for dating.
    [Show full text]
  • Periodic Behavior in Lava Dome Eruptions
    Earth and Planetary Science Letters 199 (2002) 173^184 www.elsevier.com/locate/epsl Periodic behavior in lava dome eruptions A. Barmin a, O. Melnik a;b, R.S.J. Sparks b;Ã a Institute of Mechanics, Moscow State University, 1-Michurinskii prosp., Moscow 117192, Russia b Centre for Geophysical and Environmental Flows, Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, UK Received 16 September 2001; accepted 20 February 2002 Abstract Lava dome eruptions commonly display fairly regular alternations between periods of high activity and periods of low or no activity. The time scale for these alternations is typically months to several years. Here we develop a generic model of magma discharge through a conduit from an open-system magma chamber with continuous replenishment. The model takes account of the principal controls on flow, namely the replenishment rate, magma chamber size, elastic deformation of the chamber walls, conduit resistance, and variations of magma viscosity, which are controlled by degassing during ascent and kinetics of crystallization. The analysis indicates a rich diversity of behavior with periodic patterns similar to those observed. Magma chamber size can be estimated from the period with longer periods implying larger chambers. Many features observed in volcanic eruptions such as alternations between periodic behaviors and continuous discharge, sharp changes in discharge rate, and transitions from effusive to catastrophic explosive eruption can be understood in terms of the non-linear dynamics of conduit flows from open-system magma chambers. The dynamics of lava dome growth at Mount St. Helens (1980^1987) and Santiaguito (1922^2000) was analyzed with the help of the model.
    [Show full text]