Mathematical Tripos Part III Lecture Courses in 2019-2020

Total Page:16

File Type:pdf, Size:1020Kb

Mathematical Tripos Part III Lecture Courses in 2019-2020 Mathematical Tripos Part III Lecture Courses in 2019-2020 Department of Pure Mathematics & Mathematical Statistics Department of Applied Mathematics & Theoretical Physics Notes and Disclaimers. • Students may take any combination of lectures that is allowed by the timetable. The examination timetable corresponds to the lecture timetable and it is therefore not possible to take two courses for examination that are lectured in the same timetable slot. There is no requirement that students study only courses offered by one Department. • The code in parentheses after each course name indicates the term of the course (M: Michaelmas; L: Lent; E: Easter), and the number of lectures in the course. Unless indicated otherwise, a 16 lecture course is equivalent to 2 credit units, while a 24 lecture course is equivalent to 3 credit units. Please note that certain courses are non-examinable, and are indicated as such after the title. Some of these courses may be the basis for Part III essays. • At the start of some sections there is a paragraph indicating the desirable previous knowledge for courses in that section. On one hand, such paragraphs are not exhaustive, whilst on the other, not all courses require all the pre-requisite material indicated. However you are strongly recommended to read up on the material with which you are unfamiliar if you intend to take a significant number of courses from a particular section. • The courses described in this document apply only for the academic year 2019-20. Details for subsequent years are often broadly similar, but not necessarily identical. The courses evolve from year to year. • Please note that while an attempt has been made to ensure that the outlines in this booklet are an accurate indication of the content of courses, the outlines do not constitute definitive syllabuses. The lectures and associated course materials as offered in this academic year define the syllabus. Each course lecturer has discretion to vary the material covered. • Some courses have no writeup available at this time, in which case you will see "No description available" in place of a description. Course descriptions will be added to the online version of the Guide to Courses as soon as they are provided by the lecturer. Until then, the descriptions for the previous year (available at http://www.maths.cam.ac.uk/postgrad/mathiii/courseguide.html) may be helpful in giving a rough idea of course content, but beware of the comments in the preceding item on what defines the syllabus. 1 Table of Contents Algebra 3 Algebra(M24) . 3 Lie Algebras and their representations (M24) . 4 D-modules (M16) | Non{Examinable .............................. 4 Profinite Groups (L24) . 5 Modular Representation Theory (L24) . 6 Algebraic Geometry 8 Algebraic Geometry (M24) . 8 Toric geometry (M24) . 8 Complex Manifolds (L24) . 9 Cubic hypersurfaces (L16) | Non{Examinable .......................... 10 Analysis 12 Analysis of Partial Differential Equations (M24) . 12 Introduction to nonlinear analysis (M24) . 13 Introduction to Geometric Measure Theory (L24) . 14 Elliptic Partial Differential Equations (L 24) . 15 Metric Embeddings (L24) . 16 Approximate group actions and Ulam stability (L16) | Non{Examinable . 16 Combinatorics 18 Combinatorics (M16) . 18 Ramsey Theory (M16) . 18 Topics in discrete Fourier analysis (L16) . 19 Extremal Graph Theory (L16) . 20 Algebraic Methods in Combinatorics (L12) | Non{Examinable . 21 Geometry and Topology 22 Algebraic Topology (M24) . 22 Differential Geometry (M24) . 23 Mapping class groups (M16) . 23 Symplectic Topology (L24) . 24 Complex Dynamics (L24) . 25 Geometric Inverse Problems (L24) | Non{Examinable ..................... 26 Geometric Group Theory (L16) | Non{Examinable ....................... 27 Random groups and related topics (L16) | Non{Examinable . 28 2 Logic 29 Category Theory (M24) . 29 Model Theory (L16) . 30 Infinite Games (L24) . 31 Number Theory 32 Modular forms and L-functions (M24) . 32 Elliptic Curves (M24) . 33 Algebraic Number Theory (M24) . 33 Analytic Number Theory (L24) . 34 Probability and Finance 36 Advanced Probability (M24) . 36 Advanced Financial Models (M24) . 37 Percolation and Related Topics (M16) . 37 Mixing times of Markov chains (M16) . 38 Random Walks and Uniform Spanning Trees (L16) . 39 Random planar geometry (L16) . 39 Statistics and Operational Research 41 Modern Statistical Methods (M24) . 41 Causal Inference (M16) . 42 Statistics in Medicine (3 units) . 43 Statistics in Medical Practice (M12) . 43 Analysis of Survival Data (L12) . 44 Additional Information . 45 Astrostatistics (L24) . 45 Stochastic Calculus and Applications (L24) . 46 Topics in Statistical Theory (L16) . 47 Statistical Learning in Practice (L24) . 48 Particle Physics, Quantum Fields and Strings 49 Quantum Field Theory (M24) . 49 Symmetries, Fields and Particles (M24) . 50 Statistical Field Theory (M16) . 51 Advanced Quantum Field Theory (L24) . 52 The Standard Model (L24) . 53 String Theory (L24) . 54 Supersymmetry (L16) . 55 Classical and Quantum Solitons (E16) . 56 Physics Beyond the Standard Model (E8) | Non{Examinable . 56 3 Relativity and Gravitation 58 General Relativity (M24) . 58 Cosmology (M24) . 59 Black Holes (L24) . 60 Field Theory in Cosmology (L24) . 60 Applications of Differential Geometry to Physics . 61 Gauge/Gravity Duality (E16) . 62 Spinor Techniques in General Relativity (L24) | Non{Examinable . 63 Astrophysics 65 Galaxy Formation (M24) . 65 Astrophysical Fluid Dynamics (M24) . 66 Structure and Evolution of Stars (M24) . 67 Extrasolar Planets: Atmospheres and Interiors (L24) . 68 The Life and Death of Galaxies (L24) . 68 Dynamics of Astrophysical Discs (L16) . 69 Binary Stars (L16) . 70 Quantum Computation, Information and Foundations 72 Quantum Computation (M16) . 72 Quantum Information Theory (L24) . 73 Philosophy of Physics 74 Philosophical Aspects of Classical and Quantum Mechanics (M8) | Non{Examinable . 74 Philosophical Aspects of Quantum Field Theory (L8) | Non{Examinable . 76 Applied and Computational Analysis 78 Inverse Problems (M24) . 78 Distribution Theory and Applications (M16) . 79 Topics in Convex Optimisation (M16) . 79 Numerical Solution of Differential Equations (L24) . 80 Hybrid Photonics Computing (L16) . 81 Mathematical Analysis of the Incompressible Navier-Stokes Equations (L24) | Non{Examinable 81 Continuum Mechanics 83 Slow Viscous Flow (M24) . ..
Recommended publications
  • Mathematical Tripos 2020/2021 Guide to Courses in Part Ia
    MATHEMATICAL TRIPOS 2021/2022 GUIDE TO COURSES IN PART IA This booklet provides an introduction for new students, giving an outline of the first year with informal and non-technical descriptions of the courses. It is intended to supplement the more formal descriptions contained in the booklet Schedules of Lecture Courses and Form of Examinations. These and other Faculty documents for students taking the Mathematical Tripos are available from http://www.maths.cam.ac.uk/undergrad/ Revised 6th September 2021 1 Introduction The Mathematical Tripos consists of Parts IA, IB and II, taken in successive years, with an optional fourth year, Part III, taken by students who do sufficiently well. Those who successfully complete three years are eligible to graduate with a BA honours degree, while those who go on to complete the additional fourth year graduate with both BA honours and MMath degrees. Unlike many degree courses, the Mathematical Tripos is not modular (at least in its first three years). It is tightly structured, with no choice in the first year, some choice in the second year, and a very wide choice in the third year. The examinations (especially in the second and third years) are cross-sectional, meaning that instead of each lecture course having a dedicated examination paper, each examination paper has questions on many lecture courses. The flexibility that this allows students is considered by the Faculty to be one of the great strengths of the Tripos. This booklet provides an introduction for new students, with an outline of Part IA and informal descrip- tions of the courses.
    [Show full text]
  • James Clerk Maxwell
    James Clerk Maxwell JAMES CLERK MAXWELL Perspectives on his Life and Work Edited by raymond flood mark mccartney and andrew whitaker 3 3 Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries c Oxford University Press 2014 The moral rights of the authors have been asserted First Edition published in 2014 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing in Publication Data Data available Library of Congress Control Number: 2013942195 ISBN 978–0–19–966437–5 Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY Links to third party websites are provided by Oxford in good faith and for information only.
    [Show full text]
  • Atiyah, M.F. 1. Geometry of Yang-Mills Fields, Lezioni Fermiani, Pisa 1979 2
    BIBLIOGRAPHY Atiyah, M.F. 1. Geometry of Yang-Mills fields, Lezioni Fermiani, Pisa 1979 2. Green's functions for seH-dual four manifolds, Adv. in Math. 7 A (1981) 130-158 Atiyah, M. F., Drin'feld, V.G., Hitchin, N. J. 3. Construction of instantons, Phys. Lett. 65A (1978) 185-187 Atiyah, MF., Hitchin, N.J., Singer, I.M. 4. SeH-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. Lon­ don 362 (1978), 425-461 Atiyah, M. F., Jones, J. S. 5. Topological aspects of Yang-Mills theory, Comm. Math. Phys. 61 (1978), 97-118 Atiyah, M.F., Ward, R.S. 6. Instantons and algebraic geometry, Comm. Math. Phys. 55 (1977), 117-124 Barth, W. 7. Moduli of vector bundles on the projective plane, Invent. Math 42 (1977), 63-91 Barth, W., Hulek, K. 8. Monads 8.lJ.d moduli of vector bundles, manuscripta math. 25 (1978),323- 347 Beilinson, A. A. 9. Coherent sheaves on pn and problems in linear algebra, Funct. Anal. Appl. 12 (1978), 214-216 Beilinson, A. A., Gel'fand, S. I, Manin, Yu. I. 10. An instanton is determined by its complex singularlties, Funct. Anal. Appl. 14 (1980), 118-119 Belavin, A. A., Polyakov, A. M., Schwartz, A. S., Tyupkin, Yu. 11. Pseudo-particle solutions of the Yang-Mills equations, Phys. Lett. 59B (1975), 85-87 288 Bibliography Belavin, A. A., Zakharov, V. E. 12. Multidimensional method of the inverse scattering problem and duality equations for the Yang-Mills field, JETP Letters 25 (1977), 567-570 Berezin, F. A. 13. The mathematical basis of supersymmetrie field theories, Sov.
    [Show full text]
  • Roots of L-Functions of Characters Over Function Fields, Generic
    Roots of L-functions of characters over function fields, generic linear independence and biases Corentin Perret-Gentil Abstract. We first show joint uniform distribution of values of Kloost- erman sums or Birch sums among all extensions of a finite field Fq, for ˆ almost all couples of arguments in Fq , as well as lower bounds on dif- ferences. Using similar ideas, we then study the biases in the distribu- tion of generalized angles of Gaussian primes over function fields and primes in short intervals over function fields, following recent works of Rudnick–Waxman and Keating–Rudnick, building on cohomological in- terpretations and determinations of monodromy groups by Katz. Our results are based on generic linear independence of Frobenius eigenval- ues of ℓ-adic representations, that we obtain from integral monodromy information via the strategy of Kowalski, which combines his large sieve for Frobenius with a method of Girstmair. An extension of the large sieve is given to handle wild ramification of sheaves on varieties. Contents 1. Introduction and statement of the results 1 2. Kloosterman sums and Birch sums 12 3. Angles of Gaussian primes 14 4. Prime polynomials in short intervals 20 5. An extension of the large sieve for Frobenius 22 6. Generic maximality of splitting fields and linear independence 33 7. Proof of the generic linear independence theorems 36 References 37 1. Introduction and statement of the results arXiv:1903.05491v2 [math.NT] 17 Dec 2019 Throughout, p will denote a prime larger than 5 and q a power of p. ˆ 1.1. Kloosterman and Birch sums.
    [Show full text]
  • Publications of Members, 1930-1954
    THE INSTITUTE FOR ADVANCED STUDY PUBLICATIONS OF MEMBERS 1930 • 1954 PRINCETON, NEW JERSEY . 1955 COPYRIGHT 1955, BY THE INSTITUTE FOR ADVANCED STUDY MANUFACTURED IN THE UNITED STATES OF AMERICA BY PRINCETON UNIVERSITY PRESS, PRINCETON, N.J. CONTENTS FOREWORD 3 BIBLIOGRAPHY 9 DIRECTORY OF INSTITUTE MEMBERS, 1930-1954 205 MEMBERS WITH APPOINTMENTS OF LONG TERM 265 TRUSTEES 269 buH FOREWORD FOREWORD Publication of this bibliography marks the 25th Anniversary of the foundation of the Institute for Advanced Study. The certificate of incorporation of the Institute was signed on the 20th day of May, 1930. The first academic appointments, naming Albert Einstein and Oswald Veblen as Professors at the Institute, were approved two and one- half years later, in initiation of academic work. The Institute for Advanced Study is devoted to the encouragement, support and patronage of learning—of science, in the old, broad, undifferentiated sense of the word. The Institute partakes of the character both of a university and of a research institute j but it also differs in significant ways from both. It is unlike a university, for instance, in its small size—its academic membership at any one time numbers only a little over a hundred. It is unlike a university in that it has no formal curriculum, no scheduled courses of instruction, no commitment that all branches of learning be rep- resented in its faculty and members. It is unlike a research institute in that its purposes are broader, that it supports many separate fields of study, that, with one exception, it maintains no laboratories; and above all in that it welcomes temporary members, whose intellectual development and growth are one of its principal purposes.
    [Show full text]
  • License Or Copyright Restrictions May Apply to Redistribution; See Https
    License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use EMIL ARTIN BY RICHARD BRAUER Emil Artin died of a heart attack on December 20, 1962 at the age of 64. His unexpected death came as a tremendous shock to all who knew him. There had not been any danger signals. It was hard to realize that a person of such strong vitality was gone, that such a great mind had been extinguished by a physical failure of the body. Artin was born in Vienna on March 3,1898. He grew up in Reichen- berg, now Tschechoslovakia, then still part of the Austrian empire. His childhood seems to have been lonely. Among the happiest periods was a school year which he spent in France. What he liked best to remember was his enveloping interest in chemistry during his high school days. In his own view, his inclination towards mathematics did not show before his sixteenth year, while earlier no trace of mathe­ matical aptitude had been apparent.1 I have often wondered what kind of experience it must have been for a high school teacher to have a student such as Artin in his class. During the first world war, he was drafted into the Austrian Army. After the war, he studied at the University of Leipzig from which he received his Ph.D. in 1921. He became "Privatdozent" at the Univer­ sity of Hamburg in 1923.
    [Show full text]
  • Emil Artin in America
    MATHEMATICAL PERSPECTIVES BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 50, Number 2, April 2013, Pages 321–330 S 0273-0979(2012)01398-8 Article electronically published on December 18, 2012 CREATING A LIFE: EMIL ARTIN IN AMERICA DELLA DUMBAUGH AND JOACHIM SCHWERMER 1. Introduction In January 1933, Adolf Hitler and the Nazi party assumed control of Germany. On 7 April of that year the Nazis created the notion of “non-Aryan descent”.1 “It was only a question of time”, Richard Brauer would later describe it, “until [Emil] Artin, with his feeling for individual freedom, his sense of justice, his abhorrence of physical violence would leave Germany” [5, p. 28]. By the time Hitler issued the edict on 26 January 1937, which removed any employee married to a Jew from their position as of 1 July 1937,2 Artin had already begun to make plans to leave Germany. Artin had married his former student, Natalie Jasny, in 1929, and, since she had at least one Jewish grandparent, the Nazis classified her as Jewish. On 1 October 1937, Artin and his family arrived in America [19, p. 80]. The surprising combination of a Roman Catholic university and a celebrated American mathematician known for his gnarly personality played a critical role in Artin’s emigration to America. Solomon Lefschetz had just served as AMS president from 1935–1936 when Artin came to his attention: “A few days ago I returned from a meeting of the American Mathematical Society where as President, I was particularly well placed to know what was going on”, Lefschetz wrote to the president of Notre Dame on 12 January 1937, exactly two weeks prior to the announcement of the Hitler edict that would influence Artin directly.
    [Show full text]
  • A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
    Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge­ bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe­ maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe­ matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members.
    [Show full text]
  • Twistor Theory and Differential Equations
    IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL J. Phys. A: Math. Theor. 42 (2009) 404004 (19pp) doi:10.1088/1751-8113/42/40/404004 Twistor theory and differential equations Maciej Dunajski Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK E-mail: [email protected] Received 31 January 2009, in final form 17 March 2009 Published 16 September 2009 Online at stacks.iop.org/JPhysA/42/404004 Abstract This is an elementary and self-contained review of twistor theory as a geometric tool for solving nonlinear differential equations. Solutions to soliton equations such as KdV,Tzitzeica, integrable chiral model, BPS monopole or Sine–Gordon arise from holomorphic vector bundles over T CP1. A different framework is provided for the dispersionless analogues of soliton equations, such as dispersionless KP or SU(∞) Toda system in 2+1 dimensions. Their solutions correspond to deformations of (parts of) T CP1, and ultimately to Einstein– Weyl curved geometries generalizing the flat Minkowski space. A number of exercises are included and the necessary facts about vector bundles over the Riemann sphere are summarized in the appendix. PACS number: 02.30.Ik (Some figures in this article are in colour only in the electronic version) 1. Introduction Twistor theory was created by Penrose [19] in 1967. The original motivation was to unify general relativity and quantum mechanics in a non-local theory based on complex numbers. The application of twistor theory to differential equations and integrability has been an unexpected spin off from the twistor programme.
    [Show full text]
  • Courses in Part Ib of the Mathematical Tripos
    UNIVERSITY OF CAMBRIDGE Faculty of Mathematics COURSES IN PART IB OF THE MATHEMATICAL TRIPOS This document contains a list of all the courses which are examinable in Part IB of the Mathematical Tripos together with an informal description of each course and suggestions for preliminary reading. A formal syllabus is given in the booklet Schedules for the Mathematical Tripos. which can be obtained from the Faculty Office, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA (telephone: 01223 337968; e-mail: [email protected]). All the documentation (including Schedules for the Mathematical Tripos) is available on the WWW (http://www.maths.cam.ac.uk/). June 2, 2004 READ ME Five changes have been implemented for 2004/05. They are as follows. There are two new courses, • { Complex Analysis, which will be lectured in the Lent Term and examined in Part IB, May/June 2005. This will run in parallel to Complex Methods, and it is expected that students with mainly pure mathematical interests will take Complex Analysis and students with mainly ap- plied mathematical interests will take Complex Methods. However, the courses are timetabled so that you could attend both courses. A total of four questions will be set in the examination on the two courses, two of which will be on material common to both courses. { The Geometry course has been replaced by a 16-lecture Geometry course given in the Lent term. Topological and Metric Spaces, which was lectured in the Easter term 2004, will be examined for • the first time in Part IB, May/June 2005.
    [Show full text]
  • Twistor Theory 1St Edition Free Download
    FREE TWISTOR THEORY 1ST EDITION PDF Stephen Huggett | 9781351406550 | | | | | String Theory and Twistor Theory - dummies This book is an introduction to twistor theory and modern geometrical approaches to space-time structure at the graduate or advanced undergraduate level. The choice of material presented has evolved from graduate lectures given in London and Oxford and the authors have aimed to retain the informal tone of those lectures. The book will provide graduate students with an introduction to the literature of twistor theory, presupposing some knowledge of special relativity and differential geometry. It would also be of use for a short course on space-time structure independently of twistor theory. The physicist could be introduced gently to some of the mathematics Twistor Theory 1st edition has proved useful in these areas, and the mathematician could be shown where sheaf cohomology and complex manifold theory can be used in physics. Previous page. Roger Penrose. Robert J. Jakob Schwichtenberg. Physics from Finance: A gentle introduction to gauge theories, fundamental interactions and fiber bundles. Next page. Burstall, Contemporary Physics. I believe that spinors and twistors are very important and that they reveal clearly profound structure that is not easily noticed using other formalisms. There can be no doubt that Sir Roger Penrose has been the leading exponent of this line of thinking for a long, long time. His book, Spinors and Spacetime is indispensable and a great classic, but it isn't Twistor Theory 1st edition the easiest book to read. In particular, I've spent a lot of time sorting through Twistor Theory 1st edition first chapter, trying to see clearly just what a Twistor Theory 1st edition "really is.
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]