Chimaera Free

Total Page:16

File Type:pdf, Size:1020Kb

Chimaera Free FREE CHIMAERA PDF Ian Irvine | 848 pages | 26 May 2005 | Little, Brown Book Group | 9781841493251 | English | London, United Kingdom Chimaera | Wookieepedia | Fandom Chimerain Greek mythologya fire-breathing female monster resembling a lion in the forepart, a goat in the middle, and a dragon behind. She Chimaera Caria and Lycia until she was slain by Chimaera. The word is now used generally to denote a fantastic idea or figment of the imagination. Chimera Article Media Additional Info. Print Cite. Facebook Twitter. Give Chimaera External Websites. Let us know if you have suggestions Chimaera improve this Chimaera requires login. External Websites. Theoi Greek Mythology - Khimaira. The Editors of Encyclopaedia Britannica Encyclopaedia Britannica's editors oversee subject areas in which they have extensive knowledge, whether from years of experience gained by working on that content or via study for an advanced degree See Article History. Britannica Quiz. A Study of Greek and Roman Mythology. Learn More in these related Britannica articles:. Etruscan bronze Chimaera produced, often for export,…. Bellerophonhero in Greek legend. History at your fingertips. Sign Chimaera here to see what happened On This Dayevery day in your inbox! Email address. By signing up, you agree to Chimaera Privacy Notice. Be on the lookout for your Britannica newsletter to get trusted stories delivered Chimaera to your inbox. Chimera | Definition of Chimera by Merriam-Webster Chimaera such, Chimaera will be present within the article. A Chimaera was a type of hybrid animal and a violent magical beast native to Greece. The Chimaera Chimaera a vicious, bloodthirsty beast with a lion 's head, a goat 's Chimaera and a dragon 's tail. There was only one recorded instance of a wizard killing a Chimaera, although the Chimaera died from the exhaustion after killing it. Dai Llewellynthe famous Caerphilly Catapults player, was killed by a Chimaera while Chimaera holiday in MykonosGreece. In the — school year in HogwartsProfessor Silvanus Kettleburn repeatedly said that a Chimaera had escaped and was roaming the castle unleashed. Liz Tuttle managed to calm her down. InRubeus Hagrid stated to Hermione Granger that it was difficult to get a Chimaera egg, causing Hermione to speculate that Chimaera had tried to get one, and Chimaera to use it as part of a Care of Magical Creatures lesson, while Hermione advised Hagrid better not to bring dangerous beasts to teach to the Hogwarts students, Chimaera to Dolores Umbridge 's inspections. During the Battle of Hogwartswhen Vincent Crabbe cast Fiendfyre cursed fireflaming Chimaeras appeared out Chimaera it. Fandom may earn an affiliate commission on sales made from links on this page. Sign In Don't have an account? Start a Wiki. Contents [ show ]. The Chimaera Potter Wiki has 6 images related to Chimaera. Categories :. Stream the best stories. Start Your Free Trial. Try Now. Chimaera | Harry Potter Wiki | Fandom Callorhinchidae Chimaeridae Rhinochimaeridae. Chimaeras [1] are cartilaginous fish in the order Chimaeriformesknown informally as ghost sharksrat Chimaeraspookfishor Chimaera fish ; the last three names are not to Chimaera confused with rattailsOpisthoproctidaeChimaera Siganidaerespectively. At one time a "diverse and abundant" group based on the fossil recordtheir closest living relatives are sharks and raysChimaera their last common ancestor with them lived nearly million years ago. Exceptions include the members of the genus Callorhinchusthe rabbit fish and the spotted ratfishwhich locally or periodically can be found at relatively shallow depths. Consequently, these are also among the few species from the chimaera order kept in public aquaria. In many species, the snout is modified into an elongated sensory organ. Like other members of the class Chondrichthyeschimaera skeletons are constructed of Chimaera. Their skin is smooth and naked, lacking placoid scales except in the claspersand their color can range from black to brownish Chimaera. For defense, most chimaeras have Chimaera venomous spine in front of Chimaera dorsal fin. Chimaeras resemble sharks in some ways: they employ claspers for internal fertilization of females and they Chimaera eggs with leathery cases. They also use electroreception to find their prey. They also differ from sharks in that their upper Chimaera are fused Chimaera their skulls and they have separate anal and urogenital openings. They lack sharks' many sharp and replaceable teeth, having instead just three pairs of large permanent grinding tooth plates. They also have gill covers or opercula like bony fishes. In some classifications, the Chimaera are included as subclass Holocephali in the class Chondrichthyes of cartilaginous fishes; in other systems, this distinction Chimaera be raised to the level of class. Chimaeras also have some characteristics of bony fishes. A renewed effort to explore deep water and to undertake taxonomic analysis of specimens in museum collections led to a boom during the first decade of the 21st century in the number of Chimaera species identified. Tracing the evolution of these Chimaera has been problematic given the scarcity of Chimaera fossils. DNA Chimaera have become the preferred approach to understanding speciation. The order appears to have originated about million years ago during the Silurian. The 39 extant species fall into three Chimaera CallorhinchidsRhinochimaerids and Chimaerids Chimaera the callorhinchids being the most basal clade. The families appear to have diverged during the late Jurassic to early Cretaceous — mya. As other fish, chimaeras have a number of parasites. From Wikipedia, the free encyclopedia. This article is about the cartilaginous fish order. For the namesake genus, see Chimaera genus. For the mythological beast, see Chimera mythology. For Chimaera uses, see Chimera. Chimaera the film, see Ghost Shark film. November version. September 23, Retrieved Houghton Mifflin Harcourt. Retrieved 9 August Ohio Biological Survey. Paxton, John R. Encyclopedia of Fishes. San Diego: Academic Press. Fessard, A. Retrieved Chimaera November Perhaps the most Chimaera feature of the newly described Chimaera, Hydrolagus melanophasmais a presumed sexual organ that extends from its forehead called a tentaculum. Chimaera Biology and Evolution. Extant cartilaginous fish orders. Hexanchiformes frilled and cow sharks Squaliformes dogfish sharks Pristiophoriformes sawsharks Squatiniformes angel sharks Heterodontiformes bullhead Chimaera Orectolobiformes carpet Chimaera Carcharhiniformes ground sharks Lamniformes mackerel sharks. Torpediniformes electric Chimaera Pristiformes sawfishes Rajiformes skates and guitarfishes Myliobatiformes Chimaera and relatives. Chimaeriformes chimaeras. Categories : Chimaeriformes Extant Early Devonian first appearances. Hidden categories: Articles with 'species' microformats Commons category link is on Wikidata. Namespaces Article Talk. Views Chimaera Edit View history. Help Learn to edit Community portal Recent changes Upload file. Download as PDF Printable Chimaera. Wikimedia Commons Wikispecies. Hydrolagus colliei. Chimaeriformes ObruchevChimaera Wikimedia Commons has media related to Chimaeriformes. Selachii sharks Hexanchiformes frilled and cow sharks Squaliformes dogfish sharks Pristiophoriformes sawsharks Squatiniformes angel sharks Heterodontiformes bullhead sharks Orectolobiformes carpet sharks Carcharhiniformes ground sharks Lamniformes mackerel sharks..
Recommended publications
  • Sharks in Crisis: a Call to Action for the Mediterranean
    REPORT 2019 SHARKS IN CRISIS: A CALL TO ACTION FOR THE MEDITERRANEAN WWF Sharks in the Mediterranean 2019 | 1 fp SECTION 1 ACKNOWLEDGEMENTS Written and edited by WWF Mediterranean Marine Initiative / Evan Jeffries (www.swim2birds.co.uk), based on data contained in: Bartolí, A., Polti, S., Niedermüller, S.K. & García, R. 2018. Sharks in the Mediterranean: A review of the literature on the current state of scientific knowledge, conservation measures and management policies and instruments. Design by Catherine Perry (www.swim2birds.co.uk) Front cover photo: Blue shark (Prionace glauca) © Joost van Uffelen / WWF References and sources are available online at www.wwfmmi.org Published in July 2019 by WWF – World Wide Fund For Nature Any reproduction in full or in part must mention the title and credit the WWF Mediterranean Marine Initiative as the copyright owner. © Text 2019 WWF. All rights reserved. Our thanks go to the following people for their invaluable comments and contributions to this report: Fabrizio Serena, Monica Barone, Adi Barash (M.E.C.O.), Ioannis Giovos (iSea), Pamela Mason (SharkLab Malta), Ali Hood (Sharktrust), Matthieu Lapinksi (AILERONS association), Sandrine Polti, Alex Bartoli, Raul Garcia, Alessandro Buzzi, Giulia Prato, Jose Luis Garcia Varas, Ayse Oruc, Danijel Kanski, Antigoni Foutsi, Théa Jacob, Sofiane Mahjoub, Sarah Fagnani, Heike Zidowitz, Philipp Kanstinger, Andy Cornish and Marco Costantini. Special acknowledgements go to WWF-Spain for funding this report. KEY CONTACTS Giuseppe Di Carlo Director WWF Mediterranean Marine Initiative Email: [email protected] Simone Niedermueller Mediterranean Shark expert Email: [email protected] Stefania Campogianni Communications manager WWF Mediterranean Marine Initiative Email: [email protected] WWF is one of the world’s largest and most respected independent conservation organizations, with more than 5 million supporters and a global network active in over 100 countries.
    [Show full text]
  • Molecular Circumscription of New Species of Gyrocotyle Diesing, 1850 (Cestoda) from Deep-Sea Chimaeriform Holocephalans in the North Atlantic
    Title Molecular circumscription of new species of Gyrocotyle Diesing, 1850 (Cestoda) from deep-sea chimaeriform holocephalans in the North Atlantic Authors Bray, RA; Waeschenbach, A; Littlewood, T; Halvorsen, O; Olson, PD Date Submitted 2020-06-11 Syst Parasitol https://doi.org/10.1007/s11230-020-09912-w (0123456789().,-volV)(0123456789().,-volV) Molecular circumscription of new species of Gyrocotyle Diesing, 1850 (Cestoda) from deep-sea chimaeriform holocephalans in the North Atlantic Rodney A. Bray . Andrea Waeschenbach . D. Timothy J. Littlewood . Odd Halvorsen . Peter D. Olson Received: 14 November 2019 / Accepted: 1 March 2020 Ó The Author(s) 2020 Abstract Chimaeras, or ratfishes, are the only extant and their specific host associations has remained group of holocephalan fishes and are the sole host highly speculative. Here we report the presence of group of gyrocotylidean cestodes, which represent a Gyrocotyle spp. from rarely-caught deep-sea chi- sister group of the true tapeworms (Eucestoda). These maeras collected in the North-East Atlantic, and unique, non-segmented cestodes have been known describe two new species: G. haffii n. sp. from the since the 1850s and multiple species and genera have bent-nose chimaera, Harriota raleighana Goode & been erected despite a general agreement that the Bean, and G. discoveryi n. sp. from the large-eyed delineation of species on the basis of morphology is rabbit fish, Hydrolagus mirabilis (Collett). Nuclear effectively impossible. Thus, in the absence of ribosomal sequence data were generated for individual molecular studies, the validity of gyrocotylid taxa parasites taken from different host species collected on different dates and from different localities and were combined with previously published sequences.
    [Show full text]
  • Chondrichthyes: Carcharhiniformes: Scyliorhinidae) from the Gulf of Aden
    Zootaxa 3881 (1): 001–016 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3881.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:809A2B3B-2C2C-4D26-A50F-6D5185D3BD6A Apristurus breviventralis, a new species of deep-water catshark (Chondrichthyes: Carcharhiniformes: Scyliorhinidae) from the Gulf of Aden JUNRO KAWAUCHI1,4, SIMON WEIGMANN2 & KAZUHIRO NAKAYA3 1Chair of Marine Biology and Biodiversity (Systematic Ichthyology), Graduate School of Fisheries Sciences, Hokkaido University, 3- 3-1 Minato-cho, Hakodate Hokkaido 041-8611, Japan. E-mail: junro@ frontier.hokudai.ac.jp 2Biocenter Grindel and Zoological Museum, University of Hamburg, Section Ichthyology, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany. E-mail: [email protected] 3Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan. E-mail: [email protected] 4Corresponding author Abstract A new deep-water catshark of the genus Apristurus Garman, 1913 is described based on nine specimens from the Gulf of Aden in the northwestern Indian Ocean. Apristurus breviventralis sp. nov. belongs to the ‘brunneus group’ of the genus and is characterized by having pectoral-fin tips reaching beyond the midpoint between the paired fin bases, a much shorter pectoral-pelvic space than the anal-fin base, a low and long-based anal fin, and a first dorsal fin located behind pelvic-fin insertion. The new species most closely resembles the western Atlantic species Apristurus canutus, but is distinguishable in having greater nostril length than internarial width and longer claspers in adult males.
    [Show full text]
  • Life History Aspects and Taxonomy of Deep-Sea Chondrichthyans in the Southwestern Indian Ocean Paul Joseph Clerkin San Jose State University
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Fall 2017 Life History Aspects and Taxonomy of Deep-Sea Chondrichthyans in the Southwestern Indian Ocean Paul Joseph Clerkin San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Clerkin, Paul Joseph, "Life History Aspects and Taxonomy of Deep-Sea Chondrichthyans in the Southwestern Indian Ocean" (2017). Master's Theses. 4869. DOI: https://doi.org/10.31979/etd.ms3e-x835 https://scholarworks.sjsu.edu/etd_theses/4869 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. LIFE HISTORY ASPECTS AND TAXONOMY OF DEEP-SEA CHONDRICHTHYANS IN THE SOUTHWESTERN INDIAN OCEAN A Thesis Presented to the Faculty of Moss Landing Marine Laboratories and San José State University In Partial Fulfilment of the Requirements for the Degree Master of Science by Paul J. Clerkin December 2017 © 2017 Paul J. Clerkin ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled LIFE HISTORY ASPECTS AND TAXONOMY OF DEEP-SEA CHONDRICHTHYANS IN THE SOUTHWESTERN INDIAN OCEAN by Paul J. Clerkin APPROVED FOR THE DEPARTMENT OF MARINE SCIENCE SAN JOSÉ STATE UNIVERSITY December 2017 Dr. David A. Ebert Moss Landing Marine Laboratories Dr. Scott Hamilton Moss Landing Marine Laboratories Dr. Kenneth H. Coale Moss Landing Marine Laboratories ABSTRACT ASPECTS OF THE LIFE HISTORY AND TAXONOMY OF DEEP-SEA CHONDRICHTHYANS IN THE SOUTHWESTERN INDIAN OCEAN by Paul J.
    [Show full text]
  • Biomechanics of Locomotion in Sharks, Rays, and Chimaeras
    5 Biomechanics of Locomotion in Sharks, Rays, and Chimaeras Anabela M.R. Maia, Cheryl A.D. Wilga, and George V. Lauder CONTENTS 5.1 Introduction 125 5.1.1 Approaches to Studying Locomotion in Chondrichthyans 125 5.1.2 Diversity of Locomotory Modes in Chondrichthyans 127 5.1.3 Body Form and Fin Shapes 127 5.2 Locomotion in Sharks 128 5.2.1 Function of the Body during Steady Locomotion and Vertical Maneuvering 128 5.2.2 Function of the Caudal Fin during Steady Locomotion and Vertical Maneuvering 130 5.2.3 Function of the Pectoral Fins during Locomotion 134 5.2.3.1 Anatomy of the Pectoral Fins 134 5.2.3.2 Role of the Pectoral Fins during Steady Swimming 136 5.2.3.3 Role of the Pectoral Fins during Vertical Maneuvering 138 5.2.3.4 Function of the Pectoral Fins during Benthic Station-Holding 139 5.2.3.5 Motor Activity in the Pectoral Fins 139 5.2.4 Routine Maneuvers and Escape Responses 140 5.2.5 Synthesis 141 5.3 Locomotion in Skates and Rays 142 5.4 Locomotion in Holocephalans 145 5.5 Material Properties of Chondrichthyan Locomotor Structures 146 5.6 Future Directions 147 Acknowledgments 148 References 148 5.1.1 Approaches to Studying 5.1 Introduction Locomotion in Chondrichthyans The body form of sharks is notable for the distinctive Historically, many attempts have been made to under- heterocercal tail with external morphological asymme- stand the function of the median and paired fins in try present in most taxa and the ventrolateral winglike sharks and rays, and these studies have included work pectoral fins extending laterally from the body (Figure with models (Affleck.
    [Show full text]
  • Morphometric Characteristics of Rabbit Fish (Siganus Canaliculatus Park
    Morphometric characteristics of rabbit fish (Siganus canaliculatus Park, 1797) in Makassar Strait, Flores Sea, and Bone Gulf Suwarni, Joeharnani Tresnati, Ambo Tuwo, Sharifuddin Bin Andy Omar Aquatic Resources Management, Faculty of Marine Science and Fisheries, Hasanuddin University, Tamalanrea, 90245, Makassar, Indonesia. Corresponding author: Suwarni, [email protected] Abstract. Rabit fish (Siganus canaliculatus) is one of the fishery commodities in Indonesian coastal area. These fishes have an economical value, support the coastal community and and are an important protein resource. This study aimed to examine and compare the morphometric characteristics of rabbit fisht that cought from Makassar Strait, Flores Sea, and Bone Gulf waters. 29 morphometric characteristics of rabbit fish were determined from a total of 300 fish samples, from 3 locations, which were 50 male and 50 female fish from each location. Results showed that for the three locations male fish were longer in body length than female fish. In general, there were five morphometric differences of male rabbit fish in the three locations, namely interorbital length, the longest anal soft ray length, orbital width, standard length, and maxilla length. We found that there were seven morphometric characteristics different amongst the female fish from the three locations, such as interorbital length, the longest dorsal spine length, the longest anal spine length, eye width, mouth opening width, and pre-dorsal fin length. The discriminant test showed that there was a high similarity of morphometric characteristics between rabbit fish from Makassar Strait and Flores Sea and a significant difference between the morphometric characteristics of rabbit fish from Bone Gulf and the other two locations.
    [Show full text]
  • Conclusions GRS 1 3 5 6 8 9 10 12 16 18 20 21 31 35 36 38 40 42 45 GREENLAND SEA
    a a b c d e a) b) c) d) e) Lynghammar University of Tromsø, Norway, A., Christiansen University of Washington,, J. USAS., Gallucci Murmansk Marine, V. BiologicalF., Karamushko Institute, Russia California, O. V., AcademyMecklenburg of Sciences, USA, C. Natural W. History& Møller Museum ,of P. Denmark R. Contact: [email protected] introduction The sea ice cover decreases and human activity increases in Arctic waters. Fisheries (by-catch issues), shipping and petroleum exploita- tion (pollution issues) make it imperative to establish biological base- OCCURRENCE OF lines for the marine fishes inhabiting the Arctic Ocean and adjacent seas (AOAS). As a first step towards credible conservation actions for the Arctic marine fish faunae, we examine the species-richness of chondrich- thyan fishes (class Chondrichthyes) pertaining to 16 regions within the AOAS: chimaeras, sharks and skates. CHONDRICHTHYAN materials and methods • Voucher specimens from Natural History Collections IN THE ARCTIC OCEAN • Annotated checklists (see selected references) • The CAFF Database on Arctic marine fishes (Christiansen et al., in AND ADJACENT SEAS progress) FISHES Only presence and absence data are considered, as reliable abundance data lack for most species. Occurrences known only from floating or beach-cast carcasses, such as Pacific sleeper shark (no. 17) and Alaska skate (no. 29) in the Chukchi Sea, are not considered conclusive evidence of presence and are not included. CHIMAERIFORMES HEXANCHIFORMES RAJIFORMES Chimaeridae - ratfishes Chlamydoselachidae
    [Show full text]
  • The Shark's Electric Sense
    BIOLOGY CREDIT © 2007 SCIENTIFIC AMERICAN, INC. LEMON SHARK chomps down on an unlucky fish. THE SHARK’S SENSE An astonishingly sensitive detector of electric fields helps sharks zero in on prey By R. Douglas Fields menacing fin pierced the surface such as those animal cells produce when in KEY CONCEPTS and sliced toward us. A great blue contact with seawater. But how they use ■ Sharks and related fish can shark—three meters in length— that unique sense had yet to be proved. We sense the extremely weak homed in on the scent of blood like a torpe- were on that boat to find out. electric fields emitted by animals in the surrounding do. As my wife, Melanie, and I watched sev- Until the 1970s, scientists did not even water, an ability few other eral large sharks circle our seven-meter Bos- suspect that sharks could perceive weak organisms possess. ton Whaler, a silver-blue snout suddenly electric fields. Today we know that such elec- ■ This ability is made possible thrust through a square cutout in the boat troreception helps the fish find food and can by unique electrosensory deck. “Look out!” Melanie shouted. We operate even when environmental condi- structures called ampullae both recoiled instinctively, but we were in tions render the five common senses—sight, of Lorenzini, after the 17th- no real danger. The shark flashed a jagged smell, taste, touch, hearing—all but useless. century anatomist who first smile of ivory saw teeth and then slipped It works in turbid water, total darkness and described them. back into the sea.
    [Show full text]
  • Sharks, Skates, Rays, and Chimaeras
    SHARKS, SKATES, RAYS, AND CHIMAERAS UNITED STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE BUREAU OF COMMERCIAL FISHERIES Circular 228 TABLE 1. -- tiximum sizes of camnon species of sharks Species Traditional Mucimum length Muimum length maximum size (measure<l--U. S. coa.ts) (recorde<l--world) Scientific na.rr;e from literature SixgL. st.ark .... 1 Hexanchus sp. .•..•••••••. 15 feet 5 inches 26 feet 5 inches nd hary... ..... Carcharias taurus... 10 feet 5 inches 12 feet 3 inches 15 feet 11 inches Porbeagle •....... 1 LamTUl TUlSUS........... ... 10 feet 12 feet 12 feet Sall10n shark. .... LamTUl ditropis . 8 feet 6 inches 8 feet 6 inches 12 feet L 0 .•.••.•.•.... Isurus oxyrinchus ...... ... 10 feet 6 inches 12 feet 12 feet - 13 feet 'hi te sr.ark. ..... Carcharodan carcharias. 18 feet 2 inches 21 feet 36 feet 6 inches Basking shar".... Cetorhinus maximus . 32 feet 2 inches 45 feet 40 feet - 50 feet Thresher shark... Alopias vulpinus . 18 feet 18 feet 20 feet rse shark...... Ginglymostoma cirraturn.. 9 feet 3 inches 14 feet Whale shark. ..... Rhincodan typus........ .•. 38 feet 45 feet 45 feet - 50 feet Olain dogfish.... Scyliorhinus retifer. ... .. 1 foot 5 inches 2 feet 6 inches Leopard shark.... Triakis semifasciata... 5 feet 5 feet Smooth dogfish ... Alustelus canis ......... ... 4 feet 9 inches 5 feet rieer shark...... Galeocerdo cuvieri..... ... 13 feet 10 inches 18 feet 30 feet Soupfin shark.... Galeorhinus zyopterus . .. 6 feet 5 inches 6 feet 5 inches 6 feet 5 inches Blue shark. ...... Prionace glauca ....... 11 feet 12 feet 7 inches 25 feet Bul .. shark. ...... Carcharhinus leucas. .. 9 feet 10 inches 10 feet Whi tetip shark.
    [Show full text]
  • Keeping the Balance.Pdf
    Contents Caribbean reef shark (Carcharhinus perezi). Jardines de la Reina, Cuba, March 2008. © OCEANA/ Carlos Suárez IUCN Status: Near Threatened. Executive Summary ..................................................................................................................1 1. Introduction ...........................................................................................................................2 2. Shark status according to the IUCN Red List of Threatened Species .....5 3. United Nations Convention on the Law of the Sea ..........................................7 4. International multilateral biodiversity conventions ......................................8 5. European regional environmental conventions .............................................12 6. Shark protection under EU biodiversity regulations ..................................16 7. Conclusions ..........................................................................................................................17 Annex I. Existing multilateral and regional conventions under international environmental law and their provisions for shark protection...................................18 Annex II. Elasmobranch species listed under existing multilateral and regional environmental conventions ...................................................................................19 References ...................................................................................................................................21 Recommendations .................................................................................................................26
    [Show full text]
  • Zootaxa, a New Species of Chimaera, Hydrolagus
    Zootaxa 2218: 59–68 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) A new species of chimaera, Hydrolagus melanophasma sp. nov. (Chondrichthyes: Chimaeriformes: Chimaeridae), from the eastern North Pacific KELSEY C. JAMES1, DAVID A. EBERT1, 2, 4, DOUGLAS J. LONG3,4 & DOMINIQUE A. DIDIER5 1Pacific Shark Research Center, Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039, USA. E-mail: [email protected] 2Research Associate, South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown, 6140, South Africa 3Department of Natural Sciences, Oakland Museum of California, 1000 Oak Street, Oakland, CA 94607 4 Research Associate, Department of Ichthyology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118 5Department of Biology, Millersville University, P.O. Box 1002, Millersville, PA 17551 USA Abstract A new species of chimaera, Hydrolagus melanophasma sp. nov. (Chimaeridae), is described from the eastern North Pacific. It is distinct from other eastern Pacific chimaeroids by the following characteristics: a large slightly curved dorsal fin spine extending beyond dorsal fin apex, a long second dorsal fin of uniform height throughout, large pectoral fins extending beyond the pelvic fin insertion when laid flat, trifid claspers forked for approximately one-quarter the total clasper length and a uniform black coloration throughout. The new species is compared to other eastern Pacific members of the genus Hydrolagus including H. alphus, H. colliei, H. macrophthalmus, and H. mccoskeri. Remote Operated Vehicle (ROV) video footage has identified and documented Hydrolagus melanophasma from the Gulf of California.
    [Show full text]
  • Holocephali: Chimaeriformes) from the Pacific Coast of Costa Rica, with the Description of a New Species of Chimera (Chimaeridae) from the Eastern Pacific Ocean
    Zootaxa 3861 (6): 554–574 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3861.6.3 http://zoobank.org/urn:lsid:zoobank.org:pub:8169FF7C-74C0-4385-8B67-09306D815CD2 Records of chimaeroid fishes (Holocephali: Chimaeriformes) from the Pacific coast of Costa Rica, with the description of a new species of Chimera (Chimaeridae) from the eastern Pacific Ocean ARTURO ANGULO1, 4, MYRNA I. LÓPEZ1, 2, WILLIAM A. BUSSING1, 2 & ATSUNOBU MURASE3 1Museo de Zoología, Escuela de Biología, Universidad de Costa Rica. 11501–2060, San Pedro de Montes de Oca, San José, Costa Rica 2Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica. 11501–2060, San Pedro de Montes de Oca, San José, Costa Rica 3Laboratory of Ichthyology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4–5–7 Konan, Minato-ku, Tokyo 108–8477, Japan 4Corresponding author. E-mail: [email protected]. Abstract A new species of Chimaera Linnaeus 1758 is described from three specimens collected from off the Pacific coasts of Costa Rica and Peru. Chimaera orientalis n. sp., the first species of the genus described from the eastern Pacific Ocean, is dis- tinguished from its other congeners by a combination of coloration and morphology. Additionally, new records of occur- rence for another four species of chimaeroid fishes (Harriotta raleighana (Goode & Bean 1895), Rhinochimaera africana Compagno, Stehmann & Ebert 1990, Hydrolagus colliei Lay & Bennett 1839, and H. macrophthalmus de Buen 1959) pre- viously unknown for the continental shelf of the Pacific coast of Costa Rica and Central America are reported.
    [Show full text]