The Killer of Socrates Exposed – Coniine in the Plant Kingdom

Total Page:16

File Type:pdf, Size:1020Kb

The Killer of Socrates Exposed – Coniine in the Plant Kingdom IENCE C • •S T S E C The killer of Socrates exposed – Coniine in the plant N O H I N kingdom S O I V Dissertation L • O S 135 G Coniine, a piperidine alkaloid, is known from poison hemlock T Y H • R (Conium maculatum L.), twelve Aloe species and Sarracenia flava G I E L VTT SCIEN CE S H E G L. Its biosynthesis is not well understood, although a possible route A I R H C starts with a polyketide formed by a polyketide synthase (PKS). H This study focused on identification and characterization of PKS- 1 3 5 genes involved in coniine formation, induction of callus from plants containing hemlock alkaloids and investigation of the possibility to elicitate the alkaloid pathway in cell culture in order to understand coniine biosynthesis. Plant materials involved in different stages of this study were investigated for their alkaloid content using gas chromatography-mass spectrometry. A novel type of PKS, CPKS5, was identified as the starter candidate for the initiation of coniine biosynthesis by catalysing the synthesis of the carbon backbone from one butyryl-CoA and two malonyl-CoA moieties. When elicitated, poison hemlock cell cultures produced furanocoumarins but no piperidine alkaloids. The hemlock alkaloids are wider distributed than previously has been thought among Sarracenia, and Aloe spp. contain a new alkaloid for the genus. These results together pave the way towards possible utilization of hemlock alkaloids. The killer of Socrates ISBN 978-951-38-8459-8 (Soft back ed.) exposed – Coniine in the T he killer of S o crates exp ose d – C o niine in the plant... ISBN 978-951-38-8458-1 (URL: http://www.vttresearch.com/impact/publications) ISSN-L 2242-119X plant kingdom ISSN 2242-119X (Print) ISSN 2242-1203 (Online) http://urn.fi/URN:ISBN:978-951-38-8458-1 Hannu Hotti VTT SCIENCE 135 The killer of Socrates exposed – Coniine in the plant kingdom Hannu Hotti VTT Technical Research Centre of Finland Ltd Doctoral Programme in Plant Sciences Department of Agricultural Sciences Faculty of Agriculture and Forestry University of Helsinki Thesis for the degree of Doctor of Science (Agriculture and Forestry) to be presented with due permission for public examination and criticism in auditorium 1041 in Biocentre 2 (Viikinkaari 5), at University of Helsinki, on the 14th October 2016 at 12 o'clock. ISBN 978-951-38-8459-8 (Soft back ed.) ISBN 978-951-38-8458-1 (URL: http://www.vttresearch.com/impact/publications) VTT Science 135 ISSN-L 2242-119X ISSN 2242-119X (Print) ISSN 2242-1203 (Online) http://urn.fi/URN:ISBN:978-951-38-8458-1 Copyright © VTT 2016 JULKAISIJA – UTGIVARE – PUBLISHER Teknologian tutkimuskeskus VTT Oy PL 1000 (Tekniikantie 4 A, Espoo) 02044 VTT Puh. 020 722 111, faksi 020 722 7001 Teknologiska forskningscentralen VTT Ab PB 1000 (Teknikvägen 4 A, Esbo) FI-02044 VTT Tfn +358 20 722 111, telefax +358 20 722 7001 VTT Technical Research Centre of Finland Ltd P.O. Box 1000 (Tekniikantie 4 A, Espoo) FI-02044 VTT, Finland Tel. +358 20 722 111, fax +358 20 722 7001 Cover image: Hannu Hotti Juvenes Print, Tampere 2016 Preface This work was carried out as a joint Ph.D. project at VTT Technical Research Centre of Finland Ltd and at the Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki during the years 2009-2016. The Plant Biotech- nology and Metabolomics research team at VTT provided facilities and expertise in plant and cell culture together with possibilities for the chemical analysis of small molecules. I received support from the Gerbera Laboratory of the Department of Agricultural Sciences in cloning and analysing polyketide synthase genes and their products. The management of VTT is acknowledged for providing excellent working facilities. This study was funded by a Doctoral Program in Plant Sciences, VTT, the Academy of Finland (project number 138808, PKRed), Oskar Öflunds Stiftelse, Eteläsuomalaisten ylioppilaiden säätiö, Societas pro Fauna et Flora Fennica, Otto A. Malmin lahjoitusrahasto and University of Helsinki. I am grateful to my supervisors, docent Heiko Rischer, docent Kirsi-Marja Oks- man-Caldentey and professor Teemu Teeri. Your commitment, advice, and support through these long years enabled me to complete this project. Especially I thank my main supervisor Heiko Rischer, who always had time and advice for my work. I thank my follow-up committee, whose members alongside my supervisors were Anneli Ritala and Anna Kärkönen. Also, I thank fellow members in the PKRed- project, Suvi Häkkinen, Juha Kontturi and Milla Pietiäinen along with the project leaders, Heiko Rischer, and Teemu Teeri, for monthly meetings to discuss various research topics related to the project. I thank my co-authors Heiko Rischer, Tuulikki Seppänen-Laakso, Gopal Peddinti, Suvi Häkkinen, Philipp Meier, Mikko Arvas and Teemu Teeri. With you, I have learned a lot about academic writing and all that goes with it. I am grateful for all the advice and expertise I received from Jaana Rikkinen, Tuuli Teikari, and Airi Hyrkäs. My gratitude also goes to Kaj-Roger Hurme in the Isotope Laboratory of the Faculty of Agriculture and Forestry for all things related to radioac- tive work. I thank Lieven Sterck from VIB for Conium transcriptome assembly and Kean-Jin Lim from the Gerbera Laboratory for Trinity-assembly. I thank all the cur- rent and past members of the Plant Biotechnology and Metabolomics research group for assistance and friendship. Words cannot express all the gratitude I feel towards my family for what I have in my heart and my soul. Special thanks go to my parents, Anne and Risto Hotti, who 3 supported me throughout all these years and had the patience to listen to my reflec- tions on my research. I also thank my dear grandmother, Pirkko Hotti, my sister Heidi, brother-in-law Antti and niece Emilia Manninen. Finally, I thank my aunt Mar- jaana and uncle Paavo Pelkonen for inspiring me to reach my academic dream. In Helsinki September, 2016 Hannu Hotti 4 To Margaret F. Roberts and Edward E. Leete (1928-1992) for their work on coniine biosynthesis. Vinum poturus rex, memento te bibere sanguinem terra; cicuta hominum venenum est, cicuta vinum. When you are about to drink wine, o King, remember that you are about to drink the blood of earth. Hemlock is a poison to man, wine a poison to hemlock. -Pliny the Elder, 14.5 Quippe videre licet pinguescere saepe cicuta barbigeras pecudes, homini quae est acre venenum. Sooth, as one oft many see the bearded goats batten upon hemlock which to man is violent poison. -Lucretius, De rerum natura, 5.899-900. 5 Academic dissertation Supervisors Docent Heiko Rischer VTT Technical Research Centre of Finland Ltd Espoo, Finland Docent Kirsi-Marja Oksman-Caldentey VTT Technical Research Centre of Finland Ltd Espoo, Finland Professor Teemu Teeri Department of Agricultural Sciences University of Helsinki, Helsinki, Finland Reviewers Professor Riitta Julkunen-Tiitto Department of Biology University of Eastern Finland, Joensuu, Finland Professor Dr. Robert Verpoorte Institute of Biology Leiden University, Leiden, the Netherlands Opponent Professor Dr. Heribert Warzecha Department of Biology Technische Universität Darmstadt, Darmstadt, Germany Custos Professor Teemu Teeri Department of Agricultural Sciences University of Helsinki, Helsinki, Finland 6 List of publications This thesis is based on the following original publications, which are referred to in the text as Articles I–IV. The publications are reproduced with kind permission from the publishers. I Hotti, H., Seppänen-Laakso, T., Arvas, M., Teeri, T.H. & Rischer, H. 2015. Polyketide synthases from poison hemlock ( Conium maculatum L.). FEBS Journal 282, 4141-4156. doi: 10.1111/febs.13410. II Meier, P., Hotti, H. & Rischer, H. 2015. Elicitation of furanocoumarins in poison hemlock ( Conium maculatum L.) cell culture. Plant Cell, Tissue and Organ Culture 123(3), 443-453. doi: 10.1007/s11240-015-0847-7. III Hotti, H., Häkkinen, S.T., Seppänen-Laakso, T. & Rischer, H. 2016. Polyke- tides in Aloe plant and cell cultures. Manuscript. IV Hotti, H., Gopalacharyulu, P., Seppänen-Laakso, T. & Rischer, H. 2016. Metabolite profiling of the carnivorous pitcher plants Darlingtonia and Sar- racenia . Submitted to PLOSONE. Nota bene: The following results have not been published in the aforementioned articles: • Transcriptome sequencing of Conium maculatum • Testing of optimal pH for CPKS1 and CPKS5 7 Author’s contributions I. The author planned the work together with Heiko Rischer and Teemu Teeri. The author carried out the experimental work, except for the phylogenetic tree analysis and analysis of enzyme product structures. The author interpreted the data and had the main responsibility for writ- ing the publication under the supervision of Heiko Rischer and Teemu Teeri. II. The author planned the work together with Philipp Meier and Heiko Rischer. The author carried out the development of the tested cell line. The author co-authored the publication writing with Philipp Meier under the supervision of Heiko Rischer. III. The author planned the work together with Heiko Rischer and Suvi Häkkinen. The author carried out the experimental work, except for analysis of the structure of N-methylconiine. The author interpreted the data with Suvi Häkkinen and had the main responsibility for writing the publication under the supervision of Heiko Rischer. IV. The author planned the work together with Gopal Peddinti, Tuulikki Seppänen-Laakso, and Heiko Rischer. The author carried out the ex- perimental work. The author co-authored the publication,
Recommended publications
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2016
    Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate.
    [Show full text]
  • Seeds Available CARNILANDES, Harvest 2020
    Seeds available CARNILANDES, harvest 2020 dimanche 9 mai 2021 www.sarracenia.fr [email protected] N° Species or hybrid Minimum quantity Droseraceae Dionaea DIO-1005 4,00 € Dionaea muscipula 25 DM Atlanta x DM Darwin DIO-999 2,75 € Dionaea muscipula. Mélange de 100 cultivars. 25 Seed mixture of more than 100 cultivars.. Drosera DCP-01 2,75 € Drosera capensis f.rouge 25 Red form D.capensis to darker flowers than the typical form. In the sun, the leaves become red purple. DCP-02 2,75 € Drosera capensis f.fleur blanche (alba) 25 D.capensis form with leaf and white flowers. DCP-02B 2,75 € Drosera capensis f.fleur blanche (alba Giant) 25 "Giant" form of D.capensis with leaves and white flowers. DCP-04 2,75 € Drosera capensis 25 DRI-01 2,75 € Drosera intermedia (Québec) 25 Quebec form of Drosera intermedia. Martyniaceae Ibicella IBI-01 2,75 € Ibicella lutea 12 Annual carnivorous plant produces beautiful large yellow flowers. The fruit is called "Claws of the Devil." Sarraceniaceae Sarracenia alata SAL-009 C 2,75 € Sarracenia alata var.atrorubra Red Skin 20 Completely red, inside and outside. Slightly pubescent. SAL-010 2,75 € Sarracenia alata var.rubrioperculata( purple throat Giant) 20 Similar, in larger, to alata red throat. Gets huge. SAL-013 A 2,75 € Sarracenia alata var.alata (cream white flower) 20 Alata with cream-white flower. SAL-015 2,75 € Sarracenia alata var.alata- red/heavy vein-Jackson Co-Mississippi 20 Sarracenia alata form type. Pretty red veins. dimanche 9 mai 2021 www.sarracenia.fr [email protected] Page 1 sur 8 N° Species or hybrid Minimum quantity SAL-016 A 2,75 € Sarracenia alata var.rubrioperculata (red lidded) 20 Wavy lid whith high red color.
    [Show full text]
  • The Maria Curie-Skłodowska University Botanical Garden in Lublin As a Refuge of the Moths (Lepidoptera: Heterocera) Within the City
    Acta Biologica 23/2016 | www.wnus.edu.pl/ab | DOI: 10.18276/ab.2016.23-02 | strony 15–34 The Maria Curie-Skłodowska University Botanical Garden in Lublin as a refuge of the moths (Lepidoptera: Heterocera) within the city Łukasz Dawidowicz,1 Halina Kucharczyk2 Department of Zoology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland 1 e-mail: [email protected] 2 e-mail: [email protected] Keywords biodiversity, urban fauna, faunistics, city, species composition, rare species, conservation Abstract In 2012 and 2013, 418 species of moths at total were recorded in the Botanical Garden of the Maria Curie-Skłodowska University in Lublin. The list comprises 116 species of Noctuidae (26.4% of the Polish fauna), 116 species of Geometridae (28.4% of the Polish fauna) and 63 species of other Macrolepidoptera representatives (27.9% of the Polish fauna). The remaining 123 species were represented by Microlepidoptera. Nearly 10% of the species were associated with wetland habitats, what constitutes a surprisingly large proportion in such an urbanised area. Comparing the obtained data with previous studies concerning Polish urban fauna of Lepidoptera, the moths assemblages in the Botanical Garden were the most similar to the one from the Natolin Forest Reserve which protects the legacy of Mazovian forests. Several recorded moths appertain to locally and rarely encountered species, as Stegania cararia, Melanthia procellata, Pasiphila chloerata, Eupithecia haworthiata, Horisme corticata, Xylomoia graminea, Polychrysia moneta. In the light of the conducted studies, the Botanical Garden in Lublin stands out as quite high biodiversity and can be regarded as a refuge for moths within the urban limits of Lublin.
    [Show full text]
  • Picrotoxin-Like Channel Blockers of GABAA Receptors
    COMMENTARY Picrotoxin-like channel blockers of GABAA receptors Richard W. Olsen* Department of Molecular and Medical Pharmacology, Geffen School of Medicine, University of California, Los Angeles, CA 90095-1735 icrotoxin (PTX) is the prototypic vous system. Instead of an acetylcholine antagonist of GABAA receptors (ACh) target, the cage convulsants are (GABARs), the primary media- noncompetitive GABAR antagonists act- tors of inhibitory neurotransmis- ing at the PTX site: they inhibit GABAR Psion (rapid and tonic) in the nervous currents and synapses in mammalian neu- system. Picrotoxinin (Fig. 1A), the active rons and inhibit [3H]dihydropicrotoxinin ingredient in this plant convulsant, struc- binding to GABAR sites in brain mem- turally does not resemble GABA, a sim- branes (7, 9). A potent example, t-butyl ple, small amino acid, but it is a polycylic bicyclophosphorothionate, is a major re- compound with no nitrogen atom. The search tool used to assay GABARs by compound somehow prevents ion flow radio-ligand binding (10). through the chloride channel activated by This drug target appears to be the site GABA in the GABAR, a member of the of action of the experimental convulsant cys-loop, ligand-gated ion channel super- pentylenetetrazol (1, 4) and numerous family. Unlike the competitive GABAR polychlorinated hydrocarbon insecticides, antagonist bicuculline, PTX is clearly a including dieldrin, lindane, and fipronil, noncompetitive antagonist (NCA), acting compounds that have been applied in not at the GABA recognition site but per- huge amounts to the environment with haps within the ion channel. Thus PTX major agricultural economic impact (2). ͞ appears to be an excellent example of al- Some of the other potent toxicants insec- losteric modulation, which is extremely ticides were also radiolabeled and used to important in protein function in general characterize receptor action, allowing and especially for GABAR (1).
    [Show full text]
  • Poisonous Plants
    Dr. Sharon M. Douglas Department of Plant Pathology and Ecology The Connecticut Agricultural Experiment Station 123 Huntington Street, P. O. Box 1106 New Haven, CT 06504 Phone: (203) 974-8601 Fax: (203) 974-8502 Founded in 1875 Email: [email protected] Putting science to work for society Website: www.ct.gov/caes POISONOUS PLANTS INTRODUCTION only attractive but also tastes sweet. The Poisonous plants have always been part of situation of plant poisoning of children is daily life. In the nineteenth century, quite different than with adults since poisonings due to plants reached near- children have great curiosity and will often epidemic levels as people often foraged for chew on anything within their reach, sources of food from natural plantings. especially attractive berries or fruit. Today, potentially dangerous plants can still Children are also less likely than adults to be found all around us. Poisonous plants are spit out unpleasant-tasting substances. frequently part of interiorscapes in homes as Since much smaller quantities are necessary well as in landscape plantings outdoors. to produce a toxic reaction in children, the This has become increasingly problematic as risks of poisoning due to ingestion are much more and more cultivated, exotic plants greater than for adults. However, regardless from throughout the world are introduced of age, reactions to poisonous plants vary into the landscape. Recent studies have with the individual and can be influenced by estimated that 3.5% of all poisonings in the diet, metabolism, and medications being United States are due to plants. taken. All types of native and introduced plants can The term “poisonous” designates many be poisonous including ferns, herbaceous kinds of reactions or effects.
    [Show full text]
  • Qrno. 1 2 3 4 5 6 7 1 CP 2903 77 100 0 Cfcl3
    QRNo. General description of Type of Tariff line code(s) affected, based on Detailed Product Description WTO Justification (e.g. National legal basis and entry into Administration, modification of previously the restriction restriction HS(2012) Article XX(g) of the GATT, etc.) force (i.e. Law, regulation or notified measures, and other comments (Symbol in and Grounds for Restriction, administrative decision) Annex 2 of e.g., Other International the Decision) Commitments (e.g. Montreal Protocol, CITES, etc) 12 3 4 5 6 7 1 Prohibition to CP 2903 77 100 0 CFCl3 (CFC-11) Trichlorofluoromethane Article XX(h) GATT Board of Eurasian Economic Import/export of these ozone destroying import/export ozone CP-X Commission substances from/to the customs territory of the destroying substances 2903 77 200 0 CF2Cl2 (CFC-12) Dichlorodifluoromethane Article 46 of the EAEU Treaty DECISION on August 16, 2012 N Eurasian Economic Union is permitted only in (excluding goods in dated 29 may 2014 and paragraphs 134 the following cases: transit) (all EAEU 2903 77 300 0 C2F3Cl3 (CFC-113) 1,1,2- 4 and 37 of the Protocol on non- On legal acts in the field of non- _to be used solely as a raw material for the countries) Trichlorotrifluoroethane tariff regulation measures against tariff regulation (as last amended at 2 production of other chemicals; third countries Annex No. 7 to the June 2016) EAEU of 29 May 2014 Annex 1 to the Decision N 134 dated 16 August 2012 Unit list of goods subject to prohibitions or restrictions on import or export by countries- members of the
    [Show full text]
  • Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity
    toxins Article Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity Massimo Picardo 1 , Oscar Núñez 2,3 and Marinella Farré 1,* 1 Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain; [email protected] 2 Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08034 Barcelona, Spain; [email protected] 3 Serra Húnter Professor, Generalitat de Catalunya, 08034 Barcelona, Spain * Correspondence: [email protected] Received: 5 October 2020; Accepted: 26 November 2020; Published: 28 November 2020 Abstract: This study presents the application of a suspect screening approach to screen a wide range of natural toxins, including mycotoxins, bacterial toxins, and plant toxins, in surface waters. The method is based on a generic solid-phase extraction procedure, using three sorbent phases in two cartridges that are connected in series, hence covering a wide range of polarities, followed by liquid chromatography coupled to high-resolution mass spectrometry. The acquisition was performed in the full-scan and data-dependent modes while working under positive and negative ionisation conditions. This method was applied in order to assess the natural toxins in the Ter River water reservoirs, which are used to produce drinking water for Barcelona city (Spain). The study was carried out during a period of seven months, covering the expected prior, during, and post-peak blooming periods of the natural toxins. Fifty-three (53) compounds were tentatively identified, and nine of these were confirmed and quantified. Phytotoxins were identified as the most frequent group of natural toxins in the water, particularly the alkaloids group.
    [Show full text]
  • La Cicuta: Poison Hemlock
    ALERTA DE MALA HIERBA NOCIVA EN EL CONDADO DE KING Cicuta Mala hierba nociva no regulada de Clase B: Poison Hemlock Control recomendado Conium maculatum Familia Apiaceae Cómo identificarla • Bienal que alcanza de 8 (2.4 m) a 10 pies (3 m) de altura el segundo año. • Hojas color verde encendido tipo helecho con un fuerte olor a moho • El primer año, las plantas forman rosetas basales de hojas muy divididas y tallos rojizos con motas • El segundo año, los tallos son fuertes, huecos, sin pelos, con nervaduras y con motas/rayas rojizas o púrpuras • Plantas con flores cubiertas con numerosos racimos pequeños con forma de paraguas de diminutas flores blancas de cinco pétalos • Las semillas se forman en cápsulas verdes y acanaladas que con el tiempo La cicuta tiene hojas de color verde se vuelven marrones brillante, tipo helecho con olor a moho. Biología Se reproduce por semilla. El primer año crece en forma de roseta; el segundo, desarrolla tallos altos y flores. Crece rápidamente entre marzo y mayo; florece a finales de la primavera. Cada planta produce hasta 40,000 semillas. Las semillas caen cerca de la planta y se desplazan por la erosión, los animales, la lluvia y la actividad humana. Las semillas son viables hasta por 6 años y germinan durante la temporada de crecimiento; no requieren un periodo de letargo. Impacto Altamente tóxica para el ser humano, el ganado y la vida silvestre; causa Los tallos gruesos y sin pelos tienen la muerte por parálisis respiratoria tras su ingestión. El crecimiento manchas o vetas de color púrpura o rojizo.
    [Show full text]
  • THE EFFECT of A-SOLANINE on ACETYLCHOLINESTERASE ACTMTY in WO: an EXAMINATION of UNDOCUMENTED BELIEFS a Thesis in Partial Fiifdi
    THE EFFECT OF a-SOLANINE ON ACETYLCHOLINESTERASE ACTMTY IN WO:AN EXAMINATION OF UNDOCUMENTED BELIEFS Airdrie M. Waker A Thesis Submitted to the Faculty of Graduate Studies in partial fiifdiment of the requirements for the degree of Master of Science University of Manitoba Winnipeg, Manitoba (c) Airdrie M. Waker, 1997. National Libraiy Bibliothèque nationale du Canada Acquisitions and Acquisitions et Bibliographie Services senrices bibliographiques The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Li- of Canada to Bibliothèque nationale du Canada de reproduce, loan, distniute or sell reproduire, prêter, distn'buer ou copies of this thesis in microform, vendre des copies de cette hese sous paper or electroaic fonnats. la forme de mic~che~nim,de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. COPYRIGET PERMISSION PAGE THE EFFECT OF a-SOLANINE ON ACTEYLCROLINESTERASE ACTIVITY --IN VIVO: ANEXAKDUTIONOF UNDOCüMENTED BELIEFS A Thcrir/Pmcticum sabmittd to the Faculty of Graduate Studics of The Univenity of Manitoba in partial falfillmet of the reqaimmenti of the dm of MASTER OF SCIENCE Airdrie M. WaLker 1997 (c) Pennissiom hm ken granted to the Librnry of The University of Minitoba to Itnd or seiî copies of thu thesis/prptcticum, to the Natiooai Library of CanPàa to micronlm this thesis and to lend or sel1 copies of the mm, and to Dissertations Abstracb IaternatiooaI to pablisb an abstnct of this thesidprpcticam.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Plants for CONIINE
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Plants for CONIINE Plant Part Low PPM High PPM StdDev Reference Aloe ortholopha Leaf Nash, R. J., Beaumont, J., Veitch, N. C., Reynolds, T., Benner, J., Hughes, C. N. G., Dring, J. V., Bennett, R. N., Dellar, J. E. 1992. Phenylethylamine and Piperidine Alkaloids in Aloe Species. Planta Medica, 581: 84-87. Aloe descoingsii Leaf Nash, R. J., Beaumont, J., Veitch, N. C., Reynolds, T., Benner, J., Hughes, C. N. G., Dring, J. V., Bennett, R. N., Dellar, J. E. 1992. Phenylethylamine and Piperidine Alkaloids in Aloe Species. Planta Medica, 581: 84-87. Aloe krapohliana Leaf Nash, R. J., Beaumont, J., Veitch, N. C., Reynolds, T., Benner, J., Hughes, C. N. G., Dring, J. V., Bennett, R. N., Dellar, J. E. 1992. Phenylethylamine and Piperidine Alkaloids in Aloe Species. Planta Medica, 581: 84-87. Aloe viguieri Leaf Nash, R. J., Beaumont, J., Veitch, N. C., Reynolds, T., Benner, J., Hughes, C. N. G., Dring, J. V., Bennett, R. N., Dellar, J. E. 1992. Phenylethylamine and Piperidine Alkaloids in Aloe Species. Planta Medica, 581: 84-87. Aloe globuligemma Leaf Nash, R. J., Beaumont, J., Veitch, N. C., Reynolds, T., Benner, J., Hughes, C. N. G., Dring, J. V., Bennett, R. N., Dellar, J. E. 1992. Phenylethylamine and Piperidine Alkaloids in Aloe Species. Planta Medica, 581: 84-87. Amorphophallus konjac Plant Willaman, J. J., Schubert, B. G. 1961. Alkaloid Bearing Plants and their Contained Alkaloids. ARS, USDA, Tech. Bull. 1234, Supt. Doc., Washington D.C. Arisarum vulgare Plant Willaman, J. J., Schubert, B.
    [Show full text]
  • Toxicology in Antiquity
    TOXICOLOGY IN ANTIQUITY Other published books in the History of Toxicology and Environmental Health series Wexler, History of Toxicology and Environmental Health: Toxicology in Antiquity, Volume I, May 2014, 978-0-12-800045-8 Wexler, History of Toxicology and Environmental Health: Toxicology in Antiquity, Volume II, September 2014, 978-0-12-801506-3 Wexler, Toxicology in the Middle Ages and Renaissance, March 2017, 978-0-12-809554-6 Bobst, History of Risk Assessment in Toxicology, October 2017, 978-0-12-809532-4 Balls, et al., The History of Alternative Test Methods in Toxicology, October 2018, 978-0-12-813697-3 TOXICOLOGY IN ANTIQUITY SECOND EDITION Edited by PHILIP WEXLER Retired, National Library of Medicine’s (NLM) Toxicology and Environmental Health Information Program, Bethesda, MD, USA Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom Copyright r 2019 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).
    [Show full text]
  • Steroidal Glycoalkaloids in Solanum Species: Consequences for Potato Breeding and Food Safety
    STEROIDAL GLYCOALKALOIDS IN SOLANUM SPECIES: CONSEQUENCES FOR POTATO BREEDING AND FOOD SAFETY CENTRALE LANDBOUWCATALOQUS 0000 0352 3277 Promotoren: dr. J.J.C. Scheffer bijzonder hoogleraar in de kruidkunde dr. J.H. Koeman hoogleraar in de toxicologie 0ù&K>\\ZO\ W.M.J. VAN GELDER STEROIDAL GLYCOALKALOIDS IN SOLANUM SPECIES: CONSEQUENCES FOR POTATO BREEDING AND FOOD SAFETY Proefschrift ter verkrijging van de graad van doctor in de landbouwwetenschappen, op gezag van de rector magnificus, dr. H.C. van der Plas, in het openbaar te verdedigen op woensdag 11 oktober 1989 BIBLIOTHEEK des namiddags te vier uur in de aula VVUNIVERSITEI T van de Landbouwuniversiteit te Wageningen r '^* tttJoJlO' , f301 STELLINGEN 1.D eveelvuldi g gehanteerde limietva n 200m g steroidalkaloidglycosiden per kg verse ongeschilde aardappel, als criterium voor consumenten- veiligheid, berust noch op toxicologische studies noch op kennis over het voorkomen van steroidalkaloidglycosiden inwild e Solanum-soorten en dient derhalve als arbitrair teworde nbeschouwd . Dit proefschrift. 2. Voor de analyse van steroidalkaloidglycosiden in Solanum-soorten is capillaire gaschromatografie in combinatie met simultane vlamionisatie- detectie (FID) en specifieke-stikstofdetectie (NPD) minimaal noodzake­ lijk;bi j voorkeur dientmassaspectrometri e teworde n toegepast. Ditproefschrift . 3.He tvermoge nva n aardappelen tothe t accumulerenva n steroidalkaloid­ glycosiden onder praktijkcondities van teelt, bewaring en verwerking, dient een van de belangrijkste criteria te zijn bij het beoordelen van nieuwe rassen ophu n geschiktheidvoo r consumptie. Ditproefschrift . 4. Op grond van de huidige inzichten in de chemie enhe t voorkomen van steroidalkaloidglycosiden in Solanum-soorten kan geconcludeerd worden dat veel fytochemische en toxicologische studies tot misleidende onderzoekresultaten kunnenhebbe n geleid.
    [Show full text]