<<

1355

Index

a acid-base theory 15, 16, 199 Abbasov/Romo’s Diels–Alder acid chlorides 463, 542, 543, 545, 553, 583, lactonization 628 584 ab initio – Lewis base base-catalyzed enantioselective – calculations 1159 α-chlorination of 596 – molecular orbital calculations 349 acidic cocatalysts – wavefunction 209 – effect of 810–813 acceptor-substituted benzhydrylium ions 94 – iminium ion 811 ACC processes 545 acidic trifluoroethyl thiol esters 1062 acetate/enolate exchange 437, 474 acids/bases acetonitrile 771 – electronic theory of 35 – benzhydrylium ions 96 – Lewis definition, extensions, expansions of, – tertiary reactions 100 and objections 35 acetophenones 298, 300, 395, 409, 411, 417, acrylates 197, 201, 203, 222, 791 421 – enantioselective β-ICD-promoted α-acetoxy allylsilane 259 reactions 671 α-acetoxy β-amino acid derivatives 1101, 1102 – β-functionalization 2-(acetoxymethyl)-2,3-butadienoates 759, 760 –– mechanism of 1318 acetoxy-substituted α,β-unsaturated – β-ICD-catalyzed reactions 670 ´ ´ ketones 263 – SN2 –SN2 displacement, synthesis of 765 acetylation 131, 132, 138 – β´-umpolung reaction, preparation of 759 acetyl cation affinities (ACA) 128 acrylonitriles 191, 195, 196, 210, 540 N-acetyl colchinol 1106, 1107 – Basavaiah’s RC dimerizations of 690 acetyl cyclobutadienyl iron tricarbonyl – hexamerization 716 complex 425 – polymerization process 195 N-acetyl cysteine methyl ester catalyst 700 γ-activation 755 acetyl phosphate hydrolysis 23 acyclic β-boryl esters 977 N-acetylpyridinium intermediates 21 acyclic E-enol ether 321 O-acetylquinine 528 acyclic ethyl ketone-derived enol ethers 313, achiral bicyclic triazolium salts 511 317 achiral cyclic silyl ketene acetals 505 acyclic ketones 304, 1061 achiral Lewis base catalysts 141 – derived enol ethers 317 achiral NHC-based acylating agent 514 N-acyl-α-chloroglycines 565 achiral NHC-catalyzed reactions 1312 N-acyl aminophosphine 783 – of cyclopropane aldehydes 513 acylammonium 553, 572, 591 achiral phosphoramides 327 – X-ray analysis 614 achiral sulfur electrophiles 1173 N-acylammonium acyl donors 628 Achmatowicz reaction 447 N-acylammonium salt 528, 531, 615, 627 acid–base interaction 33, 41, 61, 62, 72, 76 – 13C NMR comparison of 627

Lewis Base Catalysis in Organic Synthesis, First Edition. Edited by Edwin Vedejs and Scott E. Denmark.  2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA. 1356 Index

acyl anion equivalent – to ketenes mediated by chiral-planar – vs. homoenolate pathways with isatin-derived heterocycles 531 ketimines 1329 – Lewis base complex 530 – vs. homoenolate reactivity with – peptide-catalyzed kinetic resolution nitroalkenes 1328 (KR) 1260 N-acylation 459, 514 alcoholysis 528, 529, 1326 – amidine- and isothiourea-derived – of ketene 536 catalysts 505 aldehyde 534, 538, 540, 544, 548, 554, 557, 743, O-acylation 474, 486 1078, 1324 acylations 96, 129, 131, 139, 141, 459, – addition of silyl ketene acetals 1053 474, 486 – addition reactions 1278 – catalyst 477 – allylation 282, 1023, 1025 – of HBTM-2.1 572 – amination 1082 – KR of sec-benzylic alcohols 509 – annulation 744 – rates 136 – bis- and tris-N-oxides 1018 – of secondary alcohol 131 – bulky 329 – of tosylhydrazide with anhydride – enamine-mediated enantioselective reagents 141 α-chlorination 882 acyl azolium 1324 – enantioselective allylation 1014, 1125 – precursors 1320 – Lewis base-catalyzed allylation 1014 acyl chlorides 538 – and Michael acceptors – electrophiles 474 –– intermolecular reaction of 1310 acyl donors, influence of 132–136 – NHC-catalyzed acyl halide-aldehyde cyclocondensation –– homoenolate annulation 1332 (AAC) 545, 546 –– oxidation 1314 N-acylhydrazones 1030 –– trifluoromethylation 1316 acylhydrazones, allylation of 1030 – propargylation/allenylation of 1031, 1032 N-acyloxazolidinones 978 – reductive amination 1078 α-acyloxyacroleins – silylcyanation of 1217, 1220 – Diels–Alder reaction of 842, 843 – synthetic potential 1079 α-acyloxy-allylsilane 258, 937 aldehyde-ketone cross-benzoin – to α,β-unsaturated ketones 937 reactions 1302, 1303 acyl-phosphonium salt 461 aldimines acyl pyridinium–alkylcarbonate ion pair – allylation 1031 135 – derivatives, alkynylation of 1032 N-acylquinolinium salt 1227 aldol addition reaction 155, 164, 209, 210, 223, N-acyl thiolactams 505 294, 303, 311, 317, 321, 324, 325, 327, 328, acyl transfer process 124 330, 743, 876, 877, 1040, 1044, 1045, 1052, – O-centered Lewis base catalysis 511 1057, 1058 α-addition in MBHAD– [3 + 2] – of bridged ketones 908 annulations, of 767 – cyclic enol ethers 313 alcoholative DKR/KR of α-thioacids 503 – cyclohexanone- and propiophenone-derived alcohol-based Lewis basic catalysts 511 trichlorosilyl enol ethers 295 alcohol catalysts 511 – cyclohexanone-derived trichlorosilyl enol – hydroxamic acid based 512 ether 296 –– acylative KR 512 – effect of solvent on 308 – phenoxide based 511 – with enol azolium intermediates 1330 –– Steglich rearrangement 511 – enol ethers – sec-alcohol based 511 –– derived from chiral ethyl ketones 326 –– alcoholative KR of α-substituted ester –– derived from chiral methyl ketones 321 KR 511 – lactate-derived enol ethers 331 alcohol dehydrogenases 391, 392, 393 – methyl ketone-derived enol ethers 306 alcohols 528, 536, 424, 425, 437, 577 – nucleophiles 1054 Index 1357

– phosphine oxides 1057 α-alkoxyvinyl silyl hydrides 938 – spectroscopic and mechanistic α-alkyl investigations 1049 – Calter’s lanthanide-promoted ACC 548 – trichlorosilyl enol ethers α-alkylallenoates 734, 737 –– catalyzed by phosphoramide 297 α-alkyl amino acid scaffold 1086 –– derived from 326 α-alkyl aryl acetate esters 474 aldolization process 295, 302, 304, 309, 310, alkylation 183, 247, 250, 251, 348, 445, 885 311, 312, 1051 α-alkylation, of enamines 885 aldol-lactonization process 539, 540, 543, 544, – photoredox catalysis/enamine-mediated 548, 554, 555 catalysis 886

– cascades of ammonium enolates leading to – SN1 reactions 886 β-lactones synthesis 538 – SN2 reactions 885 – of enolates 561 α-alkylation product 888 aliphatic homoallylic alcohols alkylboronates, synthesis from – Claisen rearrangement 1027 tosylhydrazones 990 aliphatic β-substituted enals 832 2-alkyl-2,3-butadienoates 734, 737 aliphatic α,β-unsaturated aldehyde 1028 2-alkyl dihydropyrroles 728, 756, 780 alkaloid catalysts 529, 540 – derivatives 757 – acyl halide-aldehyde cyclocondensations alkylidenecyanoacetate substrate 784 (AAC) 545 alkylidene β-lactone 550 – dimerization 550 – 4-alkylidene β-lactones 553 – Nelson’s applications of 546 alkylidine malonates 1310 alkaloid nucleophiles 459 alkyl 6-oxohexa-2,4-dienoates 729 alkene [3 + 2] annulations 765 alkylsulfonate salts, from sulfite alkylations 13 alkene-containing isosteric catalyst 483 alkyl trifluoromethylsulfonates 933 alkene isostere 483 –ketone [3 + 2] reaction, proposed 400, 543, 724, 746, 794 mechanism of 732 – catalytic, enantioselective, intramolecular, 744, 757, 773 selenoamidation 1170 – annulation of 732, 744 – catalyzed enantioselective alkyne-to-diene isomerization 790 selenobenzoylation 1169 alkynoates 725 – dihydroxylation of 1047 alkynylated products – diverse sulfenofunctionalization 1171 – fluoride catalysis 261 – double-bond geometry 1056 alkynylation 261 – enantioselective functionalization 1160 alkynyl benzaldehydes – enantioselective selenofunctionalizations – trifluoromethylation–cyclization 252 reactions alkynylmagnesium bromide 261 –– by using chiral selenides or substrates allene–aldehyde annulations 741, 771 1156 allene–alkene and allene–imine [3 + 2] – enantioselective sulfenofunctionalizations annulations 730 –– by use of chiral substrates/stoichiometric allene–alkene [4 + 2] annulations, 737, 784 reagents 1171 – synthesis of functionalized cyclohexenes – selenofunctionalizations 1156, 1163 using 739 – sulfenofunctionalization reactions 1171 – Wang’s calculated energy levels of the 738 –– by using BINAM-derived phosphoramide allene–alkene [3 + 2] annulations 727, 775, catalysts 1185 776, 777, 792, 796 alkoxide 194, 196, 199, 227, 390 allene–alkene cyclization 767 – catalyzed anionic metalate 241 allene double-Michael annulation 752 – catalyzed borosilyl additions allene–imine [3 + 2] annulation 727, 728, 756, –– to aryl olefins 995 767, 768, 779, 785, 797, 798 – catalyzed directed diboron addition 985 allene–imine [4 + 2] annulation 734, 737, 739, – protonation by MeOH 227 798, 799 alkoxyborane 439, 440 – mechanistic hypothesis for 734 1358 Index

allene–imine [3 + 2] reactions 729 –– alcoholative sulfinyl chloride DKR/ allenes 730 sulfonylative diol desymmetrization 489 – RC reaction of –– meso-anhydride alcoholative –– with maleimides 703 desymmetrization ring opening 494 allenic esters –– phosphorylative diol – cycloadditions of 1280 desymmetrization 486 allenoates 734, 752, 755, 758, 776, 1279, 1280, –– pyrrole/4-dialkylaminopyridine based 464 1283 –– silylative alcohol KR/diol – derived zwitterionic dienolate 727 desymmetrization 489, 505 allenones 757 –– Steglich, O®C acyl rearrangements 471, allenylation/propargylation 260 502 allenyl trichlorosilane 1031 – phosphine, and thiol Lewis basic catalysts in allylation 255, 260, 281, 286, 292, 1041 the intramolecular RC reaction 700 – aldehydes 282 amino acid-derived phosphinothioureas 700

– with allylSi(OMe)3 1015 α-amino acids 762 – competing processes 1015 – derivatives, enantioselective synthesis 1097, – copper(I) fluoride-catalyzed 1242 1098 allyl azomethine ylide β-amino acids 495, 1098 – [2,3]-rearrangement of 944 – derivatives, enantioselective synthesis of 566 allylic alkylation reactions, asymmetric 425 α-aminoacrylates 761–763 allylic trichlorosilanes 281, 283, 284 β-amino alcohols 495 allylic trifluorosilanes 282 – in diethylzinc addition 345 allylphosphonium ion 758 1,2-amino alcohols 469 allylsilanes 250, 255, 284, 1020, 1028 α-amino alkylsilanes allylsilatranes 260 – to aldehydes 939 allyltributylstannane 1041 amino- and hydroxychroman derivatives, allyltrichlorosilanes 281, 282, 285, 291, 292, preparation of 773 293, 1018, 1026, 1027 amino-BINOL catalyst 674 allyltrihalosilanes 1015 9-amino(9-deoxy)epi cinchona alkaloids 813, alpine-borane 388, 393, 403 844, 848 alstilobanine A and E 562 3-amino-2,3-dihydrobenzofurans 773 ambident nucleophiles 233 – proposed mechanism for the formation 774 ambidoselectivity 305 β-amino ester 572 amidation reactions 1314 – synthesis via in situ ring opening 572 amides 470, 552, 1016 (R)-γ-amino-β-hydrobutyric acid – hydrolysis of 688 (GABOB) 542 amide substrates, N–H acidities 141 2-amino-2’-hydroxy-1,1´-binaphthyl amidine-derived Lewis base catalysts 499 (NOBIN) 481 amidine-ferrocene hybrid Lewis base aminoindanol-derived triazolium Fc-PIP 585 precatalyst 1302 β-amido enones 1098, 1099 α-/β-aminomalonates 620 α-amido sulfones 583 β-amino nitroolefins 1099 α-amination reaction 186 – enantioselective reduction 1099 amine-catalyzed decarboxylations 18 ammonia, oxidation of amine hydrochloride salt 1322 – Oswald’s process for 7 amine-N-oxides 298, 333 ammonium alkoxide 532 amine oxides 251 ammonium dienolates 641, 645 amines 390, 424, 528, 536, 758, 1101 – [4 + 2] cycloaddition of 641 – activation of anhydrides 20 – α-functionalization 645, 646 – based catalysts 10, 494 – hetero-cycloadditions of 641 –– acylative alcohol/diol KR/ ammonium enolates 527, 528, 544, 548, 550, desymmetrization 466, 481, 491, 499 553, 554, 555, 557, 560, 588 –– acylative amine KR 475, 486, 505 – oxyanion 561 Index 1359

– precursors 584 1,5-anti-stereoinduction 331 ammonium phenoxides 251, 261 Arbusov-like transformation 835 – catalyzed reaction 262 N-arenesulfinylammonium salts 1266 ammonium ylides 604, 611 aromatic aldehydes 210, 329, 333, 547 amphidinolactone A synthesis 1250 aromatic dipronucleophiles 750 amplification, of chirality 346 aromaticity Amstrong’s coupling, of in situ-generated – restoration of 579 ketene and glyoxylate 543 N-aryl-α-aryl glycine derivatives 591 anhydride ring-opening desymmetrization 498 2-arylacetic anhydrides 572, 573 anhydrides 460 aryl/alkylidenemalononitriles 767 – meso-anhydrides 494, 495 aryl alkyl ketenes 452, 536, 547, 569, 574 –– desymmetrization of 494 β-aryl allenoates 757 –– desymmetrization reactions 496 N-aryl-N-aroyldiazenes 591

–– as (DHQD)2AQN 498 3-arylbenzofuranones 472 –– Lewis base-catalyzed mechanisms 496 3-arylbenzofurans 473 –– by methanol 1-aryl-3,3-diisopropyltriazene 932 ––transition state model for the aryl glycines 423 desymmetrization 499 – derivatives 424 anhydrous fluoride 236 arylidene arylketones 776, 777 anilide allenoates 1284 arylidenecyanoacetates 784 anionic activators 282 arylidenemalonate 734 anionic alkoxy oxygen atom 199 arylidenemalononitriles 784 anionic nucleophile 746 – substrates 794 anion relay chemistry (ARC) 954 N-aryl imines anion stabilizing group 233 – allylation of 1031 annulations 645, 727, 734, 744, 752, 770, 1331 aryl iodides – [3+2] annulation 765, 496 – alkoxide-promoted conversion of 989 – [4+2] annulation 798 β-aryloxy acid chlorides 548 – of activated alkenes/alkynes and α-aryl-α-oxy-silanes salicylaldehydes/imines 770 – intramolecular aldol reaction of 936 anti-aldol products 317, 320, 1049 5-arylproline 1105 antibonding orbitals 40, 1039 2-arylpropionic acid derivatives (2-APAs) 527 anti-diastereomers 312, 315, 316, 321, 586, 2-arylpropionic esters 528 588, 1014, 1047, 1049, 1058, 1059, 1062 6-aryl-2-pyranones 743 anti-diastereoselectivity 295, 321, 873, 1046 aryl ring anti-dihydropyranones 588, 589, 590, 591, 592 – face-to-face π–π interactions of 500 anti-dihydropyridones 593 aryl-substituted benzaldimines 727 anti-enamine rotamer 167 aryl-substituted Boc-imines anti-homoallylic alcohol 282 – in situ in the presence of CsF 997 anti-isomer 1015 aryl-substituted electrophiles 975 anti-β-lactam synthesis 569 aryl-substituted ketene imines 1054 – Fu’s catalytic enantioselective 570 arylthio-substituted silanes 249 anti-Mannich reaction 877 N-aryl/N-tosyl imines 672 antimitotic agent FR182 877 synthesis aryl trichloromethyl carbinols 424 – via transannular RC reaction 705 aryl trifluoromethyl ketones 730, 739 anti-selective catalyst ATPH [Al tris(2,6-diphenylphenoxide)], 931 – in Mannich reaction 183 π–π attractive interactions 819 anti-selective glycolate aldol reactions 1047, autoracemization 4 1048 axially chiral biscarboline N,N´-dioxides 1022 – with aldehydes 1048 axially chiral sesquiterpenes 433 anti-selective pathway 313, 321, 573, 1047, (2-azaallyl) anion, cycloaddition of 959 1060 (2-azaallyl)stannanes 959 syn- and anti-2-silyl-1,3-dithiaanes 945 azaferrocenes complexes 465 1360 Index

1-aza[6]helicene N-oxides – catalyzed by chiral phosphoramides 287 – scalable route 1130 – electronic properties 1024 5-azaindoline-based catalysts 480, 481 – enantioselective allylation of 1243 aza-β-lactams 574 – from propanal 657 aza-Michael addition 527, 730 benzaldimines 213, 727, 730, 734 aza-Morita–Baylis–Hillman (MBH) reaction 195, benzhydrylium ions 93 212, 213, 215, 216, 223, 224, 665, 1316 – with Lewis bases, reactions of 93 – of activated aryl imines 670 – reactions of isothioureas 102 – adduct 203 benzofuran-2-ones 791 – conversion curves of tosylimine 205 benzoin condensation 1, 8, 9, 12 – general view on traditional and bimolecular benzoin cyclization products 1299 mechanism of 213 benzoin reaction 1303 – intermediates 225 – NHC-catalyzed 1340 – intramolecular 193 benzomorphan-based κ-opioid 374 – kinetics 204 benzophenone 399, 400 – mechanism 203 o-benzoquinone diimides 582, 583 –– based on interception 225 – in formal [4 + 2] cycloadditions 582 – onychine leveraging 687 o-benzoquinone imides 581, 582 – phosphine-catalyzed 1271 – in Lewis base catalysis 581 – photoisomerization reaction benzotetramisole (BTM) 500–502, 593, 603 – proposed transition state for Brønsted acid- 1,5-benzothiazepines assisted proton transfer in 205 – Asano and Matsubara’s synthesis of 635 – relationship between relative initial rates and benzothiazolines 752

protic additive pKa for 204 1,3-benzoxathioles 752 – of tosyl aldimines 683 1,4-benzoxazinones 581 azide-catalyzed reactions 268, 269 – derived heterocycles 581 α-azido aryl ketones 421 benzoxazolines 752 α-azido ketone 543 o-benzoyl derivatives 528 α-azidomethyl 421 benzoyl fluoride 616 aziridines 419 benzoyl halides 492 aziridinomitosane 484 N-benzoyl hydrazones 1030 α,β-aziridinyl aldehydes 514 – of ethyl glyoxylate 1031 azodicarboxylates 574 benzoyl peroxide (BPO) 880 – C-N bond formation 574 O-benzoylquinine 553, 564, 594, 597 azolium precatalysts benzyl/allyl silanes 249

– pKa values 1293 benzyl anion 253 azomethine arylimines 732 – formation 254 azomethine imine–allene [3 + 2] α-benzylation 253, 889 annulation 731, 782 – of α-aryl-methyl aldehydes 885 azomethine imines 730, 731, 940 benzyl-2,3-butadienoates 735, 739, 777 azomethine ylides 941, 949 benzyl conformation, x-ray evidence 820 benzylic alcohols b – with ketenes and diketenes 465 Baker’s yeast reduction 438 N-benzylidene aniline 610 basicity scales 61 2-benzyloxyacetaldehyde 548 Baylis–Hillman reactions 106, 193 benzyloxycarbonyl (CBz)-protected B-chlorodiisopinocamphylborane (DIP- γ-aminoalkenes 1189 Cl) 388 benzylsilanes benzaldehyde oxime and (trimethylsily1) – Pd-catalyzed coupling 254 methyl triflate 942 – stereospecific fluorodesilylation–alkylation benzaldehydes 202, 256, 283, 284, 286, 298, 302, of 254 304, 306, 309, 314, 318, 319, 322, 324, 329, benzyl sodium anion 245 343, 344, 356, 675, 743, 744, 745, 906, 1079 1-benzylsulfenyl-1,2,4-triazole 884 Index 1361 benzyltrimethylammonium fluoride – moiety 356 (BTAF) 907 – -phosphoric acid catalyst 1190 Berzelius definition of catalysis 3 (R)-BINOL ligand 676

BF3 affinity scale 61, 75 biomimetic aldol-lactonization process 562 BF3–Lewis base 75 bipyridine mono-N-oxides 1022 ´ BH3 complex 397 bipyridine-N,N -dioxide 1137 ´ BH3DMS reduction 399, 406, 411, 415 biquinoline N,N -dioxide 1032 BH3/THF reduction 400 Birman’s catalyst 501, 502 BH31,4-thioxane 395 – second-generation catalyst structures 500 bicyclic benzoyl ammonium intermediate 1,3-bis-(2,6-diisopropylphenyl) salt 492 imidazolidinium (SIPr) 1297 bicyclic-β-lactone 555, 557, 623 1,3-bis(diphenylphosphino)propane bicyclic NHC catalyst 1300 (DPPP) 750, 752 bicyclic P-chiral phosphines 781 bishomoallylic alcohols 986 bidentate amines 270 bis-methoxyboron derivative 983 bidentate DPPP catalyst 790 bis-N-oxide bipyridines bidentate Lewis acid 548 – library synthesis bidentate phosphine catalyst 777 –– terpenes derived 1127 bifunctional amidine catalyst 1197 bis-N-oxide-catalyzed aldol addition of bifunctional catalysis 204, 271, 340, 548, 1217, trichlorosilyl enol ethers 333 1253 bis-N-oxide-catalyzed reaction 333 – chiral catalyst 777 bis(phenols) – in situ generation 1223 – peptide-catalyzed desymmetrization 1261 – mechanism 1225 (R,R)-4 bisphosphoramide 1042 – proposed catalytic cycle 567 bisphosphoramide catalysts, design and bifunctional cocatalytic enantioselective optimization of 286 β-lactam 568 bisphosphoramides 287, 1051, 1052 bifunctional 3,3´-diphosphoryl-BINOLate-Zn – application in synthesis 1029

(II) catalysts 357 – SnCl4 complexes 289 bifunctional Lewis base-Lewis acid catalysis 6, 2,2´-bispyrrolidine 286, 287 339, 340 bisquinolyl-bis-N-oxide 270 Bigeleisen–Mayer equation 394 bis-sulfinamides 1031 BINAM (1,1´-binaphthalene-2,2´-diamine) bis-sulfinimide 1092 – backbone 1181 bis-sulfonamide 224 – derived thiophosphoramides 1167 bis-tetrahydroisoquinoline N,N´-dioxide 1022 binaphthol aluminum triflate complex 568 3,5-bis(trifluoromethyl)benzoyl functionality in binaphthylphosphine 791 catalyst 784 BINAPO 333, 1057, 1062 3,5-bistrifluoromethylbenzylamide group 786 – axially chiral diphosphine oxides 1020 2,6-bis(trifluoromethyl)phenyl seleniranium – -catalyzed aldol addition 333 ions 1165 –– of trichlorosilyl enol ether 334 bis(tris(trimethylsilyl)methyl)zinc – -catalyzed direct aldol addition 333 – X-ray analysis of 341 – dihedral angle 1021 boat-like structure – direct aldol addition catalyzed 334 – transition structures 313, 314, 317, 321, 328, – double aldol addition of 2-butanone 416 catalyzed 335 Boc-imines 1284, 1327 – Lewis base catalyst 1128, 1135 N-Boc phenylglycine – meso- opening 1129 – (L)-enantiomer of 848 BINOL 204 Boc-protected amide 141 – -containing Lewis acids 677 bond energy 394 – -derivative 678 ω-bonding 51 – -derived bifunctional phosphine catalyst 702 bond order 394 – -derived phosphoric acid 1018 bond strength 400 1362 Index

borane-dimethyl sulfide 441 α-bromination 597, 599, 883 borane complexation 388, 390, 397, 417, 419, – processes 599 434, 436, 441 bromoaminocyclization 1202 borane-diethyl aniline (BDEA) 441, – using aminothiocarbamate catalyst 1203 445, 452 bromocyclization 1190 borane-dimethyl sulfide 432, 441, 444, 447, α-bromocyclohexylcarbaldehyde 508 450, 451 bromodichloromethylsilanes borane-THF 434, 439, 450 – fluorodesilylation of 251 boron-substituted quaternary carbons 971 bromoetherification, mechanism of 1205 Borrmann–Wegler methodology 539 bromohydrins 1027, 1115 β-boryl aldehydes 975 bromolactonization β-boryl carbonyls 974 – bifunctional amidine catalyst 1199 β-boryl carboxaldehydes 971 – by using cinchona-derived amino β-borylcyclohexane thiocarbamate 1198 – at ambient temperature 971 α-bromomethylacrylates 766 β-boryl, β-hydroxy ketone 972 2-bromopropionyl bromide 550 β-boryl ketones 978 Brønsted acid 223

boryl/silyl conjugate additions – trifluoromethanesulfonimide (Tf2NH) 843 – enantioselectivity of 1003 Brook rearrangement 954 β-branched acid chlorides 544 1,2 Brook rearrangement 662 α-branched alkyl aldehydes 677 ()-brucine 459, 538 (±)-bremazocine 374 β-substituted cyclopentenones Breslow intermediates 18, 19, 971, 1295, 1300, – enantioselective NHC-catalyzed boryl 1308, 1314, 1322 conjugate additions 980 – benzimidazolium based 1296 2,3-butadienoates 724, 727, 730, 752, 756, 772 – riazolium-based aza-, 1296 tert-butane sulfinyl chloride – TEMPO oxidation 1324 – DKR of 490 Bürgi–Dunitz trajectory 498 2-butanone 333 bridged ketones, aldol reaction of 908 2-butenylsilanes 282, 283

Brønsted acid (o-FC6H5CO2H) 141, 216, 392, (E)-/(Z)-2-butenylsilanes 283 532, 656, 678, 858, 975, 1013, 1081, 1097, n-butyl addition 309 1162, 1165, 1168 – to acetophenone 373 – acidic cocatalyst 862, 891 butyl groups (trans-1-butyl-2,3- – acidic functional group 864 dipropylseleniranium – catalyzed enantioselective MBH hexafluoroantimonate) 1163 reaction 678 n-butyllithium, alkylation 445 – catalyzed MBH reactions of cyclohexenone 1-N-butyl-3-methylimidazolium 219 catalyzed by thioureas 679 γ-butyrolactones 545 – cocatalyst on enantioselectivity 845 O-Bz quinidine 534 – cycle 537 – definition 35 c – mediated sulfenofunctionalization C(2)-acylammonium salt conditions 1189 – X-ray crystal structure of 609

– trifluoromethanesulfonimide (Tf2NH) 843 C-acylation 475 Brønsted affinity scale 63 – of mixtures of (E)- and (Z)-acyclic silyl ketene Brønsted base 129, 265, 554, 555, 630, 693, 728, acetals 476 745, 746, 747, 770, 788 – of silyl ketene imines 477 – amines, basicity of 1189 C-2 acyl triazolium salts 508 – assisted phosphine catalysis 763 Calter’s ketene dimerization method 552, 553 – catalyzed pathway 537, 1297 Calter’s lanthanide-catalyzed AAC 549 – mediated proton transfer mechanism 786 C(1)-ammonium enolates 527, 579, 584, 592, Brønsted equation 91 593, 600 Brønsted–Lowry definition 38 C(2)-ammonium enolates 527, 604 Index 1363

C(3)-ammonium enolates 527 – in Michael addition processes 584 camphor-derived NHC catalyst 1302 Carreira’s catalytic system 1251 carbamates 536, 537 catalysts – Fu’s enantioselective synthesis 536 – regeneration 390, 391 – -modified promoters 699 – resting state 537 carbanion 265, 954 – structure, and variation 124–130 – equivalents 936, 960 – turnover 1242 –– with Si-C-EWG 906 catalytic –– siliconate dichotomy 252 – activities 347 – transfer reactions – amination 536 –– catalytic cycles 235 – hydrogenation 423 – trapping reactions 936 – Lewis base 237 carbanion generation – reactions 393 – alkylation of 947 – restoration by fluorotriethoxysilane 1239 – from Si-C-C 914 – transformation 141 carbanion transfer reactions 265 catalytic amination 536 carbene catalyst 1308, 1324 catalytic asymmetric organozinc addition carbene formation 251 reaction carbene-mediated organocatalysis 1291 – advances in catalytic enantioselective carbenes, metal complexes of 1291 organozinc addition to aldehydes 353 carbocycles formation – catalytic enantioselective – via homoenolate equivalents 1334 –– addition of Grignard reagents 367 carbohydrates 484 –– organozinc addition to ketones 358 carbon basicity 91 – organozinc reagents/titanium carbon–carbon bonds 150, 1044 isopropoxide 350 – formation 149, 151, 152, 153, 154, 295, 305, – scope of carbonyl substrates 350 306, 339, 909 catalytic asymmetric zinc-free alkynyl carbon-13 isotope effects 398, 399 addition 367 carbon Lewis basicity 85 catalytic CBS reduction 390 carbon nucleophiles 245 catalytic α-chlorination using C(1)-ammonium – triorganosilyl-mediated transfers of 233 enolates 596 carbon nucleoside 436, 437 catalytic cycle 389, 573, 575, 590 – analogs 436 – proposed for MBH reaction 223 – precursor 437 catalytic cyclopropanation 606 carbonyl carbons 399, 732 catalytic efficiency 549 – electrophilicity 1013 catalytic enantioselective 996 carbonyls 433, 437, 759 – alkynylzinc addition to aldehydes 355 – aldol-type reaction of 1057 – arylzinc addition – containing substrate 387 –– to ketones 364 – electrophile 235 – carbosulfenylation – enamines-promoted enantioselective –– scope of 1185 α-oxidation of 880 – dialkylzinc addition – oxygen atom 732 –– to simple ketones 362 – silylcyanation 1232 – diethylzinc addition 354 carbonyl ylide –– to benzaldehyde 344 – 1,3-dipolar cycloaddition 937 –– to α-keto esters 361 carbosulfenylation 1186, 1187 – dimethylzinc addition – reaction time course –– to α-keto esters 361 –– effect of additives and catalyst on 1189 – ethyl addition to benzaldehyde 346 carboxylic acid 554, 555, 557, 584, 588, 591, – organozinc addition to aldehydes 344 779, 800, 957 – phenylzinc addition clemastine carboxylic acid-derived C(1)-ammonium synthesis 363 enolates 588 – reactions 393 1364 Index

– sulfenoamination 1190 cesium trifluoromethyl sulfinate 935

– sulfenoetherification CF3 –– Lewis bases survey 1177 – anion 252

–– scope of 1178 – CF3-PIP 500 – sulfenofunctionalizations 1177 – group 252 catalytic power 387 – Lewis Base-Induced Transfer 921

– in yeast alcohol dehydrogenase 392 CFCM solvation model for CH2Cl2 1183 catalytic tetra(p-chlorophenyl)porphyrin iron CF3SiMe3 921 chloride 612 – amides and lactams 928 catalytic Zn(II) ate reagents 377 – aminoketones 923 catecholates 242, 282 – carbonyl compounds 922, 925 catecholborane 390, 397, 401, 410, 416, 423, – carboxylic acid halides 927 429, 431, 433, 436, 444 – cyclic anhydrides 927 cation affinity numbers 59 – esters and lactones 926 cationic arylselenium complex 1168 – oxazolidin-5-ones 927 cationic hexacoordinate complex 1016 – ylation, vinylation, and alkylation 932 cationic phosphonium species 786 chain-carrying species 237 cationic silicon assemblies chair-like transition state models 315, 1059 – penta- and hexacoordinate 284 chair-like transition structure 301, 318, 319, cation–π interactions 388 320, 326, 328, 333, 412, 1049 C(1)-azolium enolates 584 chalcogen elements 73 C-B bonds chalcone derivatives – enantioselective methods 967 – NHC-catalyzed carboannulation 1334 – formation 971, 983 – predominantly produces (Z)-trichlorosilyl CBS catalyst 389 enol ethers CBS-mediated kinetic resolution 433 –– in situ conjugate reduction 1061 CBS reduction 388, 390, 391, 392, 395, 396, chalcone-derived azadiene 1337 407, 409 chalcone, formation of 907 – alpha;-acetals 419 charge–dipole interaction 61 – acetyl η5-cyclopentadienyl rhenium 425 charge localization 396

– allenyl ketones 423 CH3/CD3 isotope effect 407 – alpha;-azido ketones 421 chelatable Lewis base 339 – beta;-dialkyl nitro ketones 422 chelation 322, 328 – 1,3-diketones 431 chemical bond – establish key stereocenter in a total synthesis – Lewis definitions of 34 of estrone methyl ether 430 –– rule of two 34 – [5]ferrocenophane-2-one 426 chemo- and enantioselectivity of – ketone 441, 443 reduction 430 – β-keto sulfides 420 chemo-, regio-, or stereoselective – in organic synthesis 416 organocatalysis 141 – O-THP ketones 418 ChiPros 460 – prochiral diketone selectively 438 chiral acyl ammonium/pyridinium salts 477 – pro-chiral 1,3-diketones to 1,3-bis- chiral acyl azides 536 alcohols 438 chiral acyl-transfer reagent 1324 – racemic diketone 439 chiral alcohols 530 – racemic monocarbonyl substrates 432 – kinetic resolution (KR) 1322 – racemic spiroketone 439 – stereocenters 417 – synthesis of silane diol serine protease chiral aldehydes 312 inhibitor 447 chiral alkyldiphenylphosphine 699 – transition state 407 chiral allylic phosphonium species 792 – trichloromethyl ketones 422 chiral amino alcohol 340 – unstable atropisomers 433 chiral β-amino carbonyl compounds 877 centrosymmetric reduction substrate 432 chiral aminophosphine 784 Index 1365 chiral ammonium enolate 528 chiral isothiourea catalyst 504 chiral 2-aryl-2-phosphabicyclo[3.3.0]octanes chiral β-lactams 579, 796 (PBOs) 459 chiral β-lactones 795 chiral 2-arylpropionic acid 527 chiral Lewis base-promoted net [2 + 2] chiral azolium salt precatalysts 508 cycloaddition 547 chiral bifunctional catalysts 204 chiral Lewis bases 281, 282, 283, 291, 538, 544, chiral bifunctional phosphine promoters 675 549, 1040, 1050, 1054 chiral biheteroaromatic diphosphine – activation technology 1066 ligands 1130 – catalysts 1016, 1160 chiral binaphthyl catalysts, as phosphine chiral N,O-ligands promoters 672 – proposed Zn(II)/Ti(IV)-dinuclear chiral binaphthylphosphine 791 intermediates 351 chiral BINOL-Li(I)-catalyzed enantioselective chiral O,O-ligands 355 alkynylation 367 chiral, methylene-linked chiral BINOL-Ti(IV)-catalyzed bisphosphoramides 287 enantioselective alkynylation 366 chiral mono-thiourea-based HB donor chiral bis-oxazolidinone 957 catalyst 481 chiral bisoxazoline, magnesium complex chiral N-acyl aminophosphine 778, 784 of 271 chiral α-oxygenated carbonyl compounds 880 chiral Brønsted acid 532, 537 chiral α-oxygenated ketones 881 – counterion 530 chiral phosphabicyclo[2.2.1]heptane 775 – cycle 537 chiral phosphines 774, 779, 786, 794, 795 – pathway 536 – catalysis 462, 774 chiral γ-butenolides 791 – oxides 1016, 1057 chiral bypyridine-N-monoxides – promoter 675 – mechanism of allylation catalyzed 1023 chiral phosphonamides 1018 chiral α-carbonyl quaternary center 1028 chiral phosphonium dienolate 775 chiral catalysts 536, 537 chiral phosphoramide 294, 311, 312 – based on cinchona alkaloids 291 – allylation reactions 283 – for enantioselective allylation 1016 – catalyst 331 –– aromatic and aliphatic N-oxides as chiral (o-hydroxyaryl)phosphoramide- catalysts 1021 catalyzed enantioselective diethylzinc –– phosphoramides/phosphinoxides as addition 355 catalysts 1017 chiral phosphoramides 281, 283, 287, 298, 314, chiral 3,3´-dialkoxyphenyl-BINOLs 352 322, 749 chiral 4-dialkylaminopyridines 464 chiral phosphoric acid (R)-TRIP 845 chiral diamino-salen ligand 361 chiral 4-PPY chiral dihydropyrroles 780 – stoichiometric quantity of 478 chiral dinuclear Ti(IV) catalyst 352 chiral 4-PPY-based catalyst 474 chiral dipeptide phosphine 779, 786, 798 chiral pyridine-N-oxides 286 chiral dipronucleophiles 750 – mechanism of allylation catalyzed 1024 chiral 3,3-disubstituted oxindoles 786 chiral pyridine-N-oxides, allylation chiral 4-DMAP catalyzed 1024 – catalyst 466, 467, 469 chiral pyrrole-based catalysts 464, 466 – Fu’s quadrant-based design strategy 466 chiral selenides 1159 – organocatalysts 471 chiral selenium derivatives chiral DMF analogs 1083 – empirical optimization 1157 chiral enamines 107 chiral selenium electrophiles 1159 – -mediated processes 894 chiral α-silyl ketones 534 chiral endo-phosphine 782 chiral spirophosphepine 782, 790 chiral ferrocenyl 4-PPY-based catalyst 477 chiral γ-substituted acrylates synthesis, using chiral(o-hydroxyaryl)phosphoramide 355 chiral phosphabicyclo[2.2.1]heptane 787 chiral β-hydroxyesters 540 chiral γ-substituted crotonates 788 1366 Index

chiral sulfoxides 1016 – alkaloid catalysts 498, 540, 543, 552, 553, chiral β-sultams 578, 579 563, 583 chiral synthon cinchona alkaloids 495, 924 – preparation 417 – catalyzed formal [4 + 2] cycloadditions 584 chiral TADDOLate-Ti(IV) 367 – natural/unnatural compounds 495 chiral tertiary alcohols 358 cinchona-based primary amines 872 chiral tetrahydrofurans/tetrahydropyrans cinchona-catalyzed epoxidations 845 synthesis, using chiral cinchonidine 494 spirophosphepine 790 cinchonine 494 chiral tetrahydropyrazolopyrazolone 782 cinnabaramide A 562 chiral thiazolium-based catalysts 1291 cinnamaldehyde 808, 1062 chiral thiourea anion binding agents 480 – derived-iminium salt 817, 819 chiral thioureaphosphine 793 – electrophilicity parameters 808 chiral triazolium salt 508 – NHC-catalyzed carboannulation 1334 chiral trichlorosilyl enol ethers 321, 331 N-cinnamyl ammonium salt 943 chiral trifluoromethylated compounds 924 cinnamyltrimethylsilane 256 chiral trityl pyrrolidine 881 CIP chiral Zn(II)-salen complexes 365 – C-Li or C-Na bonds 245 chloral-derived imine 578 – lithium reagent 249 o-chloranil 580 (R)-citronellic acid 554 – in formal [4 + 2] cycloadditions 580 13C KIE evaluation of transition states 227 chlorinated β-lactones 543 13C KIE modeling 152 α-chlorination 594, 599 Claisen condensation 550 – of acid chlorides 594 Claisen-like rearrangement 1338 – of aldehydes 881 Claisen’s crossed aldol condensation 4 – using column asymmetric catalysis 597 click chemistry 394

α-chloroamines Cl3SiH 1079 – synthesis of 1096 – aldehydes and primary amines 1081 chlorodiphenylphosphine 425 – benzaldehydes and butylamine 1080 chloro epoxide 543 – enantioselective reduction of imines 1104 – kinetic resolution 1134 – reductive amination of aldehydes 1079 –– reaction condition optimization, for 1134 –– and primary 1080 α-chloro esters 599 – reductive amination of functionalized chloroform 205, 207, 432, 741 aldehydes 1080 chloroformates 472 – by TMEDA, reductive amination of 1082

– activator 1227 epi-C9 O-acetylquinidine 555 chlorohydrin synthesis coal gasification 7 – from cis-alkenes cocatalysts 221, 581 α-chloro imines 1095 – proline 216 α-chloro ketones – thiourea 215, 216 – reductive amination 1095 cocatalytic kinetic resolution 1144 chlorolactonization, with Co(III)-Lewis base bifunctional catalyst 549

(DHQD)2PHAL 1196 Co(III)-salen complexes 549 chloromethyl crotyl silanes 257 collisional activation theory 7 chloromethyl trimethylsilylmethyl sulfide, with colored EDA complex dipolarophiles 949 – light irradiation of 890 α-chlorosilyl ether 291, 301, 310, 317 complex molecular constructs 724 N-chlorosuccinimide (NCS) 881 computational chemistry 74, 210, 409 chlorosulfenylation 1172 cone angle 72 p-chlorotosylimine 205, 206 conformational distortion 393 α-chloro trichlorosilyl ethers 310 conformational equilibrium chymotrypsin 446 – constant 407 cinchona 494, 497 conformationally flexible catalyst 415 Index 1367 conformational rigidity on diastereoselectivity, cyanation 264, 1231 effect of 1158 cyanide-catalyzed benzoin formation 1297 Conia-Ene reaction 1313 cyanide ion conjugated enamides – amine-catalyzed addition 265 – enantioselective reduction 1098 – in cyanation reactions 267 π-π Conjugate/π-σ* hyperconjugate cyanide nucleophilic species 268 conformations in o-phosphoryl Zn(II)- α-cyano acetates 749 phenoxides 357 cyanoaminosilanes contact ion pairs (CIP) 245 – cycloaddition of 941 cooperative LA/LB system 581 2-(4-cyanobenzyl)-2,3-butadienoate 735 coordinate covalency 34 α-cyano esters 759, 760 copolymers 540 α-cyano ketones 760 Corey–Bakshi–Shibata (CBS) reduction 387 α-cyano menthyl esters 749 Corey–Link reaction 423, 424 α-cyanomethylaminosilanes 941 Coulombic interactions 741 cyanopyrrole 536 covalent catalysis 387 2-cyanopyrrole 535, 536, 537, 538 C-protonation 1322 – Fu’s catalytic enantioselective addition 535 C-pyramidal nucleophilic intermediate 937 cyano-silylation of aldehydes 1315

Cr(CO)3-complexed meso-1,4-diol 493 α-cyanosulfones 756 cross-aza-benzoin reaction 1305, 1306 cyclic carbamates – of aliphatic aldehydes 1305 – amidine and isothiourea-catalyzed KR 506 –– and Boc-imines 1306 cyclic (±)-1,2-monobenzoyl-cis-diols 468 – with trifluoromethyl-ketimines 1306 cyclic 1,2-monoprotected diols 468 cross-benzoin oxy-Cope sequence to cyclic sulfonamides 578 cyclopentenes 1305 cyclic trichlorosilyl enol ethers 313 cross-benzoin reactions 1299, 1302, 1303, cyclic voltammetry 1296 1304 cyclizations 727, 731, 741, 744, 760, 773, 779 – with aldehydes and ketones 1303 – reactions of alkenes 773 – enzymatic 1301 – to six-membered analog 697 – using aliphatic-aromatic aldehydes 1301 cycloaddition 547, 890 crossed-aldol reactions 301 – alkylidene azomethine ylide 943 – of aldehydes 1044 – [2+2] cycloaddition 539 cross-metathesis 586 –– of ketene and chloral 540, 561 crotonaldehyde 323, 324 –– to form β-lactams 563 – conjugate addition of water 806 – [3+2] cycloaddition/esterification crotylation –– mechanistic pathways of 615 – copper(I) fluoride catalysis 1242 – [4+2]-cycloaddition 581, 639, 640 E-/Z-crotyltrichlorosilanes 1026 –– with chloral, Peters’ ammonium 18-crown-6 ether (18-C-6) 914 dienolates 638 CsF-induced desilylation of sulfonium salt 951 –– with diene, iminium ion 806

σC–Si – in situ-generated ketene 548 – hyperconjugative interaction of 110 – pathway 721, 775 C-Si bond 238 – products 805 – formation with chiral NHCs 993 cycloalkanone-derived enol ethers 317, 320 C-silylated benzyloxymethyl cycloalkanone-derived trichlorosilyl enol cyclopentanone 936 ethers 313, 320

C2-symmetrical pyrrolidine derivative 1088 cyclobutadiene iron tricarbonyl complex 425 C2-symmetric bidentate chiral phosphines 775 cycloheptanone-derived enol ethers 316 C1-symmetric carbene 977 cyclohexane carboxaldehyde 314, 1042, 1043 C2-symmetric chiral N,N,O,O-ligand 359 (R,R)-trans-1,2-cyclohexanediamine 283 C2 symmetric phosphoramides 283 cyclohexanone Cu-catalyzed enantioselective additions 975 – enolate 1338 Curtin–Hammett principle 822 – to nitroalkenes 1368 Index

––enamine-catalyzed Michael addition of 869 Dakin-West reaction 1, 24, 25 (R)-cyclohexene 699 Deng’s DHQD-PHN catalyst 499 meso-1,4-cyclohexyl-dione density functional theory (DFT) 48, 74, 154, desymmetrization 429 178, 208, 223, 394, 409, 497, 721, 722, 727, 1-cyclohexyl-2-phenylthio-1-heptanone 419 816 cycloisomerization 697 – calculations 208, 833, 971, 988, 1043 cyclopentadiene 429 –– of transition states 1183 – Diels–Alder reaction of 806 – total energy 209 η5-cyclopentadienyl rhenium (I) deoxy-Breslow intermediate 1318, 1319 derivative 424 – imidazolylidene-derived 1319 cyclopentadienyl ring 424 deoxygenation of polyols 486 cis-2-cyclopentene-1,4-diol 492 deprotonation 536, 578, 747, 752, 754, 766, cyclopentenes 554, 721, 724, 727, 730, 759, 760, 792, 1062 765, 767, 775, 776, 778, 779, 782 – of dinucleophile 752 – formation mechanism 1334 desilylation-aldol reaction – formation through tandem γ-umpolung– – of ketone 908 β´-umpolung annulation 761 desilylation, with TASF 240 – synthesis 724 desolvation 387 – through MBHAD–alkene [3 + 2] annulation, desymmetrizations 432, 434, 460, 1229 preparation of 768 – bromoetherification using catalyst 1205 cyclopentenones 214 – CBS reduction and retro-Diels–Alder – tri-n-butylphosphine- promoted reaction reaction 430 of 676 – of meso-aziridines 1229 cyclopropanations 604 – of meso-dicarbonyl substrates 426 cyclopropanes 440, 608 – of meso-diols 491, 492 – carboxylates, aldol reaction 912 – of tert-alcohols 489 – formation 605 deuterium 404, 722, 730, 735 cyclopropenyl silane – atoms 762 – protodesilylation regiochemistry of 258 – isotope effects 402, 735 cycloreversion 194 – KIEs at homotopic positions 408 ´ ´ cyclothiazomycin 441, 442 – labeling of SN2 –SN2 cascade mechanism, cysteine-derivative evidence from 764 – intramolecular RC reaction 701 – steric KIEs 415 cysteine-derived catalysts 699 deuterium labeling, in support of α-umpolung addition mechanism, evidence from 762 d N,N-dialkylbenzylammonium N-methylide DABCO 558 – Sommelet-Hauser and Stevens – catalyst 657 rearrangement 944 – equilibrium constants 106 N,N-dialkyl-2-methylbenzylamine 944 DABCO-catalyzed RC-type step 706 α-dialkyl α-nitro ketones 421 DABCO-catalyzed reaction 200 dialkylsubstituted ketenes 547

– methyl acrylate 677 dialkylzinc (R2Zn) 343 DABCO-mediated RC dimerization 689 – via Schlenk equilibrium 368 – of acrylates 690 meso-diamines ()-DAIB – desymmetrization of 480 – four-center and six-center transition 1,2-diaryl-1,2-diaminoethanes 480 states 349 diarylketone products 1314 – mechanism of 349 diarylprolinol 409 – proposed catalytic cycles 348 – ether-derived iminium salts 835 DAIB system 349 – silyl ether 892 – enantioselectivity-determining transition – silyl ether catalysts 152, 858, 863 structure 349 diarylthiourea 222 – Zn(II) five-membered rings 347 N,N´-diarylthiourea 222 Index 1369

3,4-diaryl-trans-β-lactams 572 2,4-dienals diastereoselection 312, 320, 321, 329, 331, 439, – trienamine-mediated enantioselective Diels– 995 Alder reaction of 894 – aminolysis of ketenes 535 diene–alkene [3 + 2] annulation, rationale – aziridination for 729 –– Yadav’s catalytic 610 dienoates – external 331 – acceptors 1309 – formation of amide 535 – vinylogous aza-MBH reaction of 684 – methods 545 dienolate 779, 780, 781, 783, 784 – NCAL processes 557, 561 – azolium, annulation of 1339 – protonation 531 dienol ethers 1068 – sulfenofunctionalization 1172 dienones diastereospecific lithiation 424 – RC–Wittig reaction of 692 diastereotopic CF3 groups – vinylogous aza-MBH reaction of 684 – DNMR studies 243 dienoxysilane nucleophile 1248 diastereotopic silyl halides dienylsulfones 683 – fluoride-induced intramolecular β-diesters 756 alkylation 254 4-(diethylamino)pyridine-based chiral diazabicyclo[4.3.0]non-5-ene] (DBN) 1143 catalyst 481 1,4-diazabicyclo[2.2.2]octane (DABCO) 99, diethyl azodicarboxylate 892 486, 551 diethyl phosphonate 445 1,8-diazabicyclo[5.4.0]-undec-7-ene diethyl 2-vinylidenesuccinate 741, 783 (DBU) 975 diethylzinc addition 343, 346, 365 diazomethane anions 233 – to aldehydes 343 dibenzoyl tartaric acid (DBT) 1133 – to benzaldehyde 345 diboron additions – Lewis basic activation of 353 – to alkenes and alkynes 985 (difluoroallyl)silanes 256 – effectively 986 3,5-difluorobenzoyl group 784 diboron reagent 989 α,α-difluoro ester 913 diborylation dihydrobenzofuran carboxylates 584, 585, 586 – syn-selectivities 986 2,3-dihydrobenzofurans 771, 772 β-dicarbonyl compounds 754 1,4- and 2,4-dihydrobenzooxazines 750 dicarbonyl reductions 437 2,3-dihydrobenzoimidazoles 750 1,3-dicarbonyls 1303 dihydrocoumarin derivatives synthesis 725 – substrate 429 dihydrofurans 730 dichlorinated aldehydes 540, 542 – and piperazines, synthesis of 757 dichlorination with (DHQ)2PHAL – synthesis, through allene–ketone [3 + 2] – representative scope of 1206 annulation 731 dichotomy of α- and β-functionalization of – Tang’s synthesis 612 acrylates 1318 2,3-dihydroindoles 750, 790 1,8-di(dimethylamino)naphthalene 1097 dihydropiperidinones synthesis 1337 Diels–Alder lactonization (DAL) 628, 629 dihydropyranones 618 Diels–Alder–Rauhut–Currier reaction – products 590 – enzymatic 704 dihydro-2-pyranones 741, 742, 743 Diels–Alder reactions 429, 632, 810, 813, 823, 3,4-dihydropyrans 696 825, 826 dihydropyridazinones – to acrolein with α-alkyl substituents 843 – synthetic applications 642 – amine-catalyzed 814 dihydropyridones – of cinnamaldehyde 814 – synthetic applications of 644 – cycloadditions 822–825 – Ye’s net [4 + 2] synthesis of 644 – with first-generation MacMillan catalyst 824 dihydropyrroles 727–730, 767, 768, 779–782, – with methacrolein 843 798 – preorganized cation-π system 827 – formations 780 1370 Index

– intermediate 798 – desymmetrization of 489 – through diene–alkene [3 + 2] – KR and desymmetrization of 491 annulation 730 meso-1,2-diols 469 2,3-dihydropyrrolopyridines 750 meso-1,4-diols 492 dihydroquinidines DHQDs dioxane 741 – four low-energy conformations of 497 1,3-dioxane dihydroquinine-2,5-diphenyl-4,6- – derivative 1101 pyrimidinediyl diether 577 – scaffold 1090 diiodine affinity scale 60 1,4-dioxane 342, 368 trans-2,5-diisopropylpyrrolidine 958 dioxanes 741, 742 1,3-diketone 438 dioxanone 198, 200, 224, 227 – Michael donors 617 – pathway 224 diketones 440 N,N´-dioxide 1027, 1029 – proline-catalyzed Robinson annulation – application in synthesis 1029 of 857 1,3-dioxygenated motifs 545 1,4-diketones 440 (R,R)-DIPAMP 777 meso-diketone substrate 429 DIP-Cl reductions 400, 402, 403 dilithium salt of BINOL 1105 DIP-Cl transition state 400 dimeric catalyst survey 1140 diphenylchlorophosphate (DPCP) 1262 dimeric chiral Ti(IV) complex 352 1,1-diphenylethanol 130 dimeric cinchona alkaloid-based catalysts – PPY-catalyzed acetylation of 130

DHQD2(AQN) 495 1,1-diphenylethylene 251 dimeric DAIB-Zn(II) catalysts 351 diphenylphosphine 425 dimeric organozinc species 345 diphenylphosphinoylimines 779–781 – amplification of chirality 346 diphenylphosphinyl group 778, 779 – catalyst efficiency 345 N,N´-diphenylphosphoramide 314 – reaction pathway and transition states 348 diphenylprolinol silyl ether aminocatalysts 893 dimeric phosphoramides 302 diphenylprolinol silyl ether-derived – catalyst 1050 enamine 862 dimethyl acetylenedicarboxylate (DMAD) 732, diphenyl[(trimethylsilyl)methyl]sulfonium 744 triflate 950 4-(dimethylamino)pyridine (4-DMAP) 121, diphenylzinc 363 531, 551 diphosphate (ThDP)-dependent enzymatic –“super”-nucleophilic behavior of 459 catalysts 1300 dimethylformamide (DMF) 130, 283, 1077, 1,5-dipolar cyclization reaction 946 1078, 1079 1,3-dipolar cycloaddition 937, 939, 949, 958 trans-3,4-dimethyl-4-(3-hydroxyphenyl)- dipolarophiles 616, 727, 728, 741, 770 piperidine core 445 – activating group 725 1,3-dimethyl-2-imidazolidinone (DMI) 692 dipole–dipole interactions 61, 205 2´,5´-dimethylisobutyrophenone 406 dipole–dipole repulsion model 544 dimethyl N-acryloylpyrrolidine-2,5- dipronucleophiles 750, 752, 757, 759, 760, 770 dicarboxylate 1172 dipropionate synthon dimethylphenylphosphine 770 – enantioselective synthesis 551 dimethyl-2-silyl-1,3-dithianes 946 di-p-toluyltartaric acid 444 dimethyl sulfoxide (DMSO) 141 diquinanes 724, 767 2,4-dinitrobenzoic acid (DNBA) salt 829 – derivatives 724 dinuclear BINOLate-Zn(II) structure 352 – syntheses 725 meso-diol 492 – synthesis 725 1,3-diol motif 438 – and tetrahydrocyclopenta[c]furans, synthesis 1,2-diols 469 of 768 – derivatives 486 direct aldol reaction cis-1,2-diols 489 – diastereo- and enantioselectivity 1060 – derivative 487 direct enol azolium precursors 1338 Index 1371

β,β-disubstituted acyclic enones 977 D-myo-inositol-3-phosphate (D-I-3-P) 1262 γ-disubstituted allyltrichlorosilane 1028 donor/acceptor α,α-disubstituted ammonium enolates 544, 547 – bond energy 62 2,6-disubstituted aryl electrophiles for catalytic – interactions 33 enantioselective sulfenoetherification 1183 –– in quantum mechanical symbols 38 3,3´-disubstituted cyclopentenes 767 – Robinson’s classification of 36 β,β-disubstituted enals donor number (DN) 59 – enantioselective transfer hydrogenation 840 double-aldol additions 1064, 1065 2,3-disubstituted indoles 1102 – using different phosphine oxides 1065 α,α-disubstituted β-lactones 547 double desilylation, of disilylmethyl amine 943 α,α-disubstituted-β-lactones synthesis 547 double diastereoselectivity 545 β,β’-disubstituted unsaturated carbonyl double-Michael, addition to activated alkynes/ compounds 983 allenes 750 3,3-disubstiuted phthalide moiety 791 double-Michael annulations 752

α-disulfones 756 [D3]-1,1,3,3-tetramethylcyclohexane 407 1,3-di-t-butyl-imidazolium 1295 dual-activation 2,6-di-tert-butylpyridinium triflate salt 531 – allyl transfer 259 1,3-dithianes, carbanions derived 944 – catalysis 1215 2-dithianyl and 2-methyl-2-dithianyl 238 – by Lewis base dithianyl systems 248 –– proposed catalytic cycle 1141 DMAP (4-dimethylaminopyridine) 561, 1263 – mechanism 350 – based catalyst 466, 474, 544 dual catalysis 548

– Boc2O method for the Boc-protection of Dunitz pyramidalization 108 cyclic amides 140 dynamic kinetic resolution (DKR) 433, 434, – catalyzed N-acylation 481 466 – nucleophilicity of 100 – of a rapidly equilibrating mixture of DMAP–benzhydrylium adduct 100 diastereomers via CBS reduction and DMAP-catalyzed acetylation 136, 137 conversion 435 – of alcohols 131, 132 dyotropic process 561 – of carbohydrates 137 – consensus mechanism for 122 e – of cyclohexanol 132 E/C character of affinity (enthalpy) scales 61 – of propan-1-ol and propan-2-ol 131 Edwards parameters 86 – of selected alcohols with acetic E-enol 301, 304 anhydride 137 – ethers 303, 317, 320 DMAP-catalyzed isobutyrylation 131 effective partial pressure 56 – of menthol 131 π electron capacity (π acidity) 104 DMAP-catalyzed reaction 123 electron-deficient ketimines 668 – of acetic anhydride 123 electron-deficient olefins 873

– of Boc2O 139, 140 electron density – vs. uncatalyzed reaction rates for acylation of – donor 55 cyclohexanol 133 – source 55 DMAP-functionalized styrene 130 electron-donating bis-cyclohexyl imidazolium DMAP-mediated reaction salt 971

– of Boc2O 140 σ electron-donor 104 – of N-nucleophiles with Boc2O 140 electron donor ligand Me3SiCH2 382 DMF-promoted addition of electronegative substituents allyltrichlorosilanes 283 – apicophilicity of 50 DMPU 1161 electron localization function (ELF) 1314 DMSO 792 electron pair acceptors (EPA) 55, 76

– pKa values 249 electron pair donor (EPD) –– water 263 – EPA interaction 75 D-myo-inositol-1-phosphate (D-I-1-P) 1262 – EPA molecule 55 1372 Index

electrophile–nucleophile combinations 110 – NHC-catalyzed oxidative esterification 1342 electron-poor – phospha-Michael reaction of 833 – aromatic aldehydes 1045, 1070 – primary amine-catalyzed enantioselective – aryl groups 618 epoxidation 846 – carbonyl compounds 554 enamine-mediated catalysis 864, 888, 892, 895 – iminium cation 816 – acidic cocatalyst 862 – para-substituted aldehydes 675 – applications 892 – substituents 743 –– vinylogy 892 electron-rich – π conjugation of 862 – aldehydes 547, 1044, 1058 – enamine nitrogen, pyramidalization 859 – aromatic aldehydes 1054, 1056 – HOMO-raising activating effect 859 – aryl groups 618 – imidazolidinone catalysts 866 – bisphosphine oxide 1058 – mechanistic considerations 859 – electron-poor aryl groups 612 – -mediated stereoselective – and electron-poor benzaldehydes 1047 transformations 893 – heteroaromatics 825 – primary vs. secondary amines 860, 861 – phosphine oxide 1065 – prolinol-derived catalysts 864 electron-withdrawing 1044 – reactivity 859, 862 – aryl trifluoromethyl ketones 365 – stereoselectivity 863 – effect 726 – steric control approach 864 – substituents 234 – in total synthesis 893 –– conversion of ketones 1097 – transition metal catalysis 895 electrophiles 233, 689, 721, 726, 729, 730, 746 enamine-mediated enantioselective – aldehydes 538, 542 – intramolecular [6 + 2] cycloaddition 891 – carbonyl compounds 554 – inverse-electron-demand hetero-Diels– – imino ester 564, 566 Alder reaction 891

– ketone 558 – SN1-type alkylation of aldehydes 887 ––nucleophile combinations – syn-Michael addition 872 –– second-order rate constants for 90 enamine-mediated Michael addition ––nucleophile systems 770 – to nitro-olefins 875 – reactivity of iminium ions 807 – to nitro-olefins catalyzed 875 – through electrostatic interactions 864 enamines 110, 150, 153, 825, 863 electrophilic selenenylation 1156 – activation processes electrophilic sulfenylation –– electrophiles suitable 112 – of alkenes 1170 ––aldol reaction catalyzed by the electrospray ionization, coupled to mass imidazolidinone 866 spectrometry 195, 217 – α-alkylation electrostatic bonds 61 –– photo-organocatalytic enantioselective electrostatic complementarity 392 alkylation 889 electrostatic interaction 732 – -based enantioselective transformations 863 electrostatic stabilization 155, 588 – -based mechanism 149 electrostatic-to-covalent (E/C) bonding ratios 61 – catalysis 881 electrovalency – and diastereo-divergent dual-catalysis 896 – for transfer of electron 34 – enantiofacial discrimination 864 β-elimination 706, 825 – imine tautomeric equilibrium 1102 enal redox pathway – intermediates – mechanism of 1325 –– in situ detection and structural enals characterization 152 – [3+2] cycloaddition of 817 – mechanism 150 – enantioselective α-fluorination 1330 – -mediated aminocatalysis 884 – NHC-catalyzed homoenolate – -mediated transformations 864 annulation 1332 – nucleophilicity 109, 878 – NHC-catalyzed β-hydroxylation 1328 –– parameters 111 Index 1373

– oxazolidine equilibrium ––construction of quaternary centers by 289 –– in diphenylprolinol 865 –– silver(I)-catalyzed 1238, 1240 – -promoted aldol mechanism 680 –– silver(I) fluoride-catalyzed 1239 – -promoted enantioselective α-amination of –– synthesis of serotonin antagonists by 293 carbonyl compounds 879 – allylations of carbonyl compounds 1017 – -promoted enantioselective α-chlorination of – allylic substitution 791 aldehydes 881, 882 – aminocatalysis 868 – -promoted enantioselective α-fluorination of – annulation 779, 780 aldehydes 883 – [2 + 2] annulations 795 – in situ NMR studies 152 – [3 + 2] annulations 775, 787, 792 enantio-/diastereoselective synthesis, of ring B – [4 + 2] annulations 782 via CBS reduction application 448 – aza-MBH applications 668 enantiodivergent phosphorylation 1262 – aza-MBH reactions 671, 674, 677 enantioenriched – azomethine imine–allene [3 + 2] – N-acylpyridinium salt 602 annulation 782 – 2-azido-1- 421 – benzoin reactions 1298, 1299 – cyclopentenes 775 – Brønsted base-assisted [3 + 2] – enone 797 annulation 792 – fluorohydrins 1144 – α-bromination 599 – product 1160 – bromoetherification, under cooperative – seleniranium ion 1160 catalysis 1204 – thiiranium ions 1173 – catalysis 774 enantioenriched seleniranium ions – C-B bond formation 983 – configurational stability 1163 – conversion of ketenes to esters 532 – generation and capture of 1165 – cyanations – pathways for racemization 1163 –– with binaphthol catalysts 272 enantiomerically enriched thiiranium ions –– with catalyst 271 – nucleophilic opening 1175 –– with oxazolines 272 enantioselection 201, 281, 283, 289, 292, 298, –– with salen complex 273 302, 304, 305, 308, 309, 311, 316–318, 333, – cycloaddition reactions 890 387, 393, 395, 422, 437, 531, 537, 539, 542, – [4 + 2] cycloadditions of C (1)-ammonium 543, 551, 556, 557, 560, 572, 588, 589, 776, enolates 579 779, 780, 783, 784, 788, 791–793, 1016, 1018, – Diels–Alder reaction 822 1052, 1064, 1072 – dienolate addition – acylations 459, 460, 774 –– copper-catalyzed 1246 –– of secondary alcohols 774 – diethylzinc addition 354, 359 – addition of achiral amines to ketenes 535 – dihydropyrrole formation 779 – alcoholysis of ketenes 532 – 1,3-dipolar cycloaddition 615 – aldol addition – with DMAP derivatives 531 –– of trichlorosilyl enol ether catalyzed by – enamine-based transformations of chiral phosphine oxide 334 aldehydes 867 –– of trichlorosilyl ketene acetal 294 – exo-Diels–Alder reaction 839 – alkene functionalizations – α-fluorination 883 –– Lewis base-catalyzed 1155 –– of C(1)-ammonium enolates 599 – alkylation 349, 353 –– trifunctional catalytic system 602 – α-alkylation of aldehydes 888 – formal [2 + 2] and [3 + 2] cycloadditions 573 – alkynylation – formal [4 + 2] cycloadditions 579 –– of ketones 364, 365 – of the formamide catalysts 1091 – allene–alkene [3 + 2] annulation 775 – α-functionalization of aldehydes 858 – allene–alkene [4 + 2] annulation 784 – glycolate aldol addition 1047 – allene–imine [4 + 2] annulation 783 – hydrogenations 387, 774, 787 – allene–imine [3 + 2] annulations 781 –– catalysts 387 – allylations 281, 289, 292, 1015, 1016, 1239 – intramolecular MBH reaction 675 1374 Index

– intramolecular γ-umpolung addition 790 – sulfenylation – inverse-electron-demand hetero-Diels– –– of alkenes 1173 Alder reaction 890 – synthesis 446 – ketoketene–imine [2 + 2] annulation 796 –– of α-amino acids 423 – β-lactam synthesis –– of frondosin B 450 –– bifunctional catalytic system 567 –– of functionalized acrylates 791 – Lewis acid-catalyzed MBH reaction 676 – total synthesis of (+)-ibophyllidine 798 – MacMillan catalysts/geometry control – γ-umpolung 787 –– Diels–Alder reaction 822 – version, of Kwon’s[4+ 2] annulation 783, –– first- and second-generation 814 784 –– Friedel–Crafts reaction with electron-rich – Weitz–Scheffer-type epoxidation reactions, aromatics 825 of α,β-unsaturated aldehydes 845 –– Mukaiyama–Michael reactions with – [2Y+Y2], 1338 enolsilanes/silylated nucleophiles 829 enantioselective cyanosilylations 270 – Mannich-Lactamization cascades 562 enantioselective [3+ 2] cycloaddition – Michael addition 786 – catalyzed by D-Thr-L-t-Leu-derived –– –lactonization 584 catalyst 1281 ––promoted by Fc-PIP 585 enantioselective epoxide opening 1122 – Michael-aldol-β-lactonization – Lewis acid-catalyzed 1115 (NCMAL) 624 enantioselective α-fluorination 1331 – Mukaiyama–Michael reaction of enantioselective formation silyloxyfurans 831 – of C-Si bonds 967 – NCAL process with ketoacid substrates 560 enantioselective halofunctionalization 1192, – nucleophile-catalyzed acyl transfer 459 1194, 1195 – organocatalytic triple cascade 874 – mechanistic considerations 1192 – oxazaborolidine-catalyzed deacylation, of enantioselective hydration 1330 meso-N,N-diacetyl imidazolones 427 enantioselective phosphitylation 1264 – oxazaborolidine-catalyzed reduction, of enantioselective α-protonation 1330 carbonyl compounds 441 enantioselective selenoetherification – Passerini-type reaction 1072, 1073 – catalytic mechanism 1168 – phosphine catalysis 774, 791 – morpholine-derived thiophosphoramide – phosphonylation of enals 834 catalyzed 1167 – α-protonation enantioselective selenofunctionalization 1166 –– of ketenes 527 – Lewis base-catalyzed 1157 – RC reaction, of symmetrical bis-enones enantioselective sulfenoetherification promoted 701 – catalytic mechanism 1181 – reduction 1095 – with chiral Brønsted acid 1179 ––of an acetyl cyclobutadienyl iron tricarbonyl enantioselective sulfenylation 1266 complex 426 – phosphoric acid catalyzed 1191 –– of α-azido ketones 421 endocyclic amido group – reduction of imines 1087, 1088 – electron-withdrawing inductive effect 863 –– formamides derived from proline and 5-endo cyclization 756 pipecolic acids 1084 energy surface diagram for Lu’s[3+ 2] –– pyridine- and imidazole-derived annulation 723 catalysts 1089 enolates 537, 568 –– sulfinimide- and phosphoramide-type – alkylation 447 catalysts 1091 – condensation 12 – route to biotin employing oxazaborolidine- – O-alkylation of 859 catalyzed desymmetrization 429 enol ethers 301, 302, 309, 323, 331, 333, 1059 – selenofunctionalization 1161 – conformation 323 – silyl conjugate additions 995 – geometry dependence of the aldol – silylcyanation 1232 additions 302 – sulfenofunctionalizations 1173 enol lactonization 612 Index 1375 enones 746 –– phosphazirconocene catalyzed 1119 – -acids 585 meso- – -acid starting materials 585, 586 – dimeric Lewis base catalyst 1142 – Basavaiah’s RC dimerizations of 690 – enantioselective chlorination of 1123 – β-carbon 697 – enantioselective desymmetrization – enantiopure acid cocatalyst and solvent on –– Lewis bases with unconventional ligand the epoxidation 847 structures catalyzed 1130 – Lewis base-catalyzed β-functionalization –– N-oxide-derived Lewis bases of 86 catalyzed 1123 – MBH reaction 657 –– phosphine oxide Lewis bases – primary amine-catalyzed enantioselective catalyzed 1128 epoxidation 846 –– phosphoramide Lewis bases – pyrrolidine-catalyzed addition 811 catalyzed 1123 – RC reaction and cyclization of 696 – enantioselective desymmetrization of 1123 enoxy silane derivate 1062 – enantioselective opening enriched γ-substituted –– with chiral bis-phosphine oxide-catalyzed

allyltrichlorosilanes 1025 SiCl4 1129 enthalpy 56, 57, 58, 59, 62, 392 –– with fluoride 1144 – (affinity) vs. Gibbs energy (basicity) 61 – enantioselective opening of

– scales 56 –– SiCl4 1121, 1124 enzyme-catalyzed reactions 391 – kinetic resolution epoxide opening ––by enantioselective fluoride addition 1148 – achiral Lewis bases catalyzed 1116 – planar chiral N-oxides 1124 – with bipyridine-N,N´-dioxide meso-epoxides opening –– proposed catalytic cycle 1137 – allene catalyzed 1132 – with ferrocenediylazaphosphinine-catalyzed – with phosphaferrocene-catalyzed TMSCl 1120 TMSCl 1117

– HMPA-catalyzed – by PINDOX catalyzed SiCl4 1126 –– electronic effect, role of 1122 epoxylactones, aldol reaction 912 –– steric effects, role of 1122 equilibrium isotope effect (EIE) 408 – HPMA-promoted 1123 erythromycin A 484 – with Lewis base-catalyzed – phosphitylation 1265 chlorotrimethylsilane (TMSCl) 1116 erythromycin, Woodward synthesis of 806 – with Lewis base-catalyzed organotin erythronolide B 545 halides 1122 ESI(+)-MS plot meso-epoxide opening – of aza-MBH reaction 224 – di-N-oxide bipyridines catalyzed 1127 – of MBH reaction cocatalyzed by N,N´-diaryl – with HMPA catalyzed SiCl4, 1121 thiourea 222 – mono-N-oxide bipyridines catalyzed 1127 – spectra for the MBH reaction of methyl epoxides acrylate 219 – alkylations 238 ESI technique 217 – cooperative Lewis acid/Lewis base catalyzed E-tetrahydropyrazolopyrazolone 782 fluorination 1142–1143 ethyl allenoate, with exocyclic enones – enantioselective opening of – amine-catalyzed RC reaction 694 –– chiral catalysts 1131 eupolauridine, from onychine 688 –– helical catalysts 1131 ()-3-exo-(dimethylamino)isoborneol(DAIB) 344 –– pyridine N-oxide catalysts 1131 exo-selective Diels–Alder reaction 841 – fluorination of 1142 Eyring behavior 393 – Lewis base-catalyzed kinetic resolution, 1133 ––chlorosulfolipid synthesis, applied to 1135 f – phenyl isocyanate insertion 1122 face-to-face π–π stacking 469, 470 – ring opening (See also epoxide opening) Fc-PIP-catalyzed Michael addition– –– phosphaferrocene catalyzed 1119 lactonization 586 1376 Index

Felkin–Ahn model 312 Friedel–Crafts acylation 407, 540 ferrocenophane-2-one substrate 424 Friedel–Crafts alkylation FerroPHANE 776 – of N-methylpyrrole 817 Fischer-Tropsch method 7 – on indoles accepts 828 fluorescence assay – between N-methylpyrrole and enals 828 – for catalyst screening 483 – to N-methylindole and crotonaldehyde 826 fluoride Friedel–Crafts-type reactions 810, 825 – catalysis 237 frontier molecular orbital (FMO) –– vs. aldehydes allylation 1236 – superimposition of 860 fluoride-assisted expulsion frustrated Lewis pairs (FLP) 72 – thermochemical estimates 246 fugacity coefficient 56 fluoride-catalyzed 247 β-functionalization of acrylates 1318 – allylic isomerization 257 α-functionalization of enals 1330 – carbanion transfers β-functionalization of enals 1324 –– nucleophiles 234 γ-functionalized acrylates synthesis, through – desilylation 905 phosphine-catalyzed γ-umpolung fluoride (salen)Co complex 1146 addition 756 fluoride-initiated reactions 247 α-functionalized esters 1330 fluoride ion 237, 260 furan oxidation 447

– allylation using allylSiMe3 1015 furaquinocin E 194 – catalysis 260 Fu’s catalyst 480 – -catalyzed conditions 256 – enantioselective

– -initiated SN2 displacement of alkyl –– aza-(-lactam synthesis 574 halides 246 –– oxazetindin-3-one synthesis 575 – -mediated synthesis 615 – for KR 467 fluoride-promoted fused bicylic β-lactones – addition of allylfluorosilanes to aldehyde 282 – Romo’s achiral NCMAL 623 – borosilyl additions to boc-imines 995 6,6- and 5,6-fused ring systems, synthesis fluorination of 744 – with NFSI 1330 fused tricyclic β-lactones α-fluorination – dyotropic rearrangement of 562 – trifunctional system 601 Fu’s tertiary α-chloroester synthesis 598, 602 α-fluoro acids 1330 p-fluorobenzyl moiety 1102 g fluorodesilylation 247, 251 gas-phase acidity 258 – mechanism of 234 ––base interactions 58 – technique 263 gas-phase basicity (GB) 58 N-fluorodibenzenesulfonimide (NFSI) 883 gas-phase fluoride affinity 240 fluorofunctionalization reactions 1192 – silanes bearing increasing numbers of 2-fluoro-6-methoxyphenol 791 fluorine atoms 240 4-fluorophenyl/4-nitrophenyl silanes 263 gas-phase proton affinities 60 fluorotriethoxysilane 1243 gauche-open conformation 499 fluorous tag 1103 Gaunt’s catalytic intramolecular fluorovinyl anions 263 enantioselective cyclopropanation 609 19F NMR spectroscopy 204 gem-trifluoromethyl substituents 242 formal [2 + 2] cycloadditions 564, 565, 568, geranylgeranyltransferase-I 737 569, 574, 576, 577, 578 – inhibitors 728 – to form β-lactams 565 Gibbs energy 5, 55, 56, 57, 58, 59, 61, – of ketenes and imines 562 62, 76 N-formyl proline amide 1094 – scales 56, 62 free energy 210, 212, 227, 392, 393, 537, 722 Gladiali’s phosphepine 776, 783 – of activation 537 α-glucosidase inhibitors 540 – difference ΔΔ(G) 538 glycolate aldol reaction 1047 Index 1377 glycolate ethers HartreeFock nonlocal exchange 213 – kinetic enolization of 1047 Hauser rearrangement 944 glycosidation 797 Hayashi–Jorgensen enamine 111 glyoxalate hydrazones Hayashi–Jorgensen-type prolinol ether – enantioselective allylation of 1244 catalyst 107 (S)-goniothalamin 1029 Hayashi–Jørgensen catalyst 862 Grignard reactions H-bonds (HBs) 479 – addition reaction 367, 375 – acceptors 489 Grignard reagents 261, 340, 367, 368, 369, 372, – donors 470, 1026 373, 374, 376 2H-chromenes 702 – catalytic enantioselective alkyl addition 369, – via enantioselective RC reaction 702 370 Heck cyclization 754 – RMgCl-derived zinc(II) ate complexes 373 Heck reaction 1318 Grob-type fragmentation 791 Heisenberg uncertainty principle 404 group transfer reactions 1259 helical pyridine N-oxide 1032 Gutmann acceptor number 205, 207 hemiketal Gutmann analysis 46 – alkoxide intermediate 212 – empirical analysis 1040 heptacoordinate silicon 1095 –– of acid–base interactions 44 heteroarylacetic acids 588, 590 – spillover effect 48 heteroatom-containing dipolarophiles 727 – principles 47, 1180 heteroatomic electrophiles reactions 878 –– of molecular adduct formation 46 – α-amination 879, 880 – α-halogenation 881 h – α-oxidation 880 β-hairpin conformations 483, 484 α-heteroatomic functionalizations 884 Hajos–Parish–Eder–Sauer–Wiechert α-heteroatom-substituted aldehydes 508 (HPESW) reaction 145 α-heteroatom-substituted carbanion 936 haliranium ions α-heteroatom tin reagents – competitive nucleophilic capture and olefin – with alkyl halides 959 transfer 1193 – to carbonyl compounds 958 – derived from alkenes of various substitution heterocycles 538, 574, 578, 727, 741, 752, 757, patterns 1192 770 – mechanism of olefin-to-olefin – synthesis, through mixed double-Michael transfer 1192 additions of allenoates 753 – olefins to-olefin transfer 1193 N-heterocyclic carbene (NHCs). See NHCs – racemization (N-heterocyclic carbene) –– by olefin-to-olefin transfer 1192 heterocyclic lactone, [3Y+Y3] cycloaddition meso-haliranium ions with homoenolate 1334 – enantioselective opening 1203 – enals/aldehydes, [3Y+Y2] annulation α-haloaldehydes 508 of 1332 halo-aldehydes – enals/imines, [3Y+Y2] annulations of – α-alkylation 885 1333 γ-haloallyltrichlorosilanes – enals/trifluoromethyl ketones, [4+2] – to vinylepoxides synthesis 1027 reaction 1339 halocarbocyclization 1195 hexachlorosilicate dianion 1050 halofunctionalizations 1156 hexacoordinated halogen-substituted phenyl groups 675 – complex (SiL6)49 halolactonization 1196 – difluorosiliconate 255 halomethyl anions 250 – neutral complex 286 Hammett correlations 206, 268, 273 – phenanthroline spiro complex 243 Hammett study 268 – siliconates 244, 245, 260, 284 Hammond postulate corollary 1052 – silicon species hard and soft acids and bases (HSAB) 60 –– in situ formation 1078 1378 Index

– structures 242 hydrogen bond 61, 62, 68, 265, 388, 483, 741, – transition state 256 777, 780, 783, 786, 791, 794 1,1,1,3,3,3-hexafluoroisopropyl alcohol – donors 741, 777 (HFIP) 1143 – interactions 196 hexamethylphosphoric triamide (HMPA) 283, hydrogen-bonded intermediate 672 1220 hydrogen-bonding thiourea catalyst hexamethylphosphorous triamide 702 (HMPT) 739, 1160 hydrogen cyanide reactions 265 3-hydroxyquinuclidine 202 hydrogenic wavefunction 404 (±)-hirsutene 724, 797, 799 hydrolysis 436, 437, 448 Hiyama coupling 938 – of glycosides 3 HMPA reaction – of starch 3

– with SiCl4 NMR studies on 1139 9-epi hydroquinidine-derived primary amine HMPA(Se) 1161 catalyst 871 – as the catalyst 1162 hydroquinone (HQ) 881 – -catalyzed selenoetherification 1162 hydroquinuclidine (HQD) 683

HMPA/SiCl4 α-hydroxy alkanoates 501 – multinuclear NMR analysis 1050 hydroxybenzotriazole (HOBt) 551 Hünig’s base 543, 544, 553, 554, 578, 600 β-hydroxy benzyl esters 508 – for the cycloaddition of in situ-generated α-hydroxy carboxylic acid 574 ketene 543 γ-hydroxy enones 1067 – dehydrohalogenation of 599 α-hydroxy ester 580 homoaldol-lactonization process 641 β-hydroxy ester 910 homobenzotetramisole (HBTM) 501, 558, 616 α-hydroxy ketones homodimerization 553 – primary amine-mediated syn-aldol – of ketoketenes 795 reaction 876 – of methylphenylketene 553 β-hydroxy ketones 746, 1059, 1061 homoenolate annulation reactions 1333 δ-hydroxy lactams 1069 homoenolate chemistry β-hydroxylation of enals – NHCs (N-heterocyclic carbene) – via single-electron oxidation 1329 catalyzed 1332, 1334 hydroxyl-directed cyclopropanation 440 homopropargyl hydrazide 1032 hydroxyl-directed diastereoselective diboron HOMO-raising activation additions – of enamine-mediated catalysis 892 – to alkenes 987 HOMO-raising enamine activation of hydroxypyrone substrate 1338 aldehydes 866 3-hydroxyquinuclidine 202 Horner-Wadsworth-Emmons reaction 921 β-hydroxy sulfides 420 Hosomi–Sakurai allylation 1237 ω-hyperbonds by Weinhold and Landis Houk– (NBO analysis) 1040 – List-like model 170, 171 hypervalent bonding 49 – List-like transition states 178 – analysis 49 – List model 153, 154, 167, 169, 179, 183 hypervalent iodine compound 935 – List transition states 150, 151, 155, 181 hypervalent Si-C bond 244 hydrazones 281 hypervinylogous aldol addition 1070 – propargylation/allenylation of 1031 syn-hydroacylation 1313 i hydroacylations imidate methylide cycloaddition 940 – of enol ethers 1313 imidazole 264, 481 meso-hydrobenzoin 508 – catalysis of 4-nitrophenyl acetate hydroboration 400 hydrolysis 22 hydrocinnamaldehyde 309 imidazolidinones 152, 867 hydrogenation 4, 6, 423, 432, 553, 590 – catalysis 812, 814, 815, 881 – with Ru/TsDPEN complex 424 – -derived enamines Index 1379

–– X-ray crystal structures 867 – TS optimized structures 851 imidazoliums 1291 indole-3-carboxaldimine 798 – experimental and computational indolines acidities 1294 – acylative KR of 479 – scaffold 1291 – enantioselective reduction 1103 imine 204, 206, 238, 270, 562, 734, 771, 798, 2-indolyldihydropyrrole 798 805 In(III)-complexed cinchona alkaloid – approaches, Si-face of 877 derivative 567 – enantioselective reduction 1085, 1087, 1089, meso-inositol derivatives 486 1090 inositol polyphosphates 486 – nucleophilic attack, preferred directions in situ borane and oxazaborolidine catalyst of 1101 formation 452 – propargylation/allenylation of 1031 in situ dehydrative generation 363 – [2 + 2] reaction with 646 in situ-generated ketenes 551, 566 – reduction, attempted rationalization – Armstrong’s cycloaddition of 544 1094 – Calter’s ketene dimerization 552 – with trichlorosilane, enantioselective – dimerization 553 reduction 1092 in situ-generated α,β-unsaturated iminium 150 acylammonium 628 – catalysis in situ preparation –– kinetic studies 808 – of alkenylzinc species 360 –– solvent effects 813, 814 – of borane–diethylaniline complex 451 – cations 805 π–π interaction 1046 – hydrolysis 175 n–π* interactions 85 – intermediates 832, 1078 intermediate nitrilium ion – ions – hydrolysis 1165 –– electrophilic reactivities 111 intermediate phosphonium salt 792 – salts intermolecular –– dipolar cycloaddition 942 – aldol-lactonizations 554 –– optimized geometries and relative – aldol reaction 540, 544 energies 818 – [4 + 2] cycloadditions 588 – X-ray structure 821 – KIEs as a mechanistic tool, limitations of 400 iminium catalyst. 806, 812, 813 See also – net cycloadditions of ketenes 544 iminium catalysis intramolecular iminium-catalyzed – aldehyde allylation 257 – cycloadditions 806 – allene–alkene [3 + 2] annulation 797 – Diels–Alder reactions 810, 823 – [3 + 2] annulations 724, 767, 797 –– saturation kinetics 809 – coordination 440 – Friedel–Crafts reaction 826 – cyclization 578, 584, 765, 772 – structural and mechanistic aspects 806 – KIEs 398 – of α,β-unsaturated aldehydes 806 –– at homotopic groups 400 iminium–cyclopentadiene Diels–Alder – Michael addition 757 reactions 825 – NCAL reaction 554, 558 indane-derived amino alcohol 450 – nonbonding interaction dictates 1159 indan-1-ol – nucleophile 14 – silylative KR 507 – proton transfer 737 indene carboxylates 584, 585 – Rauhut–Currier/aldol reaction 743, 744 indole 849 – reactions using chiral selenium – enantioselective reduction 1102 electrophiles 1159 – to enones, enantioselective conjugate – selenoetherification 1159 addition 849 – selenofunctionalizations 1159 – Friedel-Crafts alkylation of 847 – substrate-controlled transfer 437 – N–H moiety of 850 – transesterification 200 1380 Index

– β´-umpolung addition 760 – -amine adduct 540 – γ-umpolung addition 790 – aminolysis 532, 535 – γ-umpolung reaction 756 – catalytic enantioselective heterodimerization intramolecular 1,2-shift 235 of 553 inverse temperature dependence – catalyzed by chiral PPY 538 – for stoichiometric reduction of – [2 + 2] cycloaddition 541 acetophenone 395 – -derived ammonium enolates 588 iodide-assisted hydrolysis 14 – -derived C(1)-ammonium enolate 579 iodocarbocyclization – dimerizations 544, 551, 553 – stereochemical models 1195 –– toward 4-alkylidene-β-lactones 550 iodolactonization – Fu’s alcohol additions 532 – via anion binding/Lewis base – Fu’s catalytic enantioselective coupling coactivation 1200 of 533 isothiourea 558, 570 – Fu’s phenol addition 533 – structures 101 – homodimerization 550, 553 – tetramisole 588 – Wynberg’s original synthesis 539 isothiourea-mediated α-amination α-keto esters 360, 361, 745 – of carboxylic acids 594 β-keto esters 618, 756 isothiourea-mediated Michael addition– ketones 293, 299, 365, 387-389, 400, 405, 429, lactamization 595 431, 437-440, 444, 450, 538, 540, 609, 724, isothioureas 102, 588 730, 745, 1078 – nucleofugalities 104 – adducts 299 – -type catalyst 502 – catalytic enantioselective alkenylation 360 – -type Lewis base catalysts 502 – deprotonation of 907 isotopically labeled silyl-substituted – enantioselective reduction 1106 triphenylcyclopropene – enolization 1251 – desilylation of 258 – reduction 452 Itsuno/Corey ligands and CBS catalysts 389 – silylcyanation 1221, 1224 – with trichlorosilane 1078 j – with zinc(II) ate complexes 374 Jacobsen’s chiral thiourea phosphine β-ketosilanes 906, 909 catalyst 793 – alkylation of enolates 909 Jensen’s classification, of donor–acceptor – enolate generated 906 interactions 40 – Michael addition of 910

Jørgensen-Hayashi catalyst 173, 831, 865, 871, kH/kD values 199 875 KIEs 394, 400, 404, 405, 407, 414 – -derived linear enamines 865 – competition experiments yield 407 Josiphos ligand 425 – competitive measurements 405 – and estimated KIEs for the reduction of k benzophenone 399 2 Kagan’s classic ML2 model 1145 – H measurements, at enantiotopic Katsuki’s chiral salen 364 positions 406 Keck allylation conditions 292 – at homotopic methyl groups 400 Kerrigan’s ketene heterodimerization 554 – mathematical ratio 405 ketene-aldehyde cycloaddition – measurements 400, 408 – Lin’s studies of 550 –– methodologies 398 ketene–aldehyde net cycloadditions 547 – stereochemical inversion of 406 ketene–amine adduct 539 kinamycins synthesis ketenes 531, 533, 534, 535, 537, 538, – C 1340 539, 540, 542, 543, 544, 547, 548, 550, – F 1340 553, 555, 565 – J 1340 – acetal 297 kinetic energy density 209 – alcoholysis 530 kinetic isotope effects 201, 1312 Index 1381 kinetic resolution (KR) 433, 439, 459 – protocol 591 – of α-acyloxy-N-acyloxazolidinethiones 512 – ring-opening process 584 – of alcohols 133, 141 – providing lactams, enol lactones or enol – of sec-allylic alcohols 464 lactams 584 – of cyclic sec-amines 516 – and lactamization processes 603 – experiments of α-branched amines with – methodology, isothiourea-catalyzed 586 anhydrides 141 – to N-aryl-N-aroyldiazenes 646 – of a racemic ketone via CBS reduction 436 – products 788 – racemic cis-1,2-diols 491 – reactive intermediates/mechanistic – of racemic lactone 434 implications 874 – of vinyl epoxides, phosphoramide- – report 870 catalyzed 1134 – Seebach–Golinskí topological rule 870 Knoevenagel condensations 1, 9, 10, 15 – syn-selective additions 871 Krafft modification of intramolecular Morita– – with α,β-unsaturated acylammonium Baylis–Hillman reaction 226 chloride 620 Kwon’s allene–alkene [4 + 2] annulation 739 – using carbanion equivalents generate 937 – deuterium labeling study of 735 L-alanine 777 – theoretical analysis of 736 lanthanides 544, 548 – cocatalysts 676 l – Lewis acid 569 lactam Lectka’s method 597 – stereoconvergent transformation of 622 Lewis acid (LA) 15, 16, 33, 48, 55, 56, 60, 61, 68, β-lactam 566, 796 72, 85, 141, 245, 339, 360, 391, 548, 561, 567, – containing compounds 563 1013, 1026, 1077, 1078 – heterocyclic ring 563 – activation 390 – products 565 –– of unsaturated carbonyls 627 lactam enoates – additives 548, 582 – Ye’s[4+ 2] cycloaddition 643 – base catalysis 409 lactam formation – catalysis 255, 264, 387, 391, 392, 1050, 1115 – via homoenolate equivalents 1332 –– in siliconate reactions 245 cis-β-lactams 568, 569 – Lewis base activation 1155 – Fu’s catalytic enantioselective 570 – mediated vinylogous addition 1070 β-lactam synthesis 502, 503, 505, 506, 562, 563, – NHC cocatalytic cis-cyclopentene 565, 573, 578, 596, 796 formation 1335 lactate-derived enol ethers 321 – quantitative expression of 62 lactones 433, 434, 441 Lewis acid/base complexation – derived silyl ketene acetals 474 – electronic redistribution 46 β-lactones 538, 539, 540, 542, 543, 545, 552, Lewis acid–base interactions 61 553, 554, 555, 557, 558, 561, 573, 795 Lewis acid-catalyzed reactions 238, 256

– applications of Wynberg’s synthesis 540 Lewis acid cocatalyst (Bi(OTf)3) 577, 676 – catalytic enantioselective formation of 568 Lewis acidic oxazaborolidine boron 440 – conversions of 543 Lewis acid-Lewis base 100, 356, 364 – Fu’s net [2 + 2] cycloaddition 547 – bifunctional catalysis 1217, 1218 – Song’s application of 542 – combinations 544 – Wynberg’s original synthesis 539 – complexation 273 δ-lactones – hypervalent bonding analysis 49 – synthetic applications 639 – interactions 74 cis-β-lactones 544 –– geometrical and electronic consequences lactones lactam formation of 44 – via enol azolium intermediates 1335 –– Gutmann analysis 46 lactonization 133, 540, 584, 588, 591 –– perturbation molecular orbital theory – of acid 591 analysis 45 – process 584, 585 –– valence bond analysis 44 1382 Index

– natural bond orbital (NBO) analysis 51 –– transformations 967 – phosphoramide 362 – catalysts 124, 295, 296, 313, 321, 333, 539, – rule of eight 34 577, 586, 718, 968, 983, 1070, 1155 – rule of two 34 – in combination with carboxylic acids 554 Lewis acid–Lewis base cooperative catalysis – desilylation 909 – proposed catalytic cycle 1146 – diamine ligand 343 Lewis affinity and basicity – induced decomposition 135 – scales of 58 – interacts with π* acceptor orbital 43 Lewis base (LB) 1, 2, 12, 13, 15, 16, 21, 23, 33, – n®π* Lewis base catalysis 41, 59, 62, 85, 91, 93, 106, 121, 125, 127, 128, –– enamine generation 858 135, 136, 139, 191, 194, 199, 211, 226, 236, – silane cationic complex 270 243, 270, 282, 295, 298, 299, 306, 342, 360, – with unconventional ligand structures, 534, 555, 746, 747, 968, 989, 1013, 1014, 1016, catalysis by 1130 1020, 1039, 1069, 1078, 1161 Lewis base-activated C-Zn + C=O – activated B-B bond 968 reactions 342

– activated Cl3SiH 1097 – chiral amino alcohol-catalyzed – activation (n ® σ*) 43, 1115 enantioselective diethylzinc addition 343 –– carbanion equivalents 905 – Noyori’s chiral amino alcohol, ()-DAIB 344 – activator 1190 – RLi,RMgX, and R2Zn, with chiral ligands – in acylation reactions 459 –– stoichiometric activation 342 – adduct formation 60, 226 Ligands – allylation of aldehydes 1016 – accelerated catalysis 42 – from ammonium enolate 555 – cone angle 72 – attack on mixed anhydride 135 – in transition metal catalysis 41 – benzhydrylium ions reactions 93 linear α-allylation products 1014 – binding 341 Li/Se exchange 248 – with binding sites 72 2-lithio-1,3-dithiane 245, 248 – carbonyl addition mechanism 268 α-lithiosulfides – catalysis 1, 7, 9, 11, 12, 40, 42, 44, 60, 137, 141, – configurational stability 249 251, 293, 387, 392, 858 lithium reagents/silanes 249 –– activation of silicon reagents 1013 – with cyclohexenone 249 –– acyl shift of 5-acyloxyoxazoles 124 lithium thiolates 264 –– additions 973, 979 Liu/Romo’s Michael Aldol-lactonization –– additions of amines and their (NCMAL) 620 derivatives 535 L-orD-tartaric acid 287 –– alcoholysis pathway 532 L-phenylalanine-derived chiral catalyst 793 –– aldol addition, hypothetical catalytic cycle L-proline 216, 876 for 294 L-threonine 215 –– aldol addition of trichlorosilyl ketene 295 LUMO –– alkylations 274 – coefficients 223 –– allylation 282 – lowering catalysis 806 –– carbanion transfer 235 – lowering organocatalysts 844 – catalyzed cyanations Lu’s allene–alkene [3 + 2] annulation 721 –– chirality transfer 270 Lu’s[3+ 2] annulation 719, 720, 722 –– C-B and C-Si bond 967 –– C-B bond forming processes 971, 991 m –– classification of interactions 43 MacMillan –– coupling of ketenes 536 – catalysts 813 –– defining 40 – first/second-generation catalysts 810 –– to generate Brønsted base 746 – imidazolidinone catalysts 866 –– mechanism 496 – oxazolidinone catalyst 832 –– miscellaneous examples of 24 – type iminium salts 819 –– privileged chiral amines for 858 macrolactones 442, 443 Index 1383 magnesium(II) ate complexes 373 methyl 2-butynoate isomerization 720 malahensilipin A 1135 methyl cation affinities (MCA) 58, 68, 76, 106, maleimides 127, 128 – RC reaction and cyclization of 696 – scale 69, 71 mandelic acid-derived (pyridyl) – values 91 oxazolines 1092 methyldiphenylphosphine oxide 729 Mannich reactions 183, 184, 203, 877, 1252 N-methylformamide group 1093 – with zinc fluoride 1252 π-methylhistidine (Pmh)-based peptides 1259 mannose derivative N-methylimidazole (NMI) – site-selective functionalization of 491 – pipecolinic acid 1270 Martin ligands 242, 243 N-methylimidazole-derived catalysts 489 mass action law 56 π-methylimidazole-functionalized lipophilic mastigophorene 433 tetrapeptide catalyst 484 Matsubara, thia-Michael-lactamization N-methylindole 826 process 636 – pyrrolidine-catalyzed addition 811 Mayr equation 89, 102 4´-methylisobutyrophenone 400 Mayr–Patz equation 125 methylketene leading, to β-lactone Mayr’s electrophilicity 92 – Calter’s homodimerization of 551 MBHADs 729, 759, 763, 765, 766, 767, 768, 791 methyl ketone enolates – alkene [3 + 2] annulation 767, 793 – stereoselective addition 1044 – alkene annulation, proposed mechanism 3-methyl-L-valine 779 for 766 β-methyl-(∏-methylhistidine residue 483 – bearing β´-alkyl groups 791 2-methyl-2-phenylpropanoic acid 788 – in phosphine-catalyzed annulations 759 (N-methylpiperidin-4-yl)magnesium MCA values 128 chloride 381 McQuade kinetic investigations 198 α-methyl proline 183 menthol – α-alkylation reaction 185 – esterification of 460 – derivative 184

Me2PINDOX 1022 4-methylpyridine Me3Si-CN 246, 264, 265, 269, 271 – with bis(catecholato)diboron 968 – addition 270 N-methylpyrrole 825 – tetrabutylammonium salt-catalyzed – conjugate addition reactions 821 reactions 268 N–methylpyrrole alkylation, diastereomeric – triethylamine-catalyzed reaction 265 transition states 827 N-mesityl-substituted amino indanol-derived O-methylquinine 553 NHC 1328 1-methylquinolinium N-mesylbenzaldimine 214 – isoquinolinium salts 917 metallotropic interconversion 1032 4-methylthiazoliums methanolysis 565, 1238 – N-substituents 1293 METHOX 286, 1024, 1136 S-methylthio binaphthyl sulfonium salt 1172 N-(4-methoxybenzylidene)-4-methyl- methyl vinyl ketone 203, 204, 206, 211, 746 benzenesulfonamide 223 Mg(II)/Zn(II) ate complexes, anionic Lewis 2-methoxyfuran base activation 372 – HX acidity, reaction efficiency 813 – stoichiometric alkyl addition reaction 372 π-methyhistidine-containing – Zn(II) ate complexes 375 pentapeptide 488 Michael acceptors 170, 617, 628, 656, 786, 1308 methyl acrylate (MA) 191, 200, 201, 211, 212, – in cyclization 698 216, 219, 223, 227, 722 Michael additions 210, 221, 223, 226, 622, 645, – aza-MBH reaction of 680 716, 745, 746, 773, 868 – MBH reaction of 672, 680 – activated alkenes/alkynes 746

α-methylallyl-SiMe3 256 – anti-selective additions 873 α-methyl and β-hydroxy groups 324 – cascade reactions, applications 873 2-methyl-2,3-butadienoate 735 – DABCO 223 1384 Index

– enolate 626 monoprotected chiral diol intermediates 417 – enolizable carbonyl compounds 868 α/β-monosubstituted acid chlorides 625 – intramolecular cascade reactions 1303 monosubstituted epoxides ring opening Michael annulations 752 – with phosphametallocene Lewis Michael-benzoin cascade reaction 1304 bases 1119 Michael donors 618, 624, 633, 868 monosubstituted ketenes 547, 564 Michael–Heck reaction 800 – formation 565 – in total syntheses 800 monoterpene indole alkaloids 562 Michael–Michael-aldol-lactonization Morita–Baylis–Hillman (MBH) 44, 99, 104, process 624 191–195, 198–203, 209, 210, 212, 216, 226, Michael-proton transfer-enol lactonization 227, 502, 527, 655, 656, 676, 1269, 1270, 1316 mechanism 619 – acrolein 658 Michael-type attack 199 – acrylates 657 mikanecic acid 194 – binaphthol (BINOL)-derived chiral Mitsunonbu reaction 102, 706 promoters 671 mixed double-Michael [4 + 1] reaction, – chiral Brønsted acids 678 mechanism of 752 – chiral cocatalysts 676 modified proline derivatives 175, 176 – chiral Lewis acids 676 – Houk–List model and proline analogs – chiral Lewis basic promoters 668 –– constrained bicycle proline analogs 182 – cinchona alkaloids as chiral amine –– Mannich reaction 182, 183 promoters 669 –– pyrrolidine ring conformation and 182 – classical and nonclassical methods for – proline analogs mechanistic studies associated with 226 –– constrained bicycle proline analogs 182 – cocatalyst effect in 219 –– Mannich reaction 182 – cooperative catalysis in enantioselective 680 –– (2S,5S)-pyrrolidine-2,5-dicarboxylic – C=X electrophile 662 acid 185 – of cyclic enones and N-tosylarylimines 1316 –– triethylamine 185 – of cyclohexenone 679 molecular orbital (MO) 33 – diastereoselective version of 210 – diagram, of three-center–four-electron – dualistic nature of mechanism of 218 hybrids 50 – enantioselective 668 – theory 38 – EWG Michael acceptor 656 mono- and bis-N-oxide bipyridines, synthesis – intramolecular 226 of 1127 – ketones 656 mono- and di-N-oxide bipyridines 1127 – kinetic studies applied to 195 mono-carbamate-protected cis-1,2-diols 486 – mechanism of 195, 228 monodentate chiral amines 270 – between methyl acrylate monodentate chiral phosphines 775, 777 –– and aldehydes, catalyzed by DABCO 218, monodentate phosphepines 788 220 mono-, di-, and tricoordinated Zn(II) –– 2-thiazolecarboxaldehyde catalyzed by species 346 DABCO 221 mono-dichloroacetate derivatives of – Miller’s enantioselective reaction 682 cis-1,2-diols 486 – Morita–Baylis–Hillman alcohol derivatives monomeric cinchona alkaloids (MBHAD) 715

[(DHQD)2AQN 497 – Pmh catalyzed 1269 mono-N-oxide – proposed mechanisms for 211 – vs. bis-N-oxide – α-silyl enones 661 – as Lewis base catalysts, 1019 – thioacrylate esters 657 –– enantioselectivity, effect on 1136 –– theoretical methodologies 208 –– reaction rate, effect on 1136 – thiourea-derived bifunctional catalysts 672 mono-N-oxide bipyridines – under aprotic conditions 211 – library synthesis – using enones as Michael acceptors 656 –– terpenes derived 1127 – vinyl sulfones 661 Index 1385

Morita-Baylis-Hillman and Rauhut-Currier –– C-B bond formation 979 reactions 1316 –– conjugate additions 975 Mosher’s esters 401 –– trans-esterification, mechanism 1315 Mukaiyama aldol reactions 474, 1072, 1073, –– formal [4 + 2] cycloaddition processes 1246, 1315 584 Mukaiyama esterification conditions 725 –– hydroacylation, mechanism of 1313 Mukaiyama–Michael reactions 1235 –– N-phenyl imidazolylidine 214 – addition reactions 829 –– protocol 971 – stereoselectivity, effect of reaction –– Steglich O®C acyl rearrangements 509 parameters 830 –– thiazolium/triazolium based 507 Mukaiyama’s reagents 555, 557 –– transformation 971 Mukaiyama-type reactions 1235 – catalyzed amidations – aldol addition, of TBS enol ether 306 –– Diels-Alder reaction 1336 Mukaiyama-type reagents 558, 592 –– of esters with amino alcohols 1315 Mulliken charges 48 – chemistry 1341 Mulliken definition 38 – enolate 1337 mycesterecin E 194 – generated homoenolate equivalent 1341 – Michael acceptor 1316 n – NHCB2(pin)2 complex natural bond order (NBO) 173, 1184 –– X-ray structure 999 natural products 193, 442, 538 – NHCB2(pin)2 complex formation 999 – sulfur-containing 1171 – NHC-catalyzed aza-Morita-Baylis-Hillman – synthesis 447, 737 –– reversibility and selectivity of 1317 natural resonance theory (NRT) 51 – NHC-catalyzed boryl ´ SN2 displacement of the acetate group 760 –– and silyl conjugate additions 1004 Nelson’s AAC process 546 – NHC-catalyzed conjugate additions Nelson’s ketene–aldehyde coupling with the –– cyclic and acyclic β-silylcarbonyls 994 addition of lithium salt 544 – NHC-catalyzed enantioselective boryl Nelson’s Lewis base-catalyzed formal [4 + 2] conjugate additions 981 cycloaddition 583 – NHC-catalyzed [4Y+Y2], 1336 neutral/anionic Lewis bases – NHC-Cu-alkoxides 968 – miscellaneous catalytic applications of 25 – NHCdiboron complex 974, 999 neutral Lewis acids 59 – NHC enolate [4Y+Y2] manifold 1335 neutral zwitterionic enolates 527 – in nonclassical Lewis base-catalyzed NFSI (N-fluorobenzene sulfonimide) 601, reactions 1320 1330 – O- to C-carboxyl transfer reactions NHCs (N-heterocyclic carbene) 19, 76, 104, –– using oxazolyl carbonates 511 251, 264, 460, 507, 508, 584, 619, 832, 905, – precursors 508 915, 1291, 1292, 1315 –– formation of amides 515 – activation of silanes 1315 – redox catalysis 1330 – association 1001 – singlet ground statestabilization 1292

– binding to (pin)B-SiMe2Ph 991 – in synthesis 1340 – borosilyl adduct 1001 – used in organocatalysis 1292 – carbene catalysis 18 nicotinamides 391 – catalysis 507, 509, 978, 1292, 1304, 1319, nitroalkenes 216 1320, 1328, 1333, 1340 – β-addition of enals 1326 –– acylative alcohol/diol KR/ – anti-diastereoselective enamine-mediated desymmetrization 508 Michael additions of 873 –– additions 977 – cross-RC reaction of –– aza-MBH reaction 215 –– with acrylates and enones 695 –– boryl addition 975 – enantioselective β-addition to 1327 –– boryl/silyl conjugate additions 971, 999, nitrogen 1002 – containing ketones 421 1386 Index

– α-nitrogen-containing substituent 938 nucleophile(Lewis base)-catalyzed Michael – pronucleophiles 756 proton-transfer lactonization (NCMPL) – protection group 569 process 620 – syntheses of 559 nucleophiles 87, 241, 247, 250, 255, 293, 297, nitro-olefins 872, 874 424, 496, 755, 760, 955, 1055 – addition of enamines 871 – phosphonium ion pair, 786 – enamine-mediated enantioselective Michael –– stereochemical model 1046 additions 869 – thermodynamic affinity 87 N-2-nitrophenylselenenylsuccinimide 1162 π-nucleophiles 1054 2-(β-nitrostyrenyl)allenoate 726 nucleophilic addition reactions 206, 213, 264, meso-N,N-diacetyl-2-imidazolidinones 434 555, 761, 762, 1013 (S)-()-N,N-dimethyl-1- – of alcohols and amines leading to carboxylic phenylethylamine 538 acid derivatives 527 (S)-NOBIN nucleophilic alkoxide addition/protonation – acylative KR of biaryl anilines 481 pathway 532 nonautocatalytic process 202 nucleophilic alkylating agents 339 nonbonding interaction 560 nucleophilic ammonium enolate 558 nonchelation transition state model 327 nucleophilic attacks 199, 264, 566, 760, 1050 noncovalent interaction (NCI) 838 – of allyltributylstannane 1042 nonenzymatic catalytic amine KR 477 – of tertiary phosphine 194 nonenzymatic enantioselective nucleophilic catalysis 41, 42 acylation 460 nucleophilic counterions 557 nonlinear effects 284 nucleophilicities 85, 108, 128, 203, 339, 1045 – in proline-mediated reactions 149 – of azolylidenes 1293 nonmetal-coordinated C(1)-ammonium – of imine 564 enolate 568 – Lewis base catalyst 655 nonstabilized azomethine ylide 943 – Mayr equation 89 nonsteroidal anti-inflammatory drug – of NHCs 1295 (NSAID) 527 – nitrogen species 535 nonthermal microwave effects 212 – N,O-dimethylhydroxylamine 551 Noyori hydrogenations 387, 388 – parameters 95

Noyori’s catalysis 379, 380 –– nMeI 87 Noyori’s()-DAIB (()-3-exo- – phosphines 734 (dimethylamino)isoborneol) 340, 368, 379 –– catalysis 800

Noyori’s reaction 378 – PMe3 983 nucleofugalities 93, 94 – promoter 489 – of isothioureas 102 – quantitative treatments of 5, 85 – parameters 94 – Ritchie equation 87 nucleophile-catalyzed aldol-lactonization – scales 92 (NCAL) 554, 555, 620 – Swain–Scott and Edwards Approaches 85 – conditions 558, 561 – thiophenol 534 – derived β-lactone – tributylphosphine 734 –– synthetic transformations 562 nucleoside analogs 436 – double diastereoselective process 558 – linearly fused and bridged tricyclic- o β-lactones 625 octet rule 49 – mechanistic pathway for 556 18O-labeling experiment 149, 150 – methodology to natural product 563 olefins, 794 – organocascade process 624, 631 – hydroboration 436 – reaction 555, 560, 561, 562 – isomerization 757 – Romo’s NCAL methodology, applications – metathesis processes 967 of 561 – to-olefin transfer process 1176 nucleophile-catalyzed reactions 255 oligomerization 301 Index 1387

– of acrylonitrile 715 N-oxides 281, 1090 omphadiol 562 – catalysts 1025 Onsager solvation model 184 – crotylation catalyzed 1025 onychine/eupolauridine, natural products 687 – derived Lewis bases organic π-acceptors 76 –– mechanistic studies 1136 organocatalytic reactions 104, 128, 208, 219, – Lewis bases, structure–activity relationship 394, 464, 466, 471 for 1136 – chemical transformation 191 – promoters 298 organocuprate reagents 534 2-oxindolylidenemalononitriles 794 organomagnesium complexes 342 oxygen heterocycle-fused bicyclic β-lactones organometallic – via NCAL process 559 – catalysis 210, 405 oxysulfenylation 1178 – fragment 424 α-oxytrichlorosilyl enol ethers 305, 306 – group for nucleophilic displacement 425 – ketones 424 p 2,3- or 3,4-syn-disubstituted pyrrolidines 586, (R)-pantolactone 530 587 papalucandin D, total synthesis of 1028 Ostwald’s redefinition, of catalysis 5 parallel KR (PKR) 463 2-oxathiolanimines synthesis 1122 Passerini reactions 1072, 1073 oxazaborolidine catalysis 387, 388, 389, 391, Pd-catalyzed couplings 394 394, 395, 407, 409, 415, 419, 429, 434, 439, – of aryl halides 917 444, 450, 451, 452 – reactions 938 – in CBS reduction 388 Pd-catalyzed diboron addition reactions 985

– kinetic resolution of racemic N-acetyl Pd2(dba)3-induced decarboxylation/ oxazolidinones 435 protonation sequence – meso-selective deacylation of – diastereomeric mixture 620 imidazolinones 428 pectenotoxin-2 – reduction of ketones 445,449, 450 – C17–C28 fragment of 837 – reduction of α-phenylthio enones 420 2,3-pentadienoates 726, 728, 772 oxazaborolidinium bistriflimidate 1234 2,4-pentadienoic methyl ester 683 oxazetidin-2-ones 2,3-pentadienone 755 – derivatizations of 576 pentafluorophenolate 601 oxazetidin-3-ones 574 N-pentafluorophenyl-substituted NHC (±)-oxaziridine 576 catalyst 1326 oxaziridines 576 N-pentafluorophenyl triazolium oxazolidines 750, 1108 precatalyst 1340 – thiazolidines, and pyrrolidines syntheses, penta/hexa-coordinate siliconates 242 through mixed double-Michael 1,2,2,6,6-pentamethylpiperidine (PMP) 577, reactions 750 1277 oxazolidinones 152, 167, 421, 434 penta-nuclear chiral Zn(II) complex 358

– formation 152 pentaphenylcylopentadienyl (C5Ph5) ring 1123 2-oxazolidinones 505 peptide oxazoline-type catalysts – catalyzed reactions, thiazolium-based 1277 – for enantioselective reduction 1093 – proline system 682 oxazolin-5-one enolate 24 – proposed transition models 1260 oxazolin-4-ones 576 pericyclic process (sila-ene) 257 – catalytic enantioselective synthesis 576 perturbation molecular orbital theory oxazolomycin A 545 analysis 39, 45 oxazolone acylating agent 478 phenanthryl 2-arylacrylates 1281 oxazoyl carbonates phenols 204, 533, 758, 787 – Steglich rearrangement of 472 – fragment 434 oxidative hydroxylation – pronucleophile 773 – via radical cation intermediates 1328 – Calter’s synthesis of 568 1388 Index

phenyl (trans-1-phenyl-2,3- – cycloaddition 721 dipropylseleniranium – direct addition mechanism 749 hexafluoroantimonate) 309, 444, 1163 – generation 745 phenylacetaldehyde 533, 863 – MBH reaction 770 β-phenylalanine ester 1098 –– Michael reaction vs. base-catalyzed phenylalanine scaffold 1092 Michael–aldol reaction 770 phenyl azomethine imine 782 – Michael additions 745–749, 754, 786 2-phenyldithianyl transfer 238 –– of alkynes 749 phenylethynylzinc species 354 –– pathway, proposed mechanism for 748 N-phenylmorpholine–borane complex 417 –– reversibility of 748 phenylphosphine 775 – Rauhut–Currier reaction of ethyl N-phenylselenenylsuccinimide (NPSS) 1161, acrylate 688 1162 – [4 + 2] reaction, proposed mechanism 1276 N-(phenylseleno)phthalimide 884 – reactions 717, 718, 737, 774 (phenylthio)acetic acid 572 –– of activated alkenes/allenes/alkynes 718 α-phenylthio enones 419 – γ-umpolung addition, mechanism for 756 phenyltrimethylsilylacetylene phosphine-catalyzed boryl additions, to N- – stoichiometric reaction 262 tosylimines 983–985 2-phenyl-2-trimethylsilyl-1,3 dithiane 239, phosphine-catalyzed boryl conjugate 249 additions 981–983 phosphabicyclo[3.3.0]octane (PBO) phosphine oxides 1057, 1059 – catalyst 464 – aldol addition 1058 –– KR of sec-benzylic alcohols 463 – catalysts 333 – structure 462 – Lewis bases, allene-containing phosphaferrocene 1119 –– evaluation of 1132 phosphametallocene Lewis bases 1119 phosphine oxide–siliconate complex – NMR data 1118 – isocyanide vibration 267 – structure 1118 phosphines 102, 270, 460, 741, 746, phospha-silyl nucleophilic carbene 1291 763, 766 phosphate-catalyzed iodolactonization – nucleophilicity parameters 105 – proposed mechanism of 1201 – use of 104 – representative scope of 1201 phosphino-BINOL 672 phosphazenium fluoride 236, 255 phosphinoylimines phosphazirconocene 1119 – aza-MBH reaction of 668 phosphepine 776 phosphites 102, 104 phosphinamine 787 – nucleophilicity parameters 105 phosphine catalysis 194, 425, 459, 460, 461, phosphitylation reaction 1263 718, 720, 721, 726, 727, 735, 737, 739, 743, – tetrazole-based 1264 744, 747, 754, 761 phosphonamides 1016 – acylative alcohol/diol KR phosphonium desymmetrization 461 – dienolates 719 – alkyne isomerization, mechanistic – dienolate zwitterions 719 proposal 769 – enolates 719, 770 – allene–alkene [3 + 2] annulation 724 – zwitterions 770 – allylic substitution 764 β-phosphonium – annulation 741, 744, 772, 787 – detection of 747 – [3 + 2] annulations 719, 721, 727, 730, 760, β-phosphonium allenolate 717, 719, 720, 745, 763, 767 761, 769 – [3 + 3] annulations 743 phosphonium diene species 759, 760 – [4 + 2] annulations 734, 739 phosphonium dienolates 720, 724, 730, 731, – annulations of allenes and aldehydes 741 734, 735, 739, 756, 757, 777, 781, 788 – aryl/alkyl phosphine-based 460 – complex 778, 783 – catalyzed umpolung additions 754 – intermediate 734, 769 Index 1389 phosphonium enolates 717, 746, 749 polarizable continuum model (PCM) 74, 207, – zwitterion 718 209, 215 phosphoramide-derived Lewis base catalysts, polar solvents 131, 199, 308, 397, 422, 557 mechanistic studies 1137 – aprotic solvents 201 – catalyst loading studies 1137 poly(acryloyl quinidine) 542 – kinetic studies 1138 polyaldolization 301 – nonlinear effects 1138 polyketide synthesis 551 – stoichiometry studies 1137 polymeric cinchona alkaloids 540, 541 phosphoramides 281, 283, 284, 294, 309, 310, polymeric MBH adducts 191 311, 327, 328, 356, 1021, 1025 polymerization 540 – allylation benzaldehyde 1021 – of MBH products 191 – bound silicon 324 polymer-supported 2-t-butylimino-2- – catalysis 310, 317, 320, 326, 328 diethylamino-1,3-dimethylperhydro-1,3,2- – catalyzed aldol 310 diazaphosphorine 617 –– addition 308, 326 polymethacrylate backbone 1104 –– reaction 311 polypropionates 324, 553 phosphoramidite coupling 1263 polystyrene-(PS)-bound catalyst 130 phosphorane 267 polysubstituted tetrahydrofurans phosphoric acid derivative 1092 – synthesis of 1028 phosphoroamide–SiCl4 complexation 1052 potassium trimethylsilylalkoxide– phosphorus intermediate, pentavalent 743, tetrabutylammonium chloride 237 744 potential energy surface 210, 393 phosphorus nucleophiles 558 P=O-triggered bifunctional activation phosphorylation reaction, Pmh-based 1263 – conjugate Lewis acid–Lewis base 356 phosphoryl imidazolium species 1263 4-PPY-based catalyst 474, 477, 561 photo dimerization 287, 432 PPY-catalyzed acetylation 130 photoredox catalysis 886, 888 prenyltrimethylsilane 256 phthalan 800 primary amine catalyst 535 N-phthalyl valine – enantioselective intramolecular – Calmes’s low-temperature alcoholysis 530 aldolization 877 – derived ketenes 530 principal component analysis (PCA) 63 pileup effect 46 prochiral carbonyls 438 Pimentel-Rundle model 49 prochiral ketones 387, 405 PINDOX catalyst 1023, 1126 prolinate salt-mediated α-amination α-pinene 388, 393 reaction 167 pipecolinic acid fragment 1083 proline 182 piperidine 582, 683 – analogs 152 ()-pironetin 545 – catalyst, limitations of 146, 147 4-pivaloyloxyproline 1096 – eutectic composition of 149 plakevulin A 561 – and imidazole-cocatalyzed MBH reaction planar-chiral 4-(pyrrolidino)pyridine-derived –– Shi’s proposed mechanism 681 catalyst 574 proline catalysis 145–146, 1269 – nucleophilic Lewis base catalyst 569, 597 – aldol reaction, mechanism of 147 N-p-methoxyphenyl (PMP) – alternative to Houk–List model 158 – imines 946 –– effect of other additives 161 – protected imines 877 –– Seebach–Eschenmoser model 158, 159 – substrates 1096 –– water as an additive 159–161 pnictogens bases 68 – α-amination and α-aminoxylation reactions, 31P NMR spectroscopic analysis 207, 208, 272, mechanism of 747, 786, 793, 1052, 1180 ––basic additives and prolinate salts 166–170 – of catalytically active sulfenylating –– protic additives 161–166 agent 1180 – Hajos–Parrish–Eder–Sauer–Wiechert polarity–polarizability for aprotic solvents 205 (HPESW) reaction 148–150 1390 Index

– Houk–List model 150 – Kimpe’s synthesis 611 ––advances in computational chemistry 156, 2-pyranones 741, 742, 743 157 pyridine-N-oxide 299 –– enamine intermediates 152 pyridines 95, 97, 132, 463, 475 –– general catalytic cycle 150–152 – accelerating effect of 459 –– rationalizing the origins of – benzhydrylium ion 96 stereoselectivity 153–156 – core 441 –– role of enamine intermediates 152, 153 – desilylation of 946 –– stereoselectivity, rationalizing 153 – nucleophilicity parameters 98 proline derivatives 153 – N-oxides 1021, 1024 – phosphoramide 1018 – structures acting as efficient acylation proline enamine-based mechanism 149, 152 catalysts 96 proline-mediated aldol reaction 153, 184 pyridyl ketone 441 – catalytic cycle 151 – optimizing, CBS reduction of 442 proline-mediated conjugate addition pyrimidine-5-carbaldehyde 671 reaction 170–174, 171, 172 pyroglutamic acid-derived catalyst 1328 – peptidic proline analog 174, 175 pyrrole 537 – stereoselectivity and diastereoselectivity – 1,2-addition of 825 of 170 – based catalyst 466 proline/oxazolidinone/enamine pathway 169 – derivatives 535 proline tetrazole 177, 178, 179 – enamine π–π interaction 826 pronucleophiles 745, 746, 749, 755, 758, 759, – heterocycles 138 760, 763, 764, 788, 789, 792 – single-point minimum energy transition propanoate-derived ketene 1067 states 829 propargylation 281 pyrrolidine ring 291, 411, 416 propargylic alcohols 466 pyrrolidines 558, 586, 587, 790 propargylic amines 480 2-pyrrolidinone 140 propargyl silanes 260 pyrrolidinopyridine (PPY) 547 N-protected 4-pyrrolidinopyridine (4-PPY) core 468, 558 – indoles 505 pyrrolidizines 194 – oxazolidin-5-ones 925 – synthesis 1337 – silyloxypyrrole 1069 4-pyrrolines 686 protic additives 200, 201, 202, 204, 205 pyrroloferrocenes 531 protic solvents 201, 209, 212 – in MBH reactions 212 q proton acceptor 786 quantitative analysis of ligand effects proton affinities (PA) 58, 68 (QALE) 72

– pKa values 128 quantum chemical tools 74, 75 protonated Brønsted base 530 quantum mechanical method 208 proton-initiated carbocyclization 1187 quaternary C-B bonds proton-related scales 59 – enantioselective Formation of 977 proton-sensitive fluorescence assay quinidine (QD) 100, 497, 539 – for catalyst screening 483 – anhydride adduct 496 proton shuttles 216, 720, 758 – catalysts 544 proton sponge – derivative β-isocupreidine (β-ICD) 669 – shuttle deprotonation approach 565 – pseudoenantiomer 539 proton transfer 209, 210, 223, 689, 908 – reaction 497 – cascade 758 quinines 494, 542 – process 204 – stoichiometric quantities 495 Pummerer rearrangement 419 quinoline nitrogen-derived ammonium pyramidalization parameter 863 salts 609 pyranonaphthoquinones 611 QUINOX 1024 syn/anti-pyrrolidines 587 quinoxalinones 582 Index 1391 quinuclidine 202, 530 – aldol reaction 744 – -catalyzed process 693 – in allylsilane–fluoride reactions 256 – nitrogen 540, 542, 549 – determining transition state 721 – intramolecular aldol reaction 744 r – in intramolecular RC reactions 698 Rab geranylgeranyltransferase 737 – MBHAD–alkene [3 + 2] annulation 767 racemic 1,1´-binaphthol (BINOL) with tri-n- – tandem vinylogous aza-MBH- butylphosphine 663 cyclization 685 racemic carbonyl substrates, resolution of 432 Reissert reaction 1227 racemic epoxides reserpine 799 – kinetic resolution 1123 – skeletal framework of 799 racemization retro-aldolization kinetics 151 – bromosuccinate 14 retro-Diels–Alder reaction 429

– processes 245 RFSiR3 (Ruppert-Prakash reagents) 922 – seleniranium ions ribonuclear protein SF3b 447 –– effect of the aryl group on RINMR kinetic analysis 1050 enantiospecificity 1164 Ritchie equation 87, 88 – via olefin-to-olefin transfer, studies to Romo’s Diels–Alder lactonization probe 1176 organocascades 630 radiation hypothesis Romo’s intramolecular nucleophile-catalyzed – for catalysis 6 aldol-lactonization 555, 558 radiation theory 7 Romo’s Michael enol-lactonization 626 Rauhut–Currier reaction 683, 685, 686, 688, rotational barriers, of methyl groups 413 703, 704, 717, 743, 1271, 1274, 1317 Rovis’ redox amidation mechanism 1323 2+ – conditions 719 Ru(bpy)3 888 – cyclization 702 Ruppert-Prakash reagent 931 – cysteine-catalyzed 1272 ruthenium-based polypyridyl – dimerization 689 photocatalysts 888 – enantioselective 699 – intramolecular 697 s – mixed, intermolecular 691 salen-derived chiral tetracoordinate Zn(II) – ring contraction reaction, thiol- complexes 354 catalyzed 1273 salinosporamide A 193, 562 – self-condensation 656 samarium diiodide 440

– substrate 706 SbCl5, X-ray crystallographic analysis 47 – in total synthesis 703 (S)-1,1´-Bi(2-naphthylamine ((S)-BINAM) 681 reaction progress kinetic analysis (RPKA) scandium(III) hexamethyldisilazide 568 protocol 151, 173, 179 Schwesinger base hydrofluoride 247 Redlich–Teller product rule 394 second-order Møller–Plesset redox amidation reactions 1322 – (MP2) perturbation theory 215 – chiral NHCs, role of 1323 Seebach–Eschenmoser model 164, 166, 167 redox esterification Seebach–Golinskí topological rule 870, 871 – NHCs (N-heterocyclic carbene) syn-selective glycolate aldol reaction 1047 catalyzed 1325 Z-selective Wittig olefination 1130 reduced density gradient (RDG) 838 selectivities reductive amination 1078 – achieved using BINAPO 333 – aldehydes 1079 – changes vs. turnover number 397 reductive aza-MBH reaction 686 selenenyl reagent (RSeX) 1161 reductive deoxygenation 424 seleniranium ions Reformatsky reaction 1315 – protonation, ester enolate 530 refractometry 57 – intermediate 1162 regiodivergent 247 – racemization 1164 130, 724, 727, 739, 776, 792 – transfer between olefins 1164 1392 Index

α-selenoaldehydes 885 – pentacoordinated 244, 284 selenocarbonates to selenoethers conversion – reactivity 266 – stereospecificity 1166 – transition structure 285 selenocyclization products 1163 siliconates/carbanions, reactivity 245 selenocyclofunctionalizations 1159 siliconates Me3Si(CH=CH2)F 247 selenoetherification silicon-based Lewis acids 1039 – chiral Lewis bases survey for 1167 silicon-based Lewis base-catalyzed anion selenofunctionalization transfers 238 – by using enantiopure selenenylating silicon complexes agent 1157 – hybridization scheme/orbital picture of 50 – using enantiopure selenenylating silicon derivatives agents 1160 – Lewis base activation of 1040 selenofunctionalizations 1156–1170, 1159, silicon-induced cascade reaction 955 1173 siliconium ion – Lewis base-catalyzed 1159 – intermediate 1050 – using enantiopure selenenylating – pentacoordinated 1041 agents 1158 silicon-Pummerer rearrangement product 918 selenolactonization siloxy-substituted carbenium ion 235 – Lewis base-catalyzed 1162 silyl anion species, generation of 992 separated ion pairs (SIPs) 245 silyl-based carbon nucleophiles 238 serotonin antagonists 293 silyl cross-benzoin reaction

SF5-substituted alkynes 950 – cyanide-catalyzed 1300 Shi’s BINAM-derived thiourea catalyst 681 silylcyanation of epoxides 274 Shi’s synthesis of functionalized acrylates 759 silyl dienol ethers Si-C-acyl species, enolate generation 906 – vinylogous aldol addition 1068

SiCl4 1058 2-silyl-1,3-dithianes 254, 945, 955, 956 – allylation of aldehydes 1043 silyl ketene acetals 474, 475, 1049, 1050, 1057 – catalyzed by phosphoramide 1068 – to benzaldehyde catalyzed 1046 – complexation enthalpies 49 – C-acylation of 474 – direct aldol addition 1059 – isothiourea-catalyzed C-acylation 505

SiCl3 fragment 1073 – O- versus C-acylated products 474 SiCl3OTf 1062 N,O-silyl ketene acetals 1069 – direct Aldol addition 1061 – stereoselective addition 1069

SiCl4/phosphoramide mixtures 1051 N-silyl ketene imines Si-C-X activation – to aromatic enones 1055 – potentially catalytic cases 936 – nitrile derivatives 1054 [2,3]-sigmatropic rearrangement silyl ketenes – to furnish homoallylamine 943 – Whitehead’s enantioselective coupling 534 – sulfonium salt 952 N-silyl vinylketene imine 1056 – trimethylsilylmethyl sulfonium salts 952 SIP carbanions 250 – α-trimethylsilylsulfonium salt 953 SIP lithium reagent 249 –– α-trimethylsilylsulfonium salt trans-270 SIPr /aldehydes reaction silanes – isolated intermediates 1297

– activation of 937, 1077 SiX3-based reagents 1013 – treatment 234 S-methyl group transfer 1172 silaphilic Lewis bases 233 Smith’s anti beta-lactam synthesis 571 silaphilic nucleophile 238 Smith’s Michael-proton transfer–enol siliconates lactonization 616, 618 – ammonium ion pair 614 Sn-C-X – carbanions, reactivity 245 – alkylation, arylation, and vinylation 958 – intermediate, pentacoordinate 1136 – carbanion generation 956 – as Lewis acids 244 Sn(IV)–phosphoramide complexes 311 ´ – Me4SiF 247 SN2 displacement 445, 763, 764, 773 Index 1393

SN2 displacement of the bromide 766 – in the proline-mediated conjugate addition SN2 mechanism 72 reaction 172 SN2 pathway 1113 stereoconvergent ´ ´ SN2 –SN2 – crotylation 1238 – cascade 765 – reactions 1241 – displacement cascade 763 stereodivergence 588 –– mechanism 764 – approach 630 – formation of the ylide 766 stereoselection 389, 393, 398 sofosbuvir 436 – acyl transfer protocols 464 solute scale 62 – allylation 283 solute–solvent interactions 207 – bisvinylogous 1071 solvent –– aldol addition 1071 – basicity scales 62, 63 ––for catalytic 1049 – -dependence of acylation reactions 131 ––for direct aldol addition 1060 – dependence of reactivity stereospecific Claisen rearrangement 449 – dependence of selectivity stereospecificity –– in catalytic reductions 397 – in desilylation 248 ––of para-substituted acetophenone 397 steric-blocking model 173 – effects 62, 209 steric repulsion 388, 396, 403 –– corrections 209 – at transition state, giving rise to inverse KIE –– temperature 395 using DIP-Cl reduction 403 –– upon selectivity 396 Stetter reactions 508, 1307, 1311, 1312, 1328, – -induced dissociation 245 1340, 1341 – rule 530 – of acrylates 1312 – scale 62 – diastereoselective 1310 – -separated ion pair 249 – first enantioselective 1311

α-SO2R silanes 918 – intramolecular version 1309 – carbanion derived 919 – triazolium-catalyzed 1278 spectroscopic basicity scales 76 – using achiral Lewis base catalysts 1310 spillover effect 47 Stetter/Umpolung reactions 1276 spinosyn A synthesis stilbene diamine – via a macrocyclization, Diels–Alder, RC – -derived phosphoramide (S,S) 307 reaction sequence 704 stilbene-1,2-diamine-derived catalyst 314, 327 Spivey’s transition state model 470 stilbene-1,2-diamine-derived spongistatin phosphoramide 318 – C6–C13 fragment of 986 Strecker reaction 1224, 1225 stabilized benzhydrylium ions 863 – of ketimines 1228 stable allyl siliconates 259 Strecker-type reaction 355 stable hexacoordinate dianionic triorgano – RC dimerization of 691 2 siliconates R3SiX3 243 substrate–catalyst interactions 779, 780, 785, stable penta-organosiliconate 241 786 π-stacking 483, 1266 substrate racemization rate 433 stannylated sulfide sulfenoaminations 1189, 1190 – [2,3]-thia-Wittig rearrangement 960 – endo–exo isomerization studies 1191 Staudinger reaction 564 sulfenoaminocyclizations 1190 Steglich esterification 136 sulfenoetherification 1189 Steglich rearrangements 24, 504, 505, – of 4-octene 1183 511, 512 – mechanistic studies 1179 – with zwitternionic Lewis basic catalyst 513 sulfenofunctionalization 1170, 1172, 1180, stephacidin B 447, 448 1181 stereocontrol sulfenylating agent – aldol reactions 534 – independent generation 1182 – allylation 281 sulfenylations 1394 Index

– amide moiety 1172 terminal epoxides – prochiral alkenes 1172 – kinetic resolution – reactions 1172 ––by enantioselective fluoride addition 1145 – using chiral auxiliaries 1172 – with triphenylphosphine-catalyzed sulfinate esters synthesis TMSCl 1117 – cinchona alkaloid catalyzed 1268 tertiary amine-catalyzed enantioselective sulfonamide-derived catalysts 1026 Michael addition–lactonization/ sulfonamides 579 lactamization processes 584 – as Lewis base catalysts 1019 tertiary amine-catalyzed formal [2 + 2] / [3 + 2] sulfone moiety cycloadditions 579 – p-nitrophenyl group 698 tertiary amine 1,4-diazabicyclo[2.2.2]octane sulfonium salt (DABCO) 655 – [2,3]-sigmatropic rearrangement 951 tertiary amine Lewis bases 538 sulfonium ylides tertiary amine N-oxide 1232 – [2,3]-sigmatropic rearrangement 951 tertiary amines sulfonylation 489 – N parameter 101 sulfonyl chlorides 576, 577 tertiary α-chloroesters 597 N-sulfonyl imines 563, 593 tertiary phosphines sulfoxides/amides, as catalyst 281 – catalysts 746 – carbonyl compounds 919 tertiary propargyl alcohols 363 – for enantioselective allylation 1025 tethered acidic malononitrile 739 – Lewis base catalysts 1019 tethered electrophile–nucleophile system 770 – N-oxide groups β-tetraalkylammonium enolate 226 –– reductive amination with a concomitant tetraalkylammonium halides 957 reduction 1081 tetrabutylammonium acetate 263 sulfur pronucleophiles 758 tetrabutylammonium alkoxides 237, 255 sulfur–selenium orbital overlap 1159 tetrabutylammonium bis(biphenylyl) Suzuki coupling 445 methylsiliconate 241 Suzuki–Miyaura-type cross-coupling tetrabutylammonium cyanide (TBACN) 910

reactions 363, 983 – compared with Me3Si-CN-TBAF/KCN-12- Swain–Scott correlation 86 crown-6, 246 Swain solvation constants 196 tetrabutylammonium difluorotriphenylsilicate Swern oxidation 434 (TBAT) 1240 synergistic catalysis tetrabutylammonium fluoride (TBAF) 236, – chiral oxazaborolidinium salts 1234 906 – chiral ruthenium catalyst 1233 – -catalyzed reaction 250 – enantioselective silylcyanation 1233 – stoichiometric amounts 250 synthesis tetrabutylammonium phenoxide 237, 248 – (+)-dactylolide 1342 tetrabutylammonium salts 247, 269 – (±) hirsutic acid C 1341 tetrabutylammonium triphenyldifluorosilicate – maremycin B 1341 (TBAT) 236, 907, 928 – ()-paroxetine 1342 tetracoordinate borohydride compounds 402 tetrahydrofuran (THF) t – IEFPCM solvent model 413 TADDOLate-Mg(II) salts 343 – solvent 403 TADDOLate-Ti(IV)-catalyzed dialkylzinc – mechanism of formation of 733 addition 368 tetrahydropyrazolopyrazolones 731, tandem cyclization 773 732, 782 TangPhos-catalyzed γ-umpolung addition, tetrahydropyridines 734, 737, 783, 798, 799 Zhang’s proposed mechanism for 788 tetramethylammonium fluoride (TMAF) 931 Tebbe/Diels–Alder reactions 737 tetramisole 586 TEMPO radical 1324 tetramisole hydrochloride (TM) 584 tensimetry 57 tetrapeptide catalyst 483, 485 Index 1395 tetravalent phosphonium enolate thiocyanate-catalyzed reactions 268 zwitterions 717 thioesters 534 tetravalent phosphonium zwitterions, – proposed rationalization 1063 preparation of stable 718 thioformamides 488 tetravalent phosphorus center 718 thioimidate methylides thermodynamic 91 – cycloaddition of 940 – aspects of Lewis basicity 76 thionoformylation 486 – of binding simple electrophiles 124 thiophenol 534 – characteristics 42 – enantioselective addition 534 – data 76 thiourea – decomposition – -based chiral phosphine 779, 780 –– of 2H KIEs 415 – catalysts 495 – halogen bond scales 60 – group 792, 793 – Lewis basicity scales 64, 73 – -tertiary amine catalyzed reaction 216 – parameters 58 threonine-derived phosphine 791 – properties, of MBH reaction 212 tin-Li exchange 958, 960 – scales 59, 62, 76 Tischenko-type processes 301 thermodynamic scales titanium(IV) fluoride catalysis – of Lewis affinity and basicity 56 – transition structure 1238 thia-Michael lactamization process of TMSCF3 Matsubara 637 – with heteroatom electrophiles 934 [2,3]-thia-Wittig rearrangement 960 – to hexafluoro ketamine and azirine 930 2-thiazolecarboxaldehyde 219 – to N-aryl imines 929 thiazolidines 750 – to nitrones 930 4-thiazolidinone 140 – to N-phenyl imines catalyzed by TBAT 930 thiazolium-based carbenes 508 – with SO2 and CO2 935 thiazolium-catalyzed benzoin 1298 – α,β-unsaturated carbonyl compounds, 1,4- – condensation 19 addition of 931 thiazolium deprotonation 19 TMSCF(SO2Ph)2 with aldehydes 919 thiazoliums O- to C-acyl/carboxyl transfer 471 – acidities of 1294 O- to C-carboxyl transfer reaction thiazolium salt-catalyzed benzoin – achiral NHC precursor 510 condensation 19 α-tocopherol 894 thiazolium salt-catalyzed C-C bond formation – enantioselective total synthesis of 895 and cleavage 19 Tolman cone angle 72 thiazolylidene-catalyzed benzoin N-toluenesulfonyl aziridines 955 reaction 1298 N-toluenesulfonyl benzaldimines 727 thienoates – electrophile 671 – in intramolecular RC reaction 705 tosyl tert-butylimine 737 thiiranium formation 1172 N–tosyl thioureas 700 thiiranium ions, 1176 total syntheses – exchange reactions 1176 – (+)-geniposide 797 – intermediates 1170 – ()-hinesol 796 – by Lewis bases 1175 – (±)-hirsutene 797 – possible racemization pathways 1174 – (±)-hirsutine 799 – racemization 1176 (+)-trachelanthamidine 798 – unimolecular racemization of 1174 transesterification reactions thiiranium ions, possible racemization – NHCs (N-heterocyclic carbene) pathways 1174 catalyzed 1314 N-thioacyl imines 583 transition state 196 thioamide catalysts 487 – arrangement 548, 560 thioamide-containing tetrapeptide 483 – lateness 400 thiocarbonyl ylide 946 – models 202, 324, 329, 778, 779, 783, 1286 1396 Index

– in Zn(II) ate-alkyl addition 375 trichlorosilyl enol ethers 293, 295, 301, 304, transition structures 281, 283, 291, 320, 323, 306, 307, 309, 311, 314, 317, 321, 324–326, 328, 396 328, 333, 1057 – for the allylation reaction 289 trichlorosilyl ether 305

– for BH3DMS reduction 412 – of homoallylic alcohol 1042 trialkoxysilanes 1105 trichlorosilyl ketene acetal 294, 297 – enantioselective reduction of trichlorosilyl moiety 293 ketimines 1105 trichlorosilyl reagents 331 trialkylmagnesium(II) ate complexes ([R3Mg] trichlorosilyl triflate 333, 1060 + [Li] [LiX]) 373 1-trichlorosilyl-4-trimethylsilyl-2- trialkylphosphines 461 1027 trialkylphosphonium-containing tricyclohexylphosphine 191, 743 zwitterion 194 triethoxysilyl 1032 trialkylsilyl enolates 1049 triethylfluorosilane 237 trialkylsilyl fluorides 241 triethylsilane 447 triaminopyridine 128 triflic acid-assisted dehydration of triarylphosphines 104 selenides 1165 1,2,4-triazole 514 α-trifluoromethylation 889 – formation of amides 515 trifluoromethylations 253 triazoliums – of amino-ketones 252 – acidities of 1294 – mechanisms 252 – motif 1291 – reactions 253 triazolium scaffold 1291 trifluoromethyl-bearing stereogenic triazolylidene NHC 1295 center 590 tributylphosphine 721, 724, 731, 744, 749, 761, trifluoromethyl ketones 730, 741 772 – enantioselective alkynylation of 366 α,α,α-trichloromethyl methyl ketone 540 4-trifluoromethylphenylacetic acid 590 N-2,4,6-trichlorophenyl-substituted 2-trifluoromethylphenyl seleniranium ion NHC 1328 intermediate 1166 trichlorosilane 293, 1078, 1096 N-triflyl imines 569, 578 – aldehydes trihalosilanes –– reductive amination of 1078 – Lewis base-catalyzed allylation 1014 – enantioselective reduction of functionalized triisopropylsilyl ketene imines 1054 ketimines – to aliphatic aldehydes 1054 –– imines 1103 trimethylaluminum, with benzophenone 349 – enantioselective reduction of trimethylamine-catalyzed reaction 212 ketimines 1083 trimethyl(fluoroalkyl)silanes 932 –– chiral amides as catalysts 1088 – with alkyl halides 933 –– chiral formamides 1083 – with aryl, benzyl, and allyl halides 933 –– computational studies 1093 – with heteroatom-based reagents 935 –– (pyridyl)oxazolines as catalysts 1092 trimethyl(perfluoroalkyl)silanes –– sulfinamides and phosphoramides as – to carbonyl compounds 923 catalysts 1091 – to imines 929 – enantioselective reduction of ketones trimethylphosphine 213, 741, 746, 748, 752, 1105 755, 798 – Lewis base-catalyzed enantioselective trimethylsiloxybenzhydryl group 862 reduction 1096 2-(trimethylsiloxy)furan 765, 791 –– of α-imino esters 1096 2-trimethylsily-1,3-dithiane (TMS- –– of vicinal chloroimines 1095 dithiane) 944 – synthetic applications of enantioselective O-trimethylsilyl (TMS) 544 reduction of imines 1106 – diaryl prolinol, 878, 884 trichlorosilyl cationic species 1042 – TMS enol ethers trichlorosilyl chlorohydrin 1043 –– aldol addition 1044 Index 1397

– O-TMS quinidine 586, 588 triorgano siliconates – α-TMS-thioethers, to carbonyl – Lewis acidity 266 compounds 947 triphenylphosphine α-trimethylsilyl acetate 914 – -catalyzed C-C bond formation 715 – arylation, via nucleophilic addition and triphenylphosphine oxide (TPPO) 285, 1122, oxidation sequence 914 1218, 1234 trimethylsilylacetonitrile triple ion reaction 245 – to aldehyde 916 tris(2,6-dimethoxyphenyl)phosphine – to C=N bond 917 (TDMPP) 661 α-trimethylsilyl-α,β-unsaturated ketones as 1- tris(dimethylamino)sulfonium carbanion acylethenyl anion synthons 909 – quantitative formation of 249 trimethylsilylbenzyl phenyl thioether to tris(dimethylamino)sulfonium cyclohexenone 948 difluorotrimethylsilicate (TASF) 236, 915 trimethylsilyl chloride 424, 688 tris(2,4,6-trimethoxyphenyl) phosphine trimethylsilyl cyanide (TMSCN) 1216 (TTMPP) 915

α-trimethylsilyl cyclopropane nitrile 915 tris(trimethylsilyl)methyllithium (Me3Si)3C- α-trimethylsilyl cyclopropyl ketone 908 Li 245 2-trimethylsilyl-1,3-dithiane 946 N-τ-tritylhistidine 1266 – to imines 947 – to α,β-unsaturated ketone and ester 949 u 2-trimethylsilyl-1,3-dithiolanes and 2- γ-umpolung 760 trimethylsilyl-N-boc-thiazolidines 248 α-umpolung addition 761 trimethylsilyl enol ethers 311, 1045 – of alkyl propiolates 761 – of acetaldehyde 1044 – mechanism for 761 α-trimethylsilyl epoxylactone 911 β-umpolung addition 758, 760 α-trimethylsilyl epoxy sulfones, transannular γ-umpolung addition 755, 772 cyclization 920 β-umpolung addition, mechanism for 758 α-trimethylsilyl ketone 906, 910 α-umpolung adduct 762 – fluoride ion-induced desilylation 909 β-umpolung methodology 759 N-[(trimethylsilyl)methyl]amino ethers γ-umpolung–Michael – synthetic application 942 – addition 752 β-(trimethylsilylmethyl)amino-β-(methylthio) – annulation 757 acrylonitrile 943 γ-umpolung products 757 N-[(trimethylsilyl)methyl]azinones to β-umpolung reaction 758 ketones 939 umpolung reactions 1276 α-trimethylsilylnitriles 918 γ-umpolung reactions 757, 758 – to carbonyl compounds 915 unactivated double bonds – desilylation 915 – hydroacylations 1312 trimethylsilyl(phenylthio)(phenyl) unsaturated acid chlorides methane 239 – Ye’s formal [4 + 2] cycloaddition 642 α-trimethylsilyl phosphonate, transannular α,β-unsaturated acylammonium cyclization 920 – salts 614, 628, 629 O-trimethylsilylquinine 583 α,β-unsaturated acylammonium chlorides 620, α-trimethylsilyl sulfinylcyclopropane 622 – desilylation of 918 α,β-unsaturated acylammonium fluorides α-trimethylsilylsulfonium salts 953 – [3 + 2] annulation of 614 – desilylation of 951 α,β-unsaturated acylammonium salt 617, – [2,3]-sigmatropic rearrangement 954 633 trimethylsulfoxonium iodide 14, 440 α,β-unsaturated acyl azolium 1338 trimethyl(trifluoromethyl)silane 251 – reactions of 1338 tri-n-butylphosphine 104, 691, 696 α,β-unsaturated acyl fluorides tri-n-butylphosphine-catalyzed RC reaction of – Fu’s net [3 + 2] annulation 613 acrylonitrile and ethyl acrylate 693 α,β-unsaturated aldehydes 1080 1398 Index

– dienamine-mediated enantioselective w catalytic γ-amination of 893 Wacker oxidation 7 – and ketones 922 waihoensene unsaturated amides – intramolecular RC reaction 697 – chlorocyclization Warshel’s model 392 –– with (DHQD)2PHAL 1197 water, for amine catalysts α,β-unsaturated carbonyls 527 – pKaH values 812 α,β-unsaturated esters 591, 617, 655, Weinreb amide 551, 978 913 – Gaunt’s synthesis 608 α,β-unsaturated iminium ions Werner classification, of molecular – form cycloaddition products 805 complexes 35 α,β-unsaturated ketimines 593 wind shield-wiper effect 819 α,β-unsaturated ketophosphonates 592 Winterfeldt reaction 744, 745, 761 α,β-unsaturated δ-lactones 210 – proposed mechanism of 745 α,β-unsaturated Weinreb amides 975 Winterfeldt’s synthesis, of γ-lactones 732 β-unsubstituted Michael acceptors 1312 Wittig–Horner–Wadsworth–Emmons olefination 698 v Wittig olefination 586 valence bond analysis 44 Wittig-type olefin synthesis 975 valences Wolff–Kishner reduction 434 – Lewis definitions of 34 Woodward–Hoffman rules valine-derived catalysts 1094 – [6 + 2] cycloaddition 891 valinol-derived catalyst 421 Wynberg β-lactone synthesis 539 van der Waals radii 411, 412, 883 Wynberg process 542, 548 van’t Hoff equation 58 – ammonium enolate model 534 van’t Hoff plots 59, 748 Wynberg’s model 535 Vedejs’ phosphine catalysts 462 Wynberg’s net [2 + 2] cycloaddition 542 Vellalath/Romo’s Michael-proton-transfer lactonization/lactamization 620 x vibrational coupling constants 394 xanthanolides 547 vinyl epoxide xanthenone 770 – phosphoramide-catalyzed kinetic resolution 1134 y 2-vinylidenesuccinate 783, 784, 798 Yamaguchi esterification 133, 134 vinylogous aldol additions 1066, 1070 Yamashita’s chiral-4-DMAP catalyst 470 vinylogous aza-MBH adducts [3Y+Y2] – tandem photoisomerization–cyclization – annulation of enals and aldehydes 1332 of 684 – annulations of enals and imines 1333 vinylogous aza-MBH–isomerization– [3Y+Y3] cyclization sequence 685, 687 – cycloaddition with the homoenolate 1334 vinylogous aza-MBH–photoisomerization– [4Y+Y2] cyclization sequence 687 – reaction 1339 vinylogous MoritaBaylisHillman reaction [4Y+Y2] cycloaddition 1335 – tandem vinylogous aza-Morita–Baylis– Hillman Reactions z –– with bis-activated dienes 685 zero-point energy 402, 404 – in total synthesis 687 Ziegler-Natta alkene polymerization vinylogy, in enamine-mediated catalysis 892, chemistry 7 893 Zimmerman–Traxler model 317 vinylphosphorus 794 zinc chloride-catalyzed Grignard addition – ylide, formation of 763 reactions 376 vinyl sulfones zinc(II) ate-catalyzed alkyl addition 376 – intramolecular RC reaction 699 zirconium alkoxide complex 1113 Index 1399

ZnCl2-Me3SiCH2MgCl-RMgXLiCl – enolate 203 system 379, 381 –– adduct 207

ZnCl2-RMgCl system 381 – intermediates 203, 207, 212, 213 ZnCl2-RMgX system 379 –– stabilization of 197 Zn(II) ate-catalyzed diastereoselective – nucleophilic carbon 200 cyclopentyl addition 377 – phosphonium 692 Zn(II) ate-catalyzed piperidinyl addition 382 –– enolate precursor 697 zwitterionic, 743 – species 715 – adducts 213, 215 – structure 731 – ammonium enolates 588 zwitterionic catalysts, solubility of 876 – catalysts solubility 876 1,5-zwitterionic sulfonium-enolate 1275