Opengl Pipeline Graphique

Total Page:16

File Type:pdf, Size:1020Kb

Opengl Pipeline Graphique G´en´eralit´es Pipeline Graphique OpenGL Pipeline Graphique R´emi Synave ([email protected]) ENSEIRB 2009-2010 R´emi Synave OpenGLPipeline Graphique 1 G´en´eralit´es Pipeline Graphique OpenGL, c’est quoi? Ensemble de fonctions regroup´ees dans une biblioth`eque permettant de manipuler la carte graphique Biblioth`eque ´ecrite en C API multi-plateforme Permet de visualiser une sc`ene 3D (et aussi 2D) complexe `a partir de primitives simples R´emi Synave OpenGLPipeline Graphique 2 G´en´eralit´es Pipeline Graphique OpenGL, c’est quoi? Biblioth`eque ind´ependante du mat´eriel utilis´e Sp´ecifications ´evoluent en fonctions du comit´eARB Aujourd’hui, support´ee par toutes les cartes graphiques R´emi Synave OpenGLPipeline Graphique 3 G´en´eralit´es Pipeline Graphique Historique Ann´ees 80 : SGI IRIS GL Biblioth`eque cr´e´ee par Silicon Graphics (SGI) en 1992 : OpenGL 1.0 Cr´eation du standard et des sp´ecifications Machine `a´etats 1993 : premi`ere carte graphique supportant OpenGL 1.0 (station Silicon Graphics Iris 4D/510 Crimson VGXT) 1995 : DirectX/Direct3D 1.0 1999 : 1er pipeline mat´eriel grand public : NVIDIA Geforce ... Aoˆut 2008 : sp´ecifications officielles d’OpenGL 3.0 R´emi Synave OpenGLPipeline Graphique 4 G´en´eralit´es Pipeline Graphique Machines SGI IRIS = Integrated Raster Imaging System Syst`eme d’exploitation : IRIX (IRIS UNIX) SGI Indigo R´emi Synave OpenGLPipeline Graphique 5 G´en´eralit´es Pipeline Graphique Machines SGI SGI Indy R´emi Synave OpenGLPipeline Graphique 6 G´en´eralit´es Pipeline Graphique Machines SGI SGI Onyx R´emi Synave OpenGLPipeline Graphique 7 G´en´eralit´es Pipeline Graphique Machines SGI SGI O2 R´emi Synave OpenGLPipeline Graphique 8 G´en´eralit´es Pipeline Graphique Machines SGI SGI Octane R´emi Synave OpenGLPipeline Graphique 9 G´en´eralit´es Pipeline Graphique Machines SGI SGI Tezro R´emi Synave OpenGLPipeline Graphique 10 Donn´ees g´eom´etriques G´en´eralit´es Assemblage des primitives Pipeline Graphique Elimination´ - Projection Rast´erisation - Echantillonnage´ Pipeline g´en´eral Pipeline graphique Chaîne de rendu Données géométriques Assemblage des primitives Rastérisation Élimination − Projection Échantillonnage R´emi Synave OpenGLPipeline Graphique 11 Donn´ees g´eom´etriques G´en´eralit´es Assemblage des primitives Pipeline Graphique Elimination´ - Projection Rast´erisation - Echantillonnage´ Donn´ees g´eom´etriques Ensemble de maillages polygonaux ou de primitives : Polygones convexes Sph`ere Cube Tore Cˆone ... R´emi Synave OpenGLPipeline Graphique 12 Donn´ees g´eom´etriques G´en´eralit´es Assemblage des primitives Pipeline Graphique Elimination´ - Projection Rast´erisation - Echantillonnage´ Pipeline g´en´eral Pipeline graphique Chaîne de rendu Données géométriques Assemblage des primitives Rastérisation Élimination − Projection Échantillonnage R´emi Synave OpenGLPipeline Graphique 13 Donn´ees g´eom´etriques G´en´eralit´es Assemblage des primitives Pipeline Graphique Elimination´ - Projection Rast´erisation - Echantillonnage´ Assemblage des primitives Positionnement/animation des objets grˆace `ades translations et des rotations Utilisation des coordonn´ees homog`enes Repr´esentation des transformations sous forme de matrices R´emi Synave OpenGLPipeline Graphique 14 Donn´ees g´eom´etriques G´en´eralit´es Assemblage des primitives Pipeline Graphique Elimination´ - Projection Rast´erisation - Echantillonnage´ Coordonn´ees homog`enes Coordonn´ees homog`enes =6 Coordonn´ees cart´esiennes Permet de d´efinir la position d’un point dans l’espace Ajout d’une composante (dimension) W =6 0 aux classiques (X , Y , Z) → (X , Y , Z, W ) Cart´esienne → Homog`ene (X , Y , Z) (X , Y , Z, 1) Homog`ene → Cart´esienne X Y Z (X , Y , Z, W ) ( W , W , W ) Notation non unique : point(1, 2, 3, 1) = point(2, 4, 6, 2) R´emi Synave OpenGLPipeline Graphique 15 Donn´ees g´eom´etriques G´en´eralit´es Assemblage des primitives Pipeline Graphique Elimination´ - Projection Rast´erisation - Echantillonnage´ Coordonn´ees homog`enes Pourquoi ? ? ! ! Permet de repr´esenter les rotations, translations et mises `a l’´echelle par une matrice Application de toutes ces transformations par des multiplications de matrices Combinaison de transformations repr´esent´ee par une seule matrice (multiplication des matrices de chaque transformation) R´emi Synave OpenGLPipeline Graphique 16 Donn´ees g´eom´etriques G´en´eralit´es Assemblage des primitives Pipeline Graphique Elimination´ - Projection Rast´erisation - Echantillonnage´ Coordonn´ees homog`enes Matrices de rotation : 10 00 0 cos(α) −sin(α) 0 de αo suivant l’axe X : 0 sin(α) cos(α) 0 00 01 cos(α) 0 sin(α) 0 0 1 0 0 de αo suivant l’axe Y : −sin(α) 0 cos(α) 0 0 0 0 1 R´emi Synave OpenGLPipeline Graphique 17 Donn´ees g´eom´etriques G´en´eralit´es Assemblage des primitives Pipeline Graphique Elimination´ - Projection Rast´erisation - Echantillonnage´ Coordonn´ees homog`enes Matrice de rotation : cos(α) −sin(α) 0 0 sin(α) cos(α) 0 0 de αo suivant l’axe Z : 0 0 10 0 0 01 Matrice de translation : 1 0 0 Tx −→ 0 1 0 T d’un vecteur T = (T , T , T ) : y x y z 0 0 1 T z 000 1 R´emi Synave OpenGLPipeline Graphique 18 Donn´ees g´eom´etriques G´en´eralit´es Assemblage des primitives Pipeline Graphique Elimination´ - Projection Rast´erisation - Echantillonnage´ Assemblage des primitives Utilisation des matrices en coordonn´ees homog`enes pour le positionnement des objets dans la sc`ene : la multiplication de deux matrices n’est pas commutative ! ! ! translation + rotation =6 rotation + translation rotation de 20o suivant X + rotation de 30o suivant Y =6 rotation de 30o suivant Y + rotation de 20o suivant X L’ordre d’application des transformations est important ! R´emi Synave OpenGLPipeline Graphique 19 Donn´ees g´eom´etriques G´en´eralit´es Assemblage des primitives Pipeline Graphique Elimination´ - Projection Rast´erisation - Echantillonnage´ Assemblage des primitives Exemples : Point A(0, 1, 0) → rotation de 90o suivant X puis translation de (0, 2, 0). Point A(0, 1, 0) → translation de (0, 2, 0) puis rotation 90o suivant X. Point A(0, 1, 0) → rotation de 90o suivant Z puis rotation de 90o suivant Y. Point A(0, 1, 0) → rotation de 90o suivant Y puis rotation de 90o suivant Z. Transformation affine d’un point P par une matrice M : M1,1 M1,2 M1,3 M1,4 Px M M M M P 2,1 2,2 2,3 2,4 . y M M M M P 3,1 3,2 3,3 3,4 z M4,1 M4,2 M4,3 M4,4 1 R´emi Synave OpenGLPipeline Graphique 20 Donn´ees g´eom´etriques G´en´eralit´es Assemblage des primitives Pipeline Graphique Elimination´ - Projection Rast´erisation - Echantillonnage´ Pipeline g´en´eral Pipeline graphique Chaîne de rendu Données géométriques Assemblage des primitives Rastérisation Élimination − Projection Échantillonnage R´emi Synave OpenGLPipeline Graphique 21 Donn´ees g´eom´etriques G´en´eralit´es Assemblage des primitives Pipeline Graphique Elimination´ - Projection Rast´erisation - Echantillonnage´ Elimination´ Polygones invisibles : Polygones vus de l’arri`ere (orientation importante des polygones) : Back face culling Polygones se trouvant derri`ere un autre polygone depuis le point de vue de la cam´era : Z-buffer lors de la rast´erisation R´emi Synave OpenGLPipeline Graphique 22 Donn´ees g´eom´etriques G´en´eralit´es Assemblage des primitives Pipeline Graphique Elimination´ - Projection Rast´erisation - Echantillonnage´ Elimination´ Point de vue dans le mˆeme sens que la normale du polygone ? On le voit de derri`ere On le supprime Point de vue dans le sens oppos´e`ala normale du polygone ? Le polygone nous fait face On le conserve R´emi Synave OpenGLPipeline Graphique 23 Donn´ees g´eom´etriques G´en´eralit´es Assemblage des primitives Pipeline Graphique Elimination´ - Projection Rast´erisation - Echantillonnage´ Elimination´ P1 (−1,2) p (3,0) (2,1) P2 −→ −→p .P1= −3 < 0 → on conserve le polygone P1 −→ −→p .P2 = 6 > 0 → on supprime le polygone P2 R´emi Synave OpenGLPipeline Graphique 24 Donn´ees g´eom´etriques G´en´eralit´es Assemblage des primitives Pipeline Graphique Elimination´ - Projection Rast´erisation - Echantillonnage´ Elimination´ Elimination´ des polygones non visible Faible coˆut par polygone Suffisant pour les mod`eles num´eriques valides imprimables (mod`eles num´eriques sans bord) Etape´ pr´eliminaire pour d’autres algorithmes Economise´ 50% de temps de calcul (en moyenne) R´emi Synave OpenGLPipeline Graphique 25 Donn´ees g´eom´etriques G´en´eralit´es Assemblage des primitives Pipeline Graphique Elimination´ - Projection Rast´erisation - Echantillonnage´ Projection Projection Orthogonale : Projection perpendiculaire au plan de projection f R´emi Synave OpenGLPipeline Graphique 26 Donn´ees g´eom´etriques G´en´eralit´es Assemblage des primitives Pipeline Graphique Elimination´ - Projection Rast´erisation - Echantillonnage´ Projection f Consid´erons : Point de vue centr´een (0, 0, 0) Plan de projection d’´equation z = f 100 0 010 0 → Matrice de projection : 0 0 0 f 000 1 R´emi Synave OpenGLPipeline Graphique 27 Donn´ees g´eom´etriques G´en´eralit´es Assemblage des primitives Pipeline Graphique Elimination´ - Projection Rast´erisation - Echantillonnage´ Projection Projection Perspective : Projection en direction du centre de projection f R´emi Synave OpenGLPipeline Graphique 28 Donn´ees g´eom´etriques G´en´eralit´es Assemblage des primitives Pipeline Graphique Elimination´ - Projection Rast´erisation - Echantillonnage´ Projection f Consid´erons : Point de vue centr´een (0, 0, 0) Plan de projection d’´equation z = f 10 0 0 01 0 0 → Matrice de projection : 00 1 0 1 0 0 f 0 R´emi Synave OpenGLPipeline
Recommended publications
  • Ribbons Manual Help Ribbons On-Line Manual
    Ribbons Manual Help Ribbons On-Line Manual. Usage: ribbons [options] ribbons is driven by mouse and an X/Motif interface, once data has been prepared with auxiliary programs. Coordinate files must be in Protein Data Bank (*.pdb) format. Recommend that you make a new directory and copy over a *.pdb file to begin. To initialize for default drawing data from a PDB entry, type: ribbons -e YourMol.pdb To display once the data above is prepared, type: ribbons -n YourMol To create any data from 'YourMol.pdb' with ribbons-data GUI, type: ribbons-data YourMol The choices from the "Help" submenus bring up the additional information screens listed below: Data Preparation ● Required Files ● Auxiliary Programs ● Tutorial Overview ● X-ray Error Analysis Graphics ● Motif MenuBar ● Control Panels ● Model Transformation ● Menubar Options ❍ File ❍ Edit ❍ Model ❍ View ❍ Help ● The Ribbon Drawing Panels ❍ Ribbon Style file:///C|/My Documents/ribbons/help/manual.html (1 of 2) [4/3/2001 1:52:00 PM] Ribbons Manual Help ❍ Ribbon Dimensions ❍ Ribbon N-primitives ❍ Ribbon Palette ● Primitive Control Panels ❍ Atom Panel ❍ Bond Panel ❍ Poly Panel ❍ Ndot Panel ❍ Text Panel ● Material and Image Control Panels ❍ Image Panel ❍ Color Panel ❍ Light Panel ❍ colorIndex Panel ❍ Motion Panel ● Keyboard Shortcuts Images ● Saving Images ● Example Images ● Artistic Images ● Color Indexing Scheme ● PostScript Plots ● Raytracing ● Virtual Reality Program ● Frequently Asked Questions ● Licensing ● Source Code ● Ribbon References Ribbons User Manual / UAB-CBSE / [email protected] file:///C|/My Documents/ribbons/help/manual.html (2 of 2) [4/3/2001 1:52:00 PM] Ribbons Data Preparation Help Ribbons Data Preparation Ribbons requires generation of a database of files for display.
    [Show full text]
  • SGI® Octane III®
    Making ® ® Supercomputing SGI Octane III Personal™ KEY FEATURES Supercomputing Gets Personal Octane III takes high-performance computing out Office Ready of the data center and puts it at the deskside. It A pedestal, one foot by two combines the immense power and performance broad HPC application support and arrives ready foot form factor and capabilities of a high-performance cluster with the for immediate integration for a smooth out-of-the- quiet operation portability and usability of a workstation to enable box experience. a new era of personal innovation in strategic science, research, development and visualization. Octane III allows a wide variety of single and High Performance dual-socket node choices and a wide selection of Up to 120 high- In contrast with standard dual-processor performance, storage, integrated networking, and performance cores and workstations with only eight cores and moderate graphics and compute GPU options. The system nearly 2TB of memory memory capacity, the superior design of is available as an up to ten node deskside cluster Broad HPC Application Octane III permits up to 120 high-performance configuration or dual-node graphics workstation Support cores and nearly 2TB of memory. Octane III configurations. Accelerated time-to-results significantly accelerates time-to-results for over with support for over 50 50 HPC applications and supports the latest Supported operating systems include: ® ® ® HPC applications Intel processors to capitalize on greater levels SUSE Linux Enterprise Server and Red Hat of performance, flexibility and scalability. Pre- Enterprise Linux. All configurations are available configured with system software, cluster set up is with pre-loaded SGI® Performance Suite system Ease of Use a breeze.
    [Show full text]
  • Overview and History Nas Overview
    zjjvojvovo OVERVIEWNAS OVERVIEW AND HISTORY a Look at NAS’ 25 Years of Innovation and a Glimpse at the Future In the mid-1970s, a group of Ames aerospace researchers began to study a highly innovative concept: NASA could transform U.S. aerospace R&D from the costly and cghghmgm time-consuming wind tunnel-based process to simulation-centric design and engineer- ing by executing emerging computational fluid dynamics (CFD) models on supercom- puters at least 1,000 times more powerful than those commercially available at the time. In 1976, Ames Center Director Dr. Hans Mark tasked a group led by Dr. F. Ronald Bailey to explore this concept, leading to formation of the Numerical Aerodynamic Simulator (NAS) Projects Office in 1979. At the same time, a user interface group was formed consisting of CFD leaders from industry, government, and academia to help guide requirements for the NAS concept gmfgfgmfand provide feedback on evolving computer feasibility studies. At the conclusion of these activities in 1982, NASA management changed the NAS approach from a focus on purchasing a specially developed supercomputer to an on-going Numerical Aerody- namic Simulation Program to provide leading-edge computational capabilities based on an innovative network-centric environment. The NAS Program plan for implementing this new approach was signed on February 8, 1983. Grand Opening As the NAS Program got underway, a projects office to a full-fledged division its first supercomputers were installed at Ames. In January 1987, NAS staff and in Ames’ Central Computing Facility, equipment were relocated to the new starting with a Cray X-MP-12 in 1984.
    [Show full text]
  • OCTANE Technical Report
    OCTANE Technical Report Silicon Graphics, Inc. ANY DUPLICATION, MODIFICATION, DISTRIBUTION, PUBLIC PERFORMANCE, OR PUBLIC DISPLAY OF THIS DOCUMENT WITHOUT THE EXPRESS WRITTEN CONSENT OF SILICON GRAPHICS, INC. IS STRICTLY PROHIBITED. THE RECEIPT OR POSSESSION OF THIS DOCUMENT DOES NOT CONVEY ANY RIGHTS TO REPRODUCE, DISCLOSE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE, USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN PART. Cop VED Table of Contents Section 1 Introduction .....................................................................................................1-1 1.1 Manufacturing.............................................................................................................. 1-3 1.1.1 Industrial Design .....................................................................................1-3 1.1.2 CAD/CAM Solid Modeling ....................................................................1-4 1.1.3 Analysis...................................................................................................1-5 1.1.4 Digital Prototyping..................................................................................1-6 1.2 Entertainment............................................................................................................... 1-8 1.2.1 3D Animation..........................................................................................1-8 1.2.2 Film/Video/Audio ...................................................................................1-9 1.2.3 Publishing..............................................................................................1-10
    [Show full text]
  • Interactive Rendering with Coherent Ray Tracing
    EUROGRAPHICS 2001 / A. Chalmers and T.-M. Rhyne Volume 20 (2001), Number 3 (Guest Editors) Interactive Rendering with Coherent Ray Tracing Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner Computer Graphics Group, Saarland University Abstract For almost two decades researchers have argued that ray tracing will eventually become faster than the rasteri- zation technique that completely dominates todays graphics hardware. However, this has not happened yet. Ray tracing is still exclusively being used for off-line rendering of photorealistic images and it is commonly believed that ray tracing is simply too costly to ever challenge rasterization-based algorithms for interactive use. However, there is hardly any scientific analysis that supports either point of view. In particular there is no evidence of where the crossover point might be, at which ray tracing would eventually become faster, or if such a point does exist at all. This paper provides several contributions to this discussion: We first present a highly optimized implementation of a ray tracer that improves performance by more than an order of magnitude compared to currently available ray tracers. The new algorithm makes better use of computational resources such as caches and SIMD instructions and better exploits image and object space coherence. Secondly, we show that this software implementation can challenge and even outperform high-end graphics hardware in interactive rendering performance for complex environments. We also provide an brief overview of the benefits of ray tracing over rasterization algorithms and point out the potential of interactive ray tracing both in hardware and software. 1. Introduction Ray tracing is famous for its ability to generate high-quality images but is also well-known for long rendering times due to its high computational cost.
    [Show full text]
  • Computing @SERC Resources,Services and Policies
    Computing @SERC Resources,Services and Policies R.Krishna Murthy SERC - An Introduction • A state-of-the-art Computing facility • Caters to the computing needs of education and research at the institute • Comprehensive range of systems to cater to a wide spectrum of computing requirements. • Excellent infrastructure supports uninterrupted computing - anywhere, all times. SERC - Facilities • Computing - – Powerful hardware with adequate resources – Excellent Systems and Application Software,tools and libraries • Printing, Plotting and Scanning services • Help-Desk - User Consultancy and Support • Library - Books, Manuals, Software, Distribution of Systems • SERC has 5 floors - Basement,Ground,First,Second and Third • Basement - Power and Airconditioning • Ground - Compute & File servers, Supercomputing Cluster • First floor - Common facilities for Course and Research - Windows,NT,Linux,Mac and other workstations Distribution of Systems - contd. • Second Floor – Access Stations for Research students • Third Floor – Access Stations for Course students • Both the floors have similar facilities Computing Systems Systems at SERC • ACCESS STATIONS *SUN ULTRA 20 Workstations – dual core Opteron 4GHz cpu, 1GB memory * IBM INTELLISTATION EPRO – Intel P4 2.4GHz cpu, 512 MB memory Both are Linux based systems OLDER Access stations * COMPAQ XP 10000 * SUN ULTRA 60 * HP C200 * SGI O2 * IBM POWER PC 43p Contd... FILE SERVERS 5TB SAN storage IBM RS/6000 43P 260 : 32 * 18GB Swappable SSA Disks. Contd.... • HIGH PERFORMANCE SERVERS * SHARED MEMORY MULTI PROCESSOR • IBM P-series 690 Regatta (32proc.,256 GB) • SGI ALTIX 3700 (32proc.,256GB) • SGI Altix 350 ( 16 proc.,16GB – 64GB) Contd... * IBM SP3. NH2 - 16 Processors WH2 - 4 Processors * Six COMPAQ ALPHA SERVER ES40 4 CPU’s per server with 667 MHz.
    [Show full text]
  • OCTANE® Workstation Owner's Guide
    OCTANE® Workstation Owner’s Guide Document Number 007-3435-003 CONTRIBUTORS Written by Charmaine Moyer Production by Linda Rae Sande Illustrated by Kwong Liew Engineering contributions by Jim Bergman, Brian Bolich, Bob Cook, Mark Glusker, John Hahn, Steve Manzi, Ted Marsh, Donna McMaster, Jim Pagura, Michael Poimboeuf, Brad Reger, Jose Reinoso, Bob Sanders, Chris Wheaton, Michael Wright, and many others on the OCTANE engineering and business team. St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower image courtesy of Xavier Berenguer, Animatica. © 1997 - 1999, Silicon Graphics, Inc.— All Rights Reserved The contents of this document may not be copied or duplicated in any form, in whole or in part, without the prior written permission of Silicon Graphics, Inc. LIMITED AND RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the Government is subject to restrictionsas set forth in the Rights in Data clause at FAR 52.227-14 and/or in similar orsuccessor clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements.Unpublished rights reserved under the Copyright Laws of the United States.Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94043-1389. Silicon Graphics, IRIS, IRIX, and OCTANE are registered trademarks and the Silicon Graphics logo, IRIX Interactive Desktop, Power Fortran Accelerator, IRIS InSight, and Stereoview are trademarks of Silicon Graphics, Inc. ADAT is a registered trademark of Alesis Corporation. Centronics is a registered trademark of Centronics Data Computer Corporation. Envi-ro-tech is a trademark of TECHSPRAY. Macintosh is a registered trademark of Apple Computer, Inc.
    [Show full text]
  • AVS on UNIX WORKSTATIONS INSTALLATION/ RELEASE NOTES
    _________ ____ AVS on UNIX WORKSTATIONS INSTALLATION/ RELEASE NOTES ____________ Release 5.5 Final (50.86 / 50.88) November, 1999 Advanced Visual Systems Inc.________ Part Number: 330-0120-02 Rev L NOTICE This document, and the software and other products described or referenced in it, are con®dential and proprietary products of Advanced Visual Systems Inc. or its licensors. They are provided under, and are subject to, the terms and conditions of a written license agreement between Advanced Visual Systems and its customer, and may not be transferred, disclosed or otherwise provided to third parties, unless oth- erwise permitted by that agreement. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT, INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR SUI- TABILITY FOR USE OF SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A WARRANTY BY ADVANCED VISUAL SYSTEMS FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF ADVANCED VISUAL SYSTEMS WHATSOEVER. ADVANCED VISUAL SYSTEMS MAKES NO WAR- RANTY OF ANY KIND IN OR WITH REGARD TO THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR- POSE. ADVANCED VISUAL SYSTEMS SHALL NOT BE RESPONSIBLE FOR ANY ERRORS THAT MAY APPEAR IN THIS DOCUMENT AND SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMI- TATION INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT, EVEN IF ADVANCED VISUAL SYSTEMS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. The speci®cations and other information contained in this document for some purposes may not be com- plete, current or correct, and are subject to change without notice.
    [Show full text]
  • Running.1997.2.Pdf
    SEMI-ANNUAL REPORT NASA CONTRACT NAS5-31368 FOR MODIS TEAM MEMBER STEVEN W. RUNNING ASSOC. TEAM MEMBER RAMAKRISHNA R. NEMANI SOFTWARE ENGINEER JOSEPH GLASSY July 15, 1997 PRE-LAUNCH TASKS PROPOSED IN OUR CONTRACT OF DECEMBER 1991 We propose, during the pre-EOS phase to: (1) develop, with other MODIS Team Members, a means of discriminating different major biome types with NDVI and other AVHRR-based data. (2) develop a simple ecosystem process model for each of these biomes, BIOME-BGC (3) relate the seasonal trend of weekly composite NDVI to vegetation phenology and temperature limits to develop a satellite defined growing season for vegetation; and (4) define physiologically based energy to mass conversion factors for carbon and water for each biome. Our final core at-launch product will be simplified, completely satellite driven biome specific models for net primary production. We will build these biome specific satellite driven algorithms using a family of simple ecosystem process models as calibration models, collectively called BIOME-BGC, and establish coordination with an existing network of ecological study sites in order to test and validate these products. Field datasets will then be available for both BIOME-BGC development and testing, use for algorithm developments of other MODIS Team Members, and ultimately be our first test point for MODIS land vegetation products upon launch. We will use field sites from the National Science Foundation Long-Term Ecological Research network, and develop Glacier National Park as a major site for intensive validation. OBJECTIVES: We have defined the following near-term objectives for our MODIS contract based on the long term objectives stated above: -Organization of an EOS ground monitoring network with collaborating U.S.
    [Show full text]
  • Dual Channel Display Guide for Silicon Graphics Octane2™ And
    Dual Channel Display Guide for Silicon Graphics Octane2™ and Silicon Graphics Fuel™ Workstations 007-4209-003 CONTRIBUTORS Written by Alan Stein and Eric Zamost Illustrated by Dan Young Production by Karen Jacobson Contributions by Darren Au, Marc Hannah, Matt Hoy, Matt Humphreys, Niaz Khan, Jim Pagura, Ken Williams, and Zao Yang COPYRIGHT © 2002, Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc. LIMITED RIGHTS LEGEND The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Parkway 2E, Mountain View, CA 94043-1351. TRADEMARKS AND ATTRIBUTIONS Silicon Graphics, SGI, the SGI logo, Octane, and IRIX are registered trademarks, and Silicon Graphics Fuel, Octane2, and VPro are trademarks, of Silicon Graphics, Inc. UNIX is a registered trademark of The Open Group in the United States and other countries. Envi-Ro-Tech is a trademark of Tech Spray, L.P. For regulatory and compliance information, see your Octane or Octane2 Workstation Owner’s Guide.
    [Show full text]
  • William Thigpen Deputy Project Manager August 15, 2011 Introduction
    The High End Computing Capability Project: Excellence at the Leading Edge of Computing William Thigpen Deputy Project Manager August 15, 2011 Introduction • NAS has stellar history of amazing accomplishments, drawing from synergy between high end computing (HEC) and modeling and simulation (M&S) • NAS has earned national and international reputation as a pioneer in the development and application of HEC technologies, providing its diverse customers with world-class M&S expertise, and state-of-the-art supercomputing products and services • HECC has been a critical enabler for mission success throughout NASA – it supports the modeling, simulation, analysis, and decision support activities for all four Mission Directorates, NESC, OCE, and OS&MA • HECC Mission: Develop and deliver the most productive HEC environment in the world, enabling NASA to extend technology, expand knowledge, and explore the universe • SCAP model of baseline funding + marginal investment has been immensely successful and has had a positive impact on NASA science and engineering – Baseline funding provides “free” HECC resources and services (MDs select own projects, determine priorities, and distribute own resources) – Marginal investments from ARMD, ESMD, and SMD demonstrate current model has strong support and buy-in from MDs HEC Characteristics • HEC, by its very nature, is required to be at the leading edge of computing technologies – Unlike agency-wide IT infrastructure, HEC is fundamentally driven to provide a rapidly increasing capability to a relatively small
    [Show full text]
  • SGI High Performance Visualization Solutions
    Next Generation Graphics Hardware Architectures Fabrizio Magugliani SE Director, EMEA [email protected] 1 SGI Confidential-Not for Redistribution Agenda • The ultimate architecture •Driving the technology •SGI® Onyx® 3000 series –InfiniteReality3™ –InfinitePerformance™ •SGI® Onyx® 300 •Silicon Graphics Fuel™ visual workstation •Conclusion •Q&A SGI Confidential-Not for Redistribution The Ultimate Architecture Because some people think that “There is no tool like an old tool” SGI Confidential-Not for Redistribution Driving the Technology Real-time visualization Large DBs Desktop Throughput and Visualization High Turnaround Throughput SGI® Reality Center™ Silicon Graphics Fuel™ Silicon Graphics® SGI® Origin® 3000 series SGI® Origin® 3800 SGI® Origin® 300 SGI™ Onyx® 3000 series Octane2® SGI® Onyx® 3800 SGI® Onyx® 300 (IRIX) (IRIX®) (IRIX) (IRIX) Distributed memory Shared memory SGI Confidential-Not for Redistribution SGI™ Onyx® 3000 Series • SGI Onyx 3000 series with InfiniteReality® graphics IntroducedIntroduced JulyJuly 2000 2000 • The industry’s highest quality graphics • Revolutionary NUMAflex™ modular computing design with integrated graphics SGI Confidential-Not for Redistribution InfiniteReality™ Performance, Flexibility, and Quality SGI Confidential-Not for Redistribution InfiniteReality™ Versatile Frame Buffer Displays Frame Buffer SGI Confidential-Not for Redistribution InfiniteReality™ Versatile Frame Buffer SGI Confidential-Not for Redistribution InfiniteReality™ Reality Center™ Multichannels are easy! Even in Edge-Blended
    [Show full text]