The Balance Between Hydrogen Bonds, Halogen Bonds, and Chalcogen Bonds in the Crystal Structures of a Series of 1,3,4-Chalcogenadiazoles

Total Page:16

File Type:pdf, Size:1020Kb

The Balance Between Hydrogen Bonds, Halogen Bonds, and Chalcogen Bonds in the Crystal Structures of a Series of 1,3,4-Chalcogenadiazoles molecules Article The Balance between Hydrogen Bonds, Halogen Bonds, and Chalcogen Bonds in the Crystal Structures of a Series of 1,3,4-Chalcogenadiazoles Viraj De Silva, Boris B. Averkiev, Abhijeet S. Sinha and Christer B. Aakeröy * Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA; [email protected] (V.D.S.); [email protected] (B.B.A.); [email protected] (A.S.S.) * Correspondence: [email protected]; Tel.: +1-785-532-6096 Abstract: In order to explore how specific atom-to-atom replacements change the electrostatic potentials on 1,3,4-chalcogenadiazole derivatives, and to deliberately alter the balance between inter- molecular interactions, four target molecules were synthesized and characterized. DFT calculations indicated that the atom-to-atom substitution of Br with I, and S with Se enhanced the σ-hole potentials, thus increasing the structure directing ability of halogen bonds and chalcogen bonds as compared to intermolecular hydrogen bonding. The delicate balance between these intermolecular forces was further underlined by the formation of two polymorphs of 5-(4-iodophenyl)-1,3,4-thiadiazol-2-amine; Form I displayed all three interactions while Form II only showed hydrogen and chalcogen bonding. The results emphasize that the deliberate alterations of the electrostatic potential on polarizable atoms can cause specific and deliberate changes to the main synthons and subsequent assemblies in the structures of this family of compounds. Citation: De Silva, V.; Averkiev, B.B.; Keywords: Sinha, A.S.; Aakeröy, C.B. The chalcogen bond; halogen bond; hydrogen bond; intermolecular interactions; polymor- Balance between Hydrogen Bonds, phism; σ-hole Halogen Bonds, and Chalcogen Bonds in the Crystal Structures of a Series of 1,3,4-Chalcogenadiazoles. Molecules 2021, 26, 4125. https:// 1. Introduction doi.org/10.3390/molecules26144125 One of the main goals of crystal engineering is to employ intermolecular interactions in the assembly of crystalline materials with desired physiochemical properties [1–3]. To Academic Editor: Borys Osmialowski realize this objective, and to effectively manipulate these synthetic vectors, we need to further improve our understanding of the nature of these interactions. Received: 22 May 2021 The most influential and well-understood intermolecular force is, undoubtedly, the Accepted: 5 July 2021 hydrogen bond [4], and, consequently, the active use of this supramolecular tool has Published: 7 July 2021 been extensively mapped out [5–7]. Hydrogen bonding as a structure directing force has found many practical applications in pharmaceutical co-crystallizations [8,9], new Publisher’s Note: MDPI stays neutral agricultural formulations [10], as well as in the design of new energetic materials [11]. with regard to jurisdictional claims in However, over the past few decades, the recognition and understanding of potentially published maps and institutional affil- iations. competing intermolecular interactions, such as halogen and chalcogen bonding, have opened alternative ways for bottom-up design of new crystalline materials [12–14]. Hydrogen bonding is a noncovalent interaction involving the positive electrostatic potential on the hydrogen atom and a negative electrostatic potential of the acceptor atom (Scheme1). Electrostatic models can predict the directionality of the hydrogen bond rea- Copyright: © 2021 by the authors. sonably well; however, consideration of other components, such as charge transfer and Licensee MDPI, Basel, Switzerland. dispersion, is needed to properly understand the directionality [15,16]. Like hydrogen This article is an open access article bonds, halogen bonds share some of the same characteristics, whereby a positive electro- distributed under the terms and conditions of the Creative Commons static potential on a halogen atom and the negative electrostatic potential on an acceptor Attribution (CC BY) license (https:// atom can produce a ‘halogen bond’. In fact, this interaction is even more directional than creativecommons.org/licenses/by/ the hydrogen bond; however, it is worth keeping in mind that halogen bonds are not purely 4.0/). electrostatic. Using high-level theoretical models, such as symmetry-adapted perturbation Molecules 2021, 26, 4125. https://doi.org/10.3390/molecules26144125 https://www.mdpi.com/journal/molecules Molecules 2021, 26, x FOR PEER REVIEW 2 of 13 Molecules 2021, 26, 4125 2 of 13 purely electrostatic. Using high-level theoretical models, such as symmetry-adapted per- turbationtheory (SAPT), theory it is(SAPT), possible it tois obtainpossible the to breakdown obtain the of breakdown the intermolecular of the forcesintermolecular into indi- forcesvidual into components individual of components electrostatic, of polarization, electrostatic, repulsion, polarization, and repulsion, dispersion and for adispersion complete forunderstanding a complete understanding of the forces at of play, the whichforces at shows play, electrostatics which shows alone electrostatics cannot completely alone can- notdescribe completely and predict describe the and structure predict directing the structure ability directing of non-covalent ability of interactionsnon-covalent [17 inter-,18]. actionsSAPT calculations [17,18]. SAPT and calculations other periodic and other DFT calculationsperiodic DFT can calculations be computationally can be computa- taxing, tionallyhence one taxing, of the hence simplest one waysof the to simplest estimate ways the directionality to estimate the of directionality such systems withof such accept- sys- temsable accuracywith acceptable is through accuracy the use is through of molecular the use electrostatic of molecular potential electrostatic maps potential (MEPs). maps This (MEPs).approach This provides approach a simple provides method a simple for mapping method outfor mapping the distribution out the ofdistribution electron densities of elec- tronin molecular densities systemsin molecular (in vacuo), systems whereby (in vacuo), electron-efficient whereby electron-efficient and -deficient and areas -deficient can be areasidentified can be [19 identified,20]. The most[19,20]. prominent The mostσ -holesprominent (electron-deficient σ-holes (electron-deficient areas) of a molecule areas) of can a moleculebe identified can bybe theidentified positive by electrostatic the positive potential. electrostatic The σ potential.-hole on halogen The σ-hole atoms on provideshalogen atomsthe main provides electrostatic the main driver electrostatic for halogen driver bonding for halogen interactions bonding [21, 22interactions]. [21,22]. Scheme 1. A simple view of the electrostatic component of hydrogen, halogen, and chalcogen bonds. Scheme 1. A simple view of the electrostatic component of hydrogen, halogen, and chalcogen bonds.Chalcogen bonds, a relatively recent ‘discovery’, also share the same aspects of the halogen bond, including the high directionality. However, chalcogen atoms can form Chalcogen bonds, a relatively recent ‘discovery’, also share the same aspects of the two highly directional chalcogen bonding interactions as a result of the presence of two halogenσ-holes directlybond, including opposed the to high R-Ch directionali bonds (Schemety. However,1)[ 23–26 chalcogen]. Importantly, atoms can by changingform two highlythe electrostatic directional potentials chalcogen on bo thesending donor interactions atoms, theseas a result noncovalent of the presence interactions of two can beσ- holesfine-tuned directly to beopposed strong structureto R-Ch bonds directing (Scheme tools that1) [23–26]. can be utilizedImportantly, in crystal by changing engineering the electrostaticfor creating competitionpotentials on between these donor hydrogen, atoms, halogen, these noncovalent and chalcogen interactions bonding can [27, 28be]. fine- tunedMany to bedrug strong molecules structure contain directing multiple tools th functionalat can be groups utilized comprising in crystal engineering hydrogen, halo- for creatinggen, and competition chalcogen atoms, between and hydrogen, the presence halogen, of these and can chalcogen lead to increasing bonding [27,28]. complexity as to howMany molecules drug molecules interact notcontain only multiple in drug formulations,functional groups such comprising as co-crystals, hydrogen, but also hal- at ogen,an active and sitechalcogen of specific atoms, receptors and the [8 ,presence29]. Each of approved these can drug lead costs to increasing billions of complexity dollars in asresearch to how and molecules development interact and not many only potentially in drug formulations, useful candidates such fail as dueco-crystals, to low solubility but also ator an poor active stability, site of and specific such receptors problems [8,29]. may be Each addressed approved with drug a more costs complete billions understand-of dollars in researching of how and the development balance between and many intermolecular potentially forces useful leads candidates to a specific fail due structure to low solu- with bilityunique or bulk poor properties. stability, and Furthermore, such problems 1,3,4-chalcogenadiazole may be addressed moieties with a more are known complete to show un- derstandinganti-inflammatory of how andthe balance anticancer between properties intermol [30ecular,31], and forces broadly leads to speaking, a specific chalcogen structure withatoms unique and their bulk structural properties. influence Furthermore, can also 1,3,4-chalcogenadiazole positively impact synthetic moieties transformations are known to
Recommended publications
  • Noncovalent Bonds Through Sigma and Pi-Hole Located on the Same Molecule. Guiding Principles and Comparisons
    molecules Review Noncovalent Bonds through Sigma and Pi-Hole Located on the Same Molecule. Guiding Principles and Comparisons Wiktor Zierkiewicz 1,* , Mariusz Michalczyk 1,* and Steve Scheiner 2 1 Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeze˙ Wyspia´nskiego27, 50-370 Wrocław, Poland 2 Department of Chemistry and Biochemistry, Utah State University Logan, Logan, UT 84322-0300, USA; [email protected] * Correspondence: [email protected] (W.Z.); [email protected] (M.M.) Abstract: Over the last years, scientific interest in noncovalent interactions based on the presence of electron-depleted regions called σ-holes or π-holes has markedly accelerated. Their high directionality and strength, comparable to hydrogen bonds, has been documented in many fields of modern chemistry. The current review gathers and digests recent results concerning these bonds, with a focus on those systems where both σ and π-holes are present on the same molecule. The underlying principles guiding the bonding in both sorts of interactions are discussed, and the trends that emerge from recent work offer a guide as to how one might design systems that allow multiple noncovalent bonds to occur simultaneously, or that prefer one bond type over another. Keywords: molecular electrostatic potential; halogen bond; pnicogen bond; tetrel bond; chalcogen bond; cooperativity Citation: Zierkiewicz, W.; Michalczyk, M.; Scheiner, S. Noncovalent Bonds through Sigma and Pi-Hole Located on the Same 1. Introduction Molecule. Guiding Principles and The concept of the σ-hole, introduced to a wide audience in 2005 at a conference in Comparisons. Molecules 2021, 26, Prague by Tim Clark [1], influenced a way of thinking about noncovalent interactions 1740.
    [Show full text]
  • An Alternate Graphical Representation of Periodic Table of Chemical Elements Mohd Abubakr1, Microsoft India (R&D) Pvt
    An Alternate Graphical Representation of Periodic table of Chemical Elements Mohd Abubakr1, Microsoft India (R&D) Pvt. Ltd, Hyderabad, India. [email protected] Abstract Periodic table of chemical elements symbolizes an elegant graphical representation of symmetry at atomic level and provides an overview on arrangement of electrons. It started merely as tabular representation of chemical elements, later got strengthened with quantum mechanical description of atomic structure and recent studies have revealed that periodic table can be formulated using SO(4,2) SU(2) group. IUPAC, the governing body in Chemistry, doesn‟t approve any periodic table as a standard periodic table. The only specific recommendation provided by IUPAC is that the periodic table should follow the 1 to 18 group numbering. In this technical paper, we describe a new graphical representation of periodic table, referred as „Circular form of Periodic table‟. The advantages of circular form of periodic table over other representations are discussed along with a brief discussion on history of periodic tables. 1. Introduction The profoundness of inherent symmetry in nature can be seen at different depths of atomic scales. Periodic table symbolizes one such elegant symmetry existing within the atomic structure of chemical elements. This so called „symmetry‟ within the atomic structures has been widely studied from different prospects and over the last hundreds years more than 700 different graphical representations of Periodic tables have emerged [1]. Each graphical representation of chemical elements attempted to portray certain symmetries in form of columns, rows, spirals, dimensions etc. Out of all the graphical representations, the rectangular form of periodic table (also referred as Long form of periodic table or Modern periodic table) has gained wide acceptance.
    [Show full text]
  • 25 WORDS CHLORINE Chlorine, Cl, Is a Very Poisonous Green Gas That's
    25 WORDS CHLORINE Chlorine, Cl, is a very poisonous green gas that's extremely reactive. It's used for sanitizing, purifying, and was used as a weapon during World War I by the Germans. But in chemistry, it is an oxidizer. Chlorine, Cl, is a green gaseous element with an atomic number of 17. This halogen is a powerful oxidant and used to produce many things, such as cleaning products. Chlorine; it's chemical symbol is Cl. Chloride is abundant in nature and necessary for life but a large amount can cause choking and and poisoning. It's mainly used for water purification but has other uses. Chlorine is a halogen and to test if it has a halogen, we use the Beilstein Copper Wire Test. It is also used to produce safe drinking water. Chlorine, atomic number seventeen, is a halogen that is found in table salt, NaCl, making it essential to life. However, pure chlorine, Cl2, is a poisonous gas, detectable at even 1 ppm. Chlorine, (Symbol Cl), belongs to the halogen family of elements, found in group 17 on the periodic table. Chlorine has an atomic number of 17 and atomic weight of 35.453. Chlorine is the 17th element on the periodic table, and is in the "Halogens" group, which has a tendency to gain one electron to form anions. Its anion can be found commonly in table salt Chlorine (symbolized Cl) is the chemical element with atomic number 17. Clorine is a powerful oxidant and is used in bleaching and disinfectants. It is a pale yellow-green gas that has a specific strong smell.
    [Show full text]
  • Driving Halogen Lamps Application Note
    Application Note 1604 Driving Halogen Lamps Abstract: This application note looks at the suitability of the Ultimod wide trim powerMods for applications driving Halogen lamps. An incandescent lamp generates light by heating is that the powerMod will go into a protective a tungsten wire or filament until it glows (at current limit. The characteristics of this current around 2,500 ºC) by passing an electric current limit are shown in Figure 1 below. through it. A halogen lamp is basically a modified version of an incandescent lamp. The difference is that the bulb of a halogen lamp has a small amount of a halogen gas added. The presence of this halogen in the bulb produces a chemical reaction (known as the halogen cycle) that redeposists tungsten evaporated by heating back onto the filament. In a standard incandescent the constant evaporation leads to the eventual failure of the lamp as the filament progressively thins and breaks or “burns out”. Since in a halogen lamp the tungsten is redeposited back on the filament Figure 1 Current Limit Characteristics its lifetime is extended, and it also be heated to a higher temperature (in the region of 3,000 ºC), which increases its efficiency. You can see from Figure 1 that when we increase the load (by reducing the loads The high operational temperature of the filament resistance) and the current increases above the results in a challenge for a constant voltage set current limit of the modules we enter a mode power supplies like the Ultimod due to the of operation known as straight line current different resistance of the tungsten filament limiting where the current is held constant and at room temperature and its resistance at 3,000 the voltage is reduced.
    [Show full text]
  • The Hydrogen Bond: a Hundred Years and Counting
    J. Indian Inst. Sci. A Multidisciplinary Reviews Journal ISSN: 0970-4140 Coden-JIISAD © Indian Institute of Science 2019. The Hydrogen Bond: A Hundred Years and Counting Steve Scheiner* REVIEW REVIEW ARTICLE Abstract | Since its original inception, a great deal has been learned about the nature, properties, and applications of the H-bond. This review summarizes some of the unexpected paths that inquiry into this phenom- enon has taken researchers. The transfer of the bridging proton from one molecule to another can occur not only in the ground electronic state, but also in various excited states. Study of the latter process has devel- oped insights into the relationships between the nature of the state, the strength of the H-bond, and the height of the transfer barrier. The enormous broadening of the range of atoms that can act as both pro- ton donor and acceptor has led to the concept of the CH O HB, whose ··· properties are of immense importance in biomolecular structure and function. The idea that the central bridging proton can be replaced by any of various electronegative atoms has fostered the rapidly growing exploration of related noncovalent bonds that include halogen, chalco- gen, pnicogen, and tetrel bonds. Keywords: Halogen bond, Chalcogen bond, Pnicogen bond, Tetrel bond, Excited-state proton transfer, CH O H-bond ··· 1 Introduction charge on the proton. The latter can thus attract Over the course of its century of study following the partial negative charge of an approaching its earliest conceptual formulation1,2, the hydro- nucleophile D. Another important factor resides gen bond (HB) has surrendered many of the in the perturbation of the electronic structure mysteries of its source of stability and its myriad of the two species as they approach one another.
    [Show full text]
  • Polymorphism, Halogen Bonding, and Chalcogen Bonding in the Diiodine Adducts of 1,3- and 1,4-Dithiane
    molecules Article Polymorphism, Halogen Bonding, and Chalcogen Bonding in the Diiodine Adducts of 1,3- and 1,4-Dithiane Andrew J. Peloquin 1, Srikar Alapati 2, Colin D. McMillen 1, Timothy W. Hanks 2 and William T. Pennington 1,* 1 Department of Chemistry, Clemson University, Clemson, SC 29634, USA; [email protected] (A.J.P.); [email protected] (C.D.M.) 2 Department of Chemistry, Furman University, Greenville, SC 29613, USA; [email protected] (S.A.); [email protected] (T.W.H.) * Correspondence: [email protected] Abstract: Through variations in reaction solvent and stoichiometry, a series of S-diiodine adducts of 1,3- and 1,4-dithiane were isolated by direct reaction of the dithianes with molecular diiodine in solution. In the case of 1,3-dithiane, variations in reaction solvent yielded both the equatorial and the axial isomers of S-diiodo-1,3-dithiane, and their solution thermodynamics were further studied via DFT. Additionally, S,S’-bis(diiodo)-1,3-dithiane was also isolated. The 1:1 cocrystal, (1,4-dithiane)·(I2) was further isolated, as well as a new polymorph of S,S’-bis(diiodo)-1,4-dithiane. Each structure showed significant S···I halogen and chalcogen bonding interactions. Further, the product of the diiodine-promoted oxidative addition of acetone to 1,4-dithiane, as well as two new cocrystals of 1,4-dithiane-1,4-dioxide involving hydronium, bromide, and tribromide ions, was isolated. Keywords: crystal engineering; chalcogen bonding; halogen bonding; polymorphism; X-ray diffraction Citation: Peloquin, A.J.; Alapati, S.; McMillen, C.D.; Hanks, T.W.; Pennington, W.T.
    [Show full text]
  • Of the Periodic Table
    of the Periodic Table teacher notes Give your students a visual introduction to the families of the periodic table! This product includes eight mini- posters, one for each of the element families on the main group of the periodic table: Alkali Metals, Alkaline Earth Metals, Boron/Aluminum Group (Icosagens), Carbon Group (Crystallogens), Nitrogen Group (Pnictogens), Oxygen Group (Chalcogens), Halogens, and Noble Gases. The mini-posters give overview information about the family as well as a visual of where on the periodic table the family is located and a diagram of an atom of that family highlighting the number of valence electrons. Also included is the student packet, which is broken into the eight families and asks for specific information that students will find on the mini-posters. The students are also directed to color each family with a specific color on the blank graphic organizer at the end of their packet and they go to the fantastic interactive table at www.periodictable.com to learn even more about the elements in each family. Furthermore, there is a section for students to conduct their own research on the element of hydrogen, which does not belong to a family. When I use this activity, I print two of each mini-poster in color (pages 8 through 15 of this file), laminate them, and lay them on a big table. I have students work in partners to read about each family, one at a time, and complete that section of the student packet (pages 16 through 21 of this file). When they finish, they bring the mini-poster back to the table for another group to use.
    [Show full text]
  • Chemical Physics 524 (2019) 55–62
    Chemical Physics 524 (2019) 55–62 Contents lists available at ScienceDirect Chemical Physics journal homepage: www.elsevier.com/locate/chemphys Structures of clusters surrounding ions stabilized by hydrogen, halogen, T chalcogen, and pnicogen bonds ⁎ ⁎ Steve Scheinera, , Mariusz Michalczykb, Wiktor Zierkiewiczb, a Department of Chemistry and Biochemistry, Utah State University Logan, Utah 84322-0300, United States b Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland ARTICLE INFO ABSTRACT Keywords: Four H-binding HCl and HF molecules position themselves at the vertices of a tetrahedron when surrounding a Tetrahedral central Cl−. Halogen bonding BrF and ClF form a slightly distorted tetrahedron, a tendency that is amplified for QTAIM ClCN which forms a trigonal pyramid. Chalcogen bonding SF2, SeF2, SeFMe, and SeCSe occupy one hemisphere NBO of the central ion, leaving the other hemisphere empty. This pattern is repeated for pnicogen bonding PF3, SeF3 Cl− and AsCF. The clustering of solvent molecules on one side of the Cl− is attributed to weak attractive interactions Na+ between them, including chalcogen, pnicogen, halogen, and hydrogen bonds. Binding energies of four solvent molecules around a central Na+ are considerably reduced relative to chloride, and the geometries are different, with no empty hemisphere. The driving force maximizes the number of electronegative (F or O) atoms close to the Na+, and the presence of noncovalent bonds between solvent molecules. 1. Introduction particular, the S, Se, etc group can engage in chalcogen bonds (YBs) [19–25], and the same is true of the P, As family which forms pnicogen The hydrogen bond (HB) is arguably the most important and in- bonds (ZBs) [26–34].
    [Show full text]
  • Quantitative Analysis of Hydrogen and Chalcogen Bonds in Two Pyrimidine
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2020 Quantitative analysis of hydrogen and chalcogen bonds in two pyrimidine-5-carbonitrile derivatives, potential DHFR inhibitors: an integrated crystallographic and theoretical study Al-Wahaibi, Lamya H ; Chakraborty, Kushumita ; Al-Shaalan, Nora H ; Syed Majeed, Mohamed Yehya Annavi ; Blacque, Olivier ; Al-Mutairi, Aamal A ; El-Emam, Ali A ; Percino, M Judith ; Thamotharan, Subbiah Abstract: Two potential bioactive pyrimidine-5-carbonitrile derivatives have been synthesized and char- acterized by spectroscopic techniques (1H and 13C-NMR) and the three dimensional structures were elucidated by single crystal X-ray diffraction at low temperature (160 K). In both structures, the molec- ular conformation is locked by an intramolecular C–H฀C interaction involving the cyano and CH of the thiophene and phenyl rings. The intermolecular interactions were analyzed in a qualitative man- ner based on the Hirshfeld surface and 2D-fingerprint plots. The results suggest that the phenyl and thiophene moieties have an effect on the crystal packing. For instance, the chalcogen bonds areonly preferred in the thiophene derivative. However, both structures uses a common N–H฀O hydrogen bond motif. Moreover, the structures of 1 and 2 display 1D isostructurality and molecular chains stabilize by intermolecular N–H฀O and N–H฀N hydrogen bonds. The nature and extent of different non-covalent interactions were further characterized by the topological parameters derived from the quantum the- ory of atoms-in-molecules approach. This analysis indicates that apart from N–H฀O hydrogen bonds, other non-covalent interactions are closed-shell in nature.
    [Show full text]
  • Is Selenium a Metal, Non-Metal Or Metalloid?
    Is Selenium a metal, non-metal or metalloid? Abstract Is selenium(Se) a metal, non-metal, or a metalloid? There are various public opinions circulating around it. Since a long time from now, there are a lot of voices discussing this. Even until now, there is still no consensus about it. So, in this project, we are trying to find out whether selenium is a non-metal, metal or metalloids base on its physical and chemical properties which could be studied in the secondary school combining with the other information from the internet. Principles and hypothesis Studied from the secondary school chemistry, the general properties of metals include being good conductors of heat and electricity, having high melting and boiling points. Non-metals generally have a lower melting point and boiling point than metals and they being poor conductors of heat and electricity, etc. And the physical properties of metalloids are having extremely high melting/ boiling point, and having fair electrical conductivity. On the other hand, the oxides of metal are generally basic whereas the oxide of non-metals and metalloids are generally acidic. We will define selenium’s chemical category based on the above properties. Besides, we would like to introduce the concept of displacement reaction in studying the chemical properties of the chalcogens(e.g. sulphur(S) and selenium(Se)), especially selenium such rarely mentioned element. We can assume selenium is a metal if selenium could displace a metal oxide or a metal could displace selenium (IV) oxide. If selenium is a non-metal, its oxide could be displaced by sulphur which is supposed to be more reactive than selenium in the chalcogen group.
    [Show full text]
  • Frontiers in Halogen and Chalcogen-Bond Donor
    DOI: 10.1002/cctc.201901215 Minireviews 1 2 3 Frontiers in Halogen and Chalcogen-Bond Donor 4 5 Organocatalysis 6 [a] [a] [a] 7 Julia Bamberger, Florian Ostler, and Olga García Mancheño* 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 ChemCatChem 2019, 11, 1–15 1 © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim These are not the final page numbers! �� Wiley VCH Mittwoch, 21.08.2019 1999 / 145245 [S. 1/15] 1 Minireviews 1 Non-covalent molecular interactions on the basis of halogen Being particularly relevant in the binding of “soft” substrates, 2 and chalcogen bonding represent a promising, powerful the similar strength to hydrogen bonding interactions and its 3 catalytic activation mode. However, these “unusual” non- higher directionality allows for solution-phase applications with 4 covalent interactions are typically employed in the solid state halogen and chalcogen bonding as the key interaction. In this 5 and scarcely exploited in catalysis. In recent years, an increased mini-review, the special features, state-of-the-art and key 6 interest in halogen and chalcogen bonding have been awaken, examples of these so-called σ-hole interactions in the field of 7 as they provide profound characteristics that make them an organocatalysis are presented. 8 appealing alternative to the well-explored hydrogen bonding. 9 10 1. Introduction including crystal engineering,[8] supramolecular[9] and medicinal 11 chemistry.[8a,10] Besides the correlation to the electrostatic 12 To achieve an effective catalytic transformation, the structural potential, also charge transfer and dispersion is believed to give 13 design of selective catalyst structures requires the correct rise to σ-hole interactions.[11] Associated with σ* orbitals, the σ- 14 manipulation of the energetic and stereochemical features of hole deepens with heavier atoms (going from the top to the 15 intermolecular forces.
    [Show full text]
  • Theoretical Study on the Noncovalent Interactions Involving Triplet Diphenylcarbene
    Theoretical Study on the Noncovalent Interactions Involving Triplet Diphenylcarbene Chunhong Zhao Hebei Normal University Huihua College Hui Lin Hebei Normal University Aiting Shan Hebei Normal University Shaofu Guo Hebei Normal University Huihua College Xiaoyan Li Hebei Normal University Xueying Zhang ( [email protected] ) Hebei Normal University https://orcid.org/0000-0003-1598-8501 Research Article Keywords: triplet diphenylcarbene, noncovalent interaction, electron density shift, electron spin density Posted Date: May 19th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-445417/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Journal of Molecular Modeling on July 9th, 2021. See the published version at https://doi.org/10.1007/s00894-021-04838-6. Page 1/21 Abstract The properties of some types of noncovalent interactions formed by triplet diphenylcarbene (DPC3) have been investigated by means of density functional theory (DFT) calculations and quantum theory of 3 atoms in molecules (QTAIM) studies. The DPC ···LA (LA = AlF3, SiF4, PF5, SF2, ClF) complexes have been analyzed from their equilibrium geometries, binding energies, charge transfer and properties of electron 3 density. The triel bond in the DPC ···AlF3 complex exhibits a partially covalent nature, with the binding energy − 65.7kJ/mol. The tetrel bond, pnicogen bond, chalcogen bond and halogen bond in the DPC3···LA (LA = SiF4, PF5, SF2, ClF) complexes show the character of a weak closed-shell noncovalent interaction. Polarization plays an important role in the formation of the studied complexes.
    [Show full text]