Polyurethane Foams: Past, Present, and Future

Total Page:16

File Type:pdf, Size:1020Kb

Polyurethane Foams: Past, Present, and Future materials Review Polyurethane Foams: Past, Present, and Future Nuno V. Gama 1 , Artur Ferreira 1,2 and Ana Barros-Timmons 1,* 1 CICECO—Aveiro Institute of Materials and Department of Chemistry, University of Aveiro–Campus Santiago, 3810-193 Aveiro, Portugal; [email protected] (N.V.G.); [email protected] (A.F.) 2 Escola Superior de Tecnologia e Gestão de Águeda-Rua Comandante Pinho e Freitas, No. 28, 3750-127 Águeda, Portugal * Correspondence: [email protected]; Tel.: +351-234370200; Fax: +351-234370985 Received: 12 August 2018; Accepted: 23 September 2018; Published: 27 September 2018 Abstract: Polymeric foams can be found virtually everywhere due to their advantageous properties compared with counterparts materials. Possibly the most important class of polymeric foams are polyurethane foams (PUFs), as their low density and thermal conductivity combined with their interesting mechanical properties make them excellent thermal and sound insulators, as well as structural and comfort materials. Despite the broad range of applications, the production of PUFs is still highly petroleum-dependent, so this industry must adapt to ever more strict regulations and rigorous consumers. In that sense, the well-established raw materials and process technologies can face a turning point in the near future, due to the need of using renewable raw materials and new process technologies, such as three-dimensional (3D) printing. In this work, the fundamental aspects of the production of PUFs are reviewed, the new challenges that the PUFs industry are expected to confront regarding process methodologies in the near future are outlined, and some alternatives are also presented. Then, the strategies for the improvement of PUFs sustainability, including recycling, and the enhancement of their properties are discussed. Keywords: polyurethane foams; sustainability; enhancement of properties; new processing methodologies 1. Polymeric Foams Materials such as plastic foams, foamed plastics, cellular plastics, or polymeric foams are materials that consist of a solid phase and a gas phase [1]. Polymer foams can be rigid, flexible, or elastomeric, and can be produced from a wide range of polymers, such as polyurethane (PU), polystyrene (PS), polyisocyanurate (PIR), polyethylene (PE), polypropylene (PP), poly(ethylene-vinyl acetate) (EVA), nitrile rubber (NBR), poly(vinyl chloride) (PVC), or other polyolefins, being the world foam production dominated by PU foams (PUFs), followed by PS and PVC foams [2,3]. The global market for polymeric foams was worth more than $100 billion in 2015, with sales of more than 22 million tons and a consumption of 25.3 million tons is expected by 2019 [4,5]. Being lightweight materials whose properties can be easily tuned, polymeric foams are the first choice for a wide range of applications such as: packaging, automotive, electronics, furnishing, footwear, aerospace, toys, food contact, or construction materials [3,6]. PUFs [7] are commonly used in comfort applications or as thermal and sound insulation materials, PS foams [8] are commonly used as food packaging, thermal, and sound insulation materials, and PVC foams [9] are commonly used as transport and construction materials. 2. Polyurethane Foams The first urethane was synthesized in 1849 by Wurtz [10]. Afterwards, in 1937, Otto Bayer synthesized PUs from the reaction between a polyester diol and a diisocyanate [10–13]. Indeed, this was a major breakthrough at the time, as it consisted of a new class of polymerization reaction called Materials 2018, 11, 1841; doi:10.3390/ma11101841 www.mdpi.com/journal/materials Materials 2018, 11, x FOR PEER REVIEW 2 of 34 Materials 2018, 11, x FOR PEER REVIEW 2 of 34 Materials 2018,, 11,, x 1841 FOR PEER REVIEW 22 of of 34 35 was a major breakthrough at the time, as it consisted of a new class of polymerization reaction called was a major breakthrough at the time, as it consisted of a new class of polymerization reaction called waspolyaddition, a major breakthrough which is also at known the time, as step as it polymerizationconsisted of a new [10,12]. class Nevertheless, of polymerization at first, reaction this polymer called polyaddition, which is also known as step polymerization [10,12]. Nevertheless, at first, this polymer polyaddition,was considered which useless is also [11]. known as step polymerization [10,12]. [10,12]. Nevertheless, Nevertheless, at first, first, this polymer polymer was considered useless [11]. was considered PUs are polymers useless that [[11].11]. are formed by the reaction between the OH (hydroxyl) groups of a polyol PUs are polymers that are formed by the reaction between the OH (hydroxyl) groups of a polyol withPUs the NCOare polymers (isocyanate that functional are formed group) by the groups reaction reaction of between an isocyanate, the OH and (hydroxy (hydroxyl) the namel) groups is associated of a polyol with with the NCO (isocyanate functional group) groups of an isocyanate, and the name is associated with withthe resulting the NCO urethane (isocyanate linkage functional [7,11,12,14]. group) Thisgroups reaction of an isocyanate, is exothermic, and and the nameleads isto associated associatedthe production with with the resulting urethane linkage [7,11,12,14]. This reaction is exothermic, and leads to the production thetheof urethane resulting groups urethaneurethane as linkagedescribedlinkage [[7,11,12,14].7 ,before11,12,14 and]. ThisThis illustrated reaction reaction in is isScheme exothermic, exothermic, 1 [7,10]. and and leads leads to to the the production production of of urethane groups as described before and illustrated in Scheme 1 [7,10]. ofurethane urethane groups groups as as described described before before and and illustrated illustrated in Schemein Scheme1[7 ,110 [7,10].]. Scheme 1. Reaction scheme of urethane production [10]. Scheme 1. Reaction scheme of urethane production [10]. SchemeScheme 1 1.. ReactionReaction scheme scheme of of urethane urethane production [10]. [10]. Where Riso is derived from the isocyanate monomer, while Rpolyol is derived from the polyol WhereWhere Riso isis derived derived from from the the isocyanate isocyanate monomer, monomer, while while RpolyolR is derivedis derived from the from polyol the component.Where Risoiso is derived from the isocyanate monomer, while Rpolyol ispolyol derived from the polyol component. component.polyolNowadays, component. PUs are used as everyday life products, being one of the most important class of Nowadays, PUs are used as everyday life products, being one of the most important class of polymersNowadays, that keep PUs PUs changing are are used the as qualityeveryday of thelife humanproduc products, ts,life being being[10]. Theone worldwideof the most consumption important class of PU of polymers that keep changing the quality of the human life [10]. The worldwide consumption of PU polymerswas estimated that keep at 60.5 changing billion USD the quality in 2017, of and the it humanwas predicted life [[10].10 ].to The be over worldwide 79 billion consumption USD by 2021 of [15]. PU was estimated at 60.5 billion USD in 2017, and it was predicted to be over 79 billion USD by 2021 [15]. wasIn 2016, estimated it represented at 60.5 billion nearly USD 9% inof 2017,the 2017, global and and it itconsumption wa wass predicted predicted of to toplastics be be over over [16]. 79 79 billion billionMoreover, USD USD asby by illustrated 2021 2021 [15]. [15]. In 2016, it represented nearly 9% of the global consumption of plastics [16]. Moreover, as illustrated InInin 2016,Figure it 1, represented the principal nearlynearly consumption 9%9% of of the the globalof global PUs consumption isconsumption in the form of ofof plastics foamsplastics [17]. [16 [16].]. Moreover, Moreover, as as illustrated illustrated in in Figure 1, the principal consumption of PUs is in the form of foams [17]. inFigure Figure1, the 1, the principal principal consumption consumption of PUsof PUs is in is thein the form form of foamsof foams [17 ].[17]. Elastomers; Adhesives and sealants; 6% Elastomers; Adhesives and sealants; 6% 6% Adhesives and sealants; 6% Elastomers;6% 6% Molded Coatings; foam;Molded 11% Coatings;3% foam;Molded 11% Coatings;3% foam; 11% 3% Others; Others;18% Flexible Others;18% foam;Flexible 31% 18% foam;Flexible 31% foam; 31% Rigid foam; Rigid25% foam; Rigid25% foam; 25% Figure 1. Global consumption of polyurethane (PU) in 2016 . FigureFigure 1.1. GlobalGlobal consumptionconsumption ofof polyurethanepolyurethane (PU)(PU) inin 2016.2016. Figure 1. Global consumption of polyurethane (PU) in 2016. Among PU consumption, PUFs correspond to 67% ofof globalglobal PUPU consumption.consumption. Furthermore, Among PU consumption, PUFs correspond to 67% of global PU consumption. Furthermore, sinceAmong the technology PU consumption, to produce PUFs is so well-established,correspond to 67% this of type global of foamsPU consumption. corresponds Furthermore,to half of the since the technology to produce is so well-established, this type of foams corresponds to half of the sincewhole the polymeric technology foam’s to produce market [[11].is11 so]. The well-established, main types of this PUFs type are of the foams flexible flexible corresponds foams and to rigid half foams;of the whole polymeric foam’s market [11]. The main types of PUFs are the flexible foams and rigid foams; wholenevertheless, polymeric other foam’s classificationsclassifications market [11]. cancan The be attributed main types to of PUFs, PUFs such are asthe flexible flexible flexible
Recommended publications
  • INTERIOR OIL-BASED POLYURETHANE #8010 Gloss, #8012 Satin & #8017 Semi-Gloss
    INTERIOR OIL-BASED POLYURETHANE #8010 Gloss, #8012 Satin & #8017 Semi-Gloss LYURETHANE #8010 SERIES Recommended Uses: Tinting/Intermixing: Environmental Impact: Cabot Interior Polyurethane is an Do not tint or intermix with other products. These products are in compliance with V.O.C. TECHNICAL DATA ultra-durable finish formulated to protect (Volatile Organic Compounds) requirements interior wood surfaces from nicks, Coverage/Thinning: for Specialty Architectural Coatings under scratches, spills and stains. This easy-to- Approximately 500–650 sq. ft./gal. current regulations. Call Cabot’s Technical apply polyurethane enhances the natural (46–60 m²) depending upon surface wood grain with a beautiful, clear finish. Services & Support for additional information porosity. INTERIOR OIL-BASED PO For interior and protected exterior wood pertaining to current V.O.C. rulings. Packaging/Containers: surfaces including floors, doors, furniture WARNING! VAPOR HARMFUL. and cabinets. Use on bare, stained or Available in 1/2 pint, quart and gallon COMBUSTIBLE LIQUID & VAPOR. previously varnished or finished wood. This containers. product is fast drying, has superior DANGER: CONTAINS PETROLEUM durability, and protects against spills and Restrictions: DISTILLATES. COMBUSTIBLE: stains. ON FLOOR APPLICATIONS, DO NOT DO NOT SMOKE. Keep away from sparks, Composition: USE OVER PRODUCTS THAT CONTAIN open flame and lit cigarettes. Turn off stoves, Oil-modified urethane STEARATES, SUCH AS SANDING heaters, electric motors, pilot lights and other SEALERS. Do not apply when air or surface Finish: sources of ignition during use and until all temperature is below 50°F. Do not apply vapors are gone. Prevent buildup of vapors Dries to a highly durable, protective clear over wet or damp surfaces.
    [Show full text]
  • Application of Aluminium Oxide Nanoparticles to Enhance Rheological and Filtration Properties of Water Based Muds at HPHT Condit
    Application of Aluminium Oxide Nanoparticles to Enhance Rheological and Filtration Properties of Water Based Muds at HPHT Conditions Sean Robert Smith1, Roozbeh Rafati*1, Amin Sharifi Haddad1, Ashleigh Cooper2, Hossein Hamidi1 1School of Engineering, University of Aberdeen, Aberdeen, United Kingdom, AB24 3UE 2Baroid Drilling Fluid Laboratory, Halliburton, Dyce, Aberdeen, United Kingdom, AB21 0GN Abstract Drilling fluid is of one of the most important elements of any drilling operation, and through ever advancing technologies for deep water and extended reach drillings, enhancement of drilling fluids properties for such harsh conditions need to be investigated. Currently oil based fluids are used in these types of advanced drilling operations, as their performance at high pressure and high temperature conditions, and deviated wells are superior compared to water based fluids. However, the high costs associated with using them, and environmental concerns of such oil base fluids are drawbacks of them at the moment. In this study, we tried to find a solution for such issues through investigation on the potential application of a new nano-enhanced water base fluid for advanced drilling operations. We analysed the performance of water base drilling fluids that were formulated with two type of nanomaterials (aluminium oxide and silica) at both high and low pressure and temperature conditions (high: up to 120 oC and 500 psi, low: 23 oC and 14.7 psi). The results were compared with a base case drilling fluid with no nanomaterial, and they showed that there is an optimum concentration for aluminium oxide nanoparticles that can be used to improve the rheological and filtration properties of drilling fluids.
    [Show full text]
  • Physical-Chemical Properties of Complex Natural Fluids
    Physical-chemical properties of complex natural fluids Vorgelegt von Diplom-Geochemiker Diplom-Mathematiker Sergey Churakov aus Moskau an der Fakultät VI - Bauingenieurwesen und Angewandte Geowissenschaften - der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Berichter: Prof. Dr. G. Franz Berichter: Prof. Dr. T. M. Seward Berichter: PD. Dr. M. Gottschalk Tag der wissenschaftlichen Aussprache: 27. August 2001 Berlin 2001 D83 Abstract The dissertation is focused on the processes of transport and precipitation of metals in high temperature fumarole gases (a); thermodynamic properties of metamorphic fluids at high pressures (b); and the extent of hydrogen-bonding in supercritical water over wide range of densities and temperatures (c). (a) At about 10 Mpa, degassing of magmas is accompanied by formation of neary ‘dry’ salt melts as a second fluid phase, very strong fractionation of hydrolysis products between vapour and melts, as well as subvalence state of metals during transport processes. Based on chemical analyses of gases and condensates from high-temperature fumaroles of the Kudryavy volcano (i Iturup, Kuril Arc, Russia), a thermodynamic simulation of transport and deposition of ore- and rock-forming elements in high-temperature volcanic gases within the temperature range of 373-1373 K at 1 bar pressure have been performed. The results of the numerical simulations are consistent with field observations. Alkali and alkali earth metals, Ga, In, Tl, Fe, Co, Ni, Cu, and Zn are mainly transported as chlorides in the gas phase. Sulfide and chloride forms are characteristic of Ge, Sn, Pb, and Bi at intermediate and low temperatures.
    [Show full text]
  • Impact of Solute Molecular Properties on the Organization of Nearby Water: a Cellular Automata Model
    Digest Journal of Nanomaterials and Biostructures Vol. 7, No. 2, April - June 2012, p. 469 - 475 IMPACT OF SOLUTE MOLECULAR PROPERTIES ON THE ORGANIZATION OF NEARBY WATER: A CELLULAR AUTOMATA MODEL C. MIHAIa, A. VELEAb,e, N. ROMANc, L. TUGULEAa, N. I. MOLDOVANd** aDepartment of Electricity, Solid State and Biophysics, Faculty of Physics, University of Bucharest, Romania bNational Institute of Materials Physics, Bucharest - Magurele, Romania cDepartment of Computer Science, The Ohio State University - Lima, Ohio, USA dDepartment of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University - Columbus, Ohio, USA e"Horia Hulubei” Foundation, Bucharest-Magurele, Romania The goal of this study was the creation of a model to understand how solute properties influence the structure of nearby water. To this end, we used a two-dimensional cellular automaton model of aqueous solutions. The probabilities of translocation of water and solute molecules to occupy nearby sites, and their momentary distributions (including that of vacancies), are considered indicative of solute molecular mechanics and hydrophatic character, and are reflected in water molecules packing, i.e. ‘organization’. We found that in the presence of hydrophilic solutes the fraction of water molecules with fewer neighbors was dominant, and inverse-proportionally dependent on their relative concentration. Hydrophobic molecules induced water organization, but this effect was countered by their own flexibility. These results show the emergence of cooperative effects in the manner the molecular milieu affects local organization of water, and suggests a mechanism through which molecular mechanics and crowding add a defining contribution to the way the solute impacts on nearby water.
    [Show full text]
  • Polymeric Foams Mcp-1174 a Global Strategic Business Report
    POLYMERIC FOAMS MCP-1174 A GLOBAL STRATEGIC BUSINESS REPORT CONTENTS I. INTRODUCTION, METHODOLOGY & Table 1: Global Polyurethane Consumption by End-Use in PRODUCT DEFINITIONS 2004: Percentage Breakdown for Furniture, Automotive, Construction, Electrical Appliances, Recreational Equipment, Case Applications and Miscellaneous II. EXECUTIVE SUMMARY Applications (includes corresponding Graph/Chart).....II-12 Production Process............................................................II-12 1. Outlook ..................................................................................II-1 Isocyanates....................................................................II-12 2. Product and Market Analyses .........................................II-2 Polyols...........................................................................II-12 Polyethers ..................................................................II-13 Polymers ................................................................................II-2 Polyesters...................................................................II-13 Classification......................................................................II-2 MDI: A Key Raw Material............................................II-13 Thermoplastics................................................................II-2 Product Profile ..............................................................II-13 Thermosets......................................................................II-2 Chemical Composition...............................................II-13
    [Show full text]
  • 1. Introduction 1.1 Polymeric Foams
    Introduction & Literature Review 1. Introduction 1.1 Polymeric Foams In recent years, polymeric foams continue to grow at a rapid pace throughout the world, because of their light weight, excellent strength to weight ratio, superior thermal and acoustic insulating capabilities, energy absorption ability and their good cushioning and comfort features.1 Polymeric foam is dispersion of a gas in a polymer matrix. It generally consists of a minimum of two phases, a solid polymer matrix and a gaseous phase (blowing agent). Other solid phases may also be present in the foams in the form of fillers. Polymeric foams may be either expanded rubbers or cellular elastomers or sponges. It may be either thermoplastics or thermosets. The physical and mechanical properties of the foam differ significantly from the solid matrix material. For example, foams can have much better heat and sound insulation properties compared to solid polymer. In addition, foams can have the ability to absorb an enormous energy, which makes them more useful in cushioning and packaging applications compared to the solid polymer.2 Another advantage of polymeric foams is the small amount of polymer mass is needed to obtain high volume, because of cellular structure with entrapped gas. Polymeric foams may be prepared with varying densities ranging from as low as 1.6 to as high as 960 kg/m3. Approximately, 70−80% of all commercially produced polymeric foams are based on polyurethane, polystyrene and polyvinyl chloride.3 Polymeric foams can be classified as flexible, semi−flexible, or semi−rigid, and rigid, depending upon the rigidity of the polymer backbone, which in turn depends on chemical composition as well as matrix polymer characteristics like the degree of crystallinity and the degree of cross−linking.
    [Show full text]
  • Auxetic Polyurethane Foam (Fabrication, Properties and Applications)
    Helwan University Faculty of Engineering, Mataria Mechanical Design Department Auxetic Polyurethane Foam (Fabrication, Properties and Applications) By Eng.\ HOSSAM IBRAHIM YOUSIF YOUSIF Instructor in the Egyptian Atomic Energy Authority A Thesis submitted to Helwan University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Design Engineering Under Supervision of Professor, Dr. Eng. Associate Professor, Dr. Eng. Alaa Mohammed EL-Butch Tarek Hussien EL-Mahdy Vice Dean for students affairs Mechanical Design Department Faculty of Engineering, Mataria Faculty of Engineering, Mataria Helwan University Helwan University Assistant Professor Eng. Khaled Mohammed Zied Mechanical Design Department Faculty of Engineering, Mataria Helwan University Cairo 2012 Helwan University Faculty of Engineering, Mataria Mechanical Design Department Auxetic Polyurethane Foam (Fabrication, Properties and Applications) By HOSSAM IBRAHIM YOUSIF YOUSIF Instructor in the Egyptian Atomic Energy Authority A Thesis Submitted to Helwan University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Design Engineering Approved by the Examining Committee: Prof. Dr. Eng.\ Ramadan Ibrahim El-Seoudy ( ) Professor in Mechanical Design Department-Faculty of Engineering -Suez Canal University Prof. Dr. Eng.\ Younes Khalil Younes ( ) Professor in Mechanical Design Department-Faculty of Engineering, Mataria-Helwan University Prof. Dr. Eng.\ Alaa Mohammed EL-Butch ( Thesis Advisor ) Professor in Mechanical Design Department-Faculty of Engineering, Mataria-Helwan University ( ) Assoc. Dr. Eng.\ Tarek Hussien EL-Mahdy ( Thesis Advisor ) Assoc. Prof. in Mechanical Design Department-Faculty of Engineering, Mataria-Helwan University ( ) Cairo 2012 Abstract Modern technology requires new materials of special properties. For the last two decades there has been a great interest in a class of materials known as auxetic materials.
    [Show full text]
  • A Summary of the NBS Literature Reviews on the Chemical Nature And
    r NATL INST. OF STAND & TECH NBS Reference PUBLICATIONS 1 AlllDS Tfi37fiE NBSIR 85-326tL^ A Summary of the NBS Literature Reviews on the Chemical Nature and Toxicity of the Pyrolysis and Combustion Products from Seven Plastics: Acrylonitrile- Butadiene- Styrenes (ABS), Nylons, Polyesters, Polyethylenes, Polystyrenes, Poly(Vinyl Chlorides) and Rigid Polyurethane Foams Barbara C. Levin U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Fire Research Gaithersburg, MD 20899 June 1986 Sponsored in part by: g Consumer Product Safety Commission sda. MD 20207 100 .056 85-3267 1986 4 NBS RESEARCH INFORf/ATION CENTER NBSIR 85-3267 A SUMMARY OF THE NBS LITERATURE REVIEWS ON THE CHEMICAL NATURE AND TOXICITY OF THE PYROLYSIS AND I COMBUSTION PRODUCTS FROM SEVEN PLASTICS: ACRYLONITRILE-BUTADIENE- STYRENES (ABS), NYLONS, POLYESTERS, POLYETHYLENES, POLYSTYRENES, POLY(VINYL CHLORIDES) AND RIGID POLYURETHANE FOAMS Barbara C. Levin U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Fire Research Gaithersburg, MD 20899 June 1 986 Sponsored in part by: The U.S. Consumer Product Safety Commission Bethesda, MD 20207 U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS. Ernest Ambler. Director Table of Contents Page Abstract 1 1.0 Introduction 2 2.0 Scope 3 3.0 Thermal Decomposition Products 4 4.0 Toxicity 9 5.0 Conclusion 13 6.0 Acknowledgements 14 References 15 iii List of Tables Page Table 1. Results of Bibliographic Search 17 Table 2 . Thermal Degradation Products 18 Table 3. Test Methods Used to Assess Toxicity of the Thermal Decomposition Products of Seven Plastics 26 Table 4.
    [Show full text]
  • DAP® PREMIUM POLYURETHANE CONSTRUCTION ADHESIVE SEALANT Is a One-Part, Moisture- Curing, Non-Sag, Elastomeric Commercial-Grade Sealant
    DAP Premium Polyurethane Construction Adhesive Sealant PRODUCT DESCRIPTION DAP® PREMIUM POLYURETHANE CONSTRUCTION ADHESIVE SEALANT is a one-part, moisture- curing, non-sag, elastomeric commercial-grade sealant. It is specifically formulated to provide a long- lasting, durable seal when filling exterior gaps, joints and cracks. This high performance sealant offers superior adhesion to most substrates and remains flexible to withstand up to 70% total joint movement when installed into a properly prepared joint. Can be applied above or below the waterline. Exceptional cut and tear resistance. Handles foot and vehicle traffic. Paintable. Meets or exceeds ASTM C920, Type S, Grade NS, Class 35, use T, NT, O, M, I. NSF/ANSI Standard 61. Interior/exterior use. PACKAGING COLOR UPC 10.1 fl. oz. (300 mL) White 7079818810 10.1 fl. oz. (300 mL) Black 7079818816 10.1 fl. oz. (300 mL) Gray 7079818814 KEY FEATURES & BENEFITS Professional grade, elastomeric sealant Meets ASTM C920, Class 35 Meets NSF/ANSI Standard 61 70% total joint movement Above or below waterline use Superior adhesion & durability 100% waterproof & weatherproof seal Impact & cut resistant Paintable 50 year Interior/exterior use 3/3/2019 SUGGESTED USES USE FOR CAULKING & SEALING: Windows Fascia Chimneys Doors Expansion joints Common roofing detail Siding Control joints applications Siding corner joints Pre-cast panels Flashing Butt joints Pipes Eaves Corner joints Vents Downspouts Tuck pointing Ducts Trim Foundations ADHERES TO: Wood Most plastics Brick Aluminum Fiber Cement Stone Most metals Glass Concrete Vinyl Stucco Mortar PVC trimboard Composite Asphalt FOR BEST RESULTS Application temperature range is between 40ºF and 100ºF. Minimum joint depth is ¼”.
    [Show full text]
  • Properties of Polar Covalent Bonds
    Properties Of Polar Covalent Bonds Inbred Putnam understates despondingly and thanklessly, she judders her mambo Judaizes lackadaisically. Ish and sealed Mel jazz her Flavia stull unhasp and adsorb pugnaciously. Comtist and compartmental Kirk regularizes some sims so gutturally! Electronegativity form is generated by a net positve charge, not symmetrical and some of polar covalent bond is nonpolar covalent bond polarity That results from the sharing of valence electrons is a covalent bond from a covalent bond the. These negatively charged ions form. Covalent bond in chemistry the interatomic linkage that results from the. Such a covalent bond is polar and cream have a dipole one heir is positive and the. Chemistry-polar and non-polar molecules Dynamic Science. Chapter 1 Structure Determines Properties Ch 1 contents. Properties of polar covalent bond always occurs between different atoms electronegativity difference between bonded atoms is moderate 05 and 19 Pauling. Covalent character of a slight positive charge, low vapour pressure, the molecules align themselves away from their valence shell of electrons! What fee the properties of a polar molecule? Polar bonds form first two bonded atoms share electrons unequally. Has a direct latch on many properties of organic compounds like solubility boiling. Polar covalent bond property, causing some properties of proteins and each? When trying to bond property of properties are stuck together shifts are shared. Covalent bonds extend its all directions in the crystal structure Diamond tribute one transparent substance that peddle a 3D covalent network lattice. Acids are important compounds with specific properties that turnover be dis- cussed at burn in.
    [Show full text]
  • Synthesis and Investigation of the Properties of Water Soluble Quantum Dots for Bioapplications
    Synthesis and Investigation of the Properties of Water Soluble Quantum Dots for Bioapplications A Thesis by Fatemeh Mir Najafi Zadeh Submitted in Partial Fulfilment of the Recruitment for the Degree of Doctor of Philosophy in Chemistry Supervisor: A/Prof. John A.Stride Co-supervisor: A/Prof. Marcus Cole School of Chemistry Faculty of Science August 2014 The University of New South Wales Thesis/ Dissertation Sheet Surname or family name: Mir Najafi Zadeh First name: Fatemeh Other name/s: Abbreviation for degree as given in the University calendar: PhD School: Chemistry Faculty: Science Title: Synthesis and Investigation of the Properties of Water Soluble Quantum Dots for Bioapplications Abstract Semiconductor nanocrystals or quantum dots (QDs) have received a great deal of attention over the last decade due to their unique optical and physical properties, classifying them as potential tools for biological and medical applications. However, there are some serious restrictions to the bioapplications of QDs such as water solubility, toxicity and photostability in biological environments for both in-vivo and in-vitro studies. In this thesis, studies have focused on the preparation of highly luminescent, water soluble and photostable QDs of low toxicity that can then be potentially used in a biological context. First, CdSe nanoparticles were synthesized in an aqueous route in order to investigate the parameters affecting formation of nanoparticles. Then, water soluble CdSe(S) and ZnSe(S) QDs were synthesized. These CdSe(S) QDs were also coated with ZnO and Fe2O3 to produce CdSe(S)/ZnO and CdSe(S)/Fe2O3 core/shell QDs. The cytotoxicities of as-prepared CdSe(S), ZnSe (S) and CdSe(S)/ZnO QDs were studied in the presence of two cell lines: HCT-116 cell line as cancer cells and WS1 cell line as normal cells.
    [Show full text]
  • The Water Molecule
    Seawater Chemistry: Key Ideas Water is a polar molecule with the remarkable ability to dissolve more substances than any other natural solvent. Salinity is the measure of dissolved inorganic solids in water. The most abundant ions dissolved in seawater are chloride, sodium, sulfate, and magnesium. The ocean is in steady state (approx. equilibrium). Water density is greatly affected by temperature and salinity Light and sound travel differently in water than they do in air. Oxygen and carbon dioxide are the most important dissolved gases. 1 The Water Molecule Water is a polar molecule with a positive and a negative side. 2 1 Water Molecule Asymmetry of a water molecule and distribution of electrons result in a dipole structure with the oxygen end of the molecule negatively charged and the hydrogen end of the molecule positively charged. 3 The Water Molecule Dipole structure of water molecule produces an electrostatic bond (hydrogen bond) between water molecules. Hydrogen bonds form when the positive end of one water molecule bonds to the negative end of another water molecule. 4 2 Figure 4.1 5 The Dissolving Power of Water As solid sodium chloride dissolves, the positive and negative ions are attracted to the positive and negative ends of the polar water molecules. 6 3 Formation of Hydrated Ions Water dissolves salts by surrounding the atoms in the salt crystal and neutralizing the ionic bond holding the atoms together. 7 Important Property of Water: Heat Capacity Amount of heat to raise T of 1 g by 1oC Water has high heat capacity - 1 calorie Rocks and minerals have low HC ~ 0.2 cal.
    [Show full text]