Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids molecules Review Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids Shinji Kishimoto, Michio Sato, Yuta Tsunematsu and Kenji Watanabe * Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; [email protected] (S.K.); [email protected] (M.S.); [email protected] (Y.T.) * Correspondence: [email protected]; Tel.: +81-54-264-5662; Fax: +81-54-264-5666 Academic Editor: Michael Wink Received: 20 July 2016; Accepted: 15 August 2016; Published: 18 August 2016 Abstract: Varieties of alkaloids are known to be produced by various organisms, including bacteria, fungi and plants, as secondary metabolites that exhibit useful bioactivities. However, understanding of how those metabolites are biosynthesized still remains limited, because most of these compounds are isolated from plants and at a trace level of production. In this review, we focus on recent efforts in identifying the genes responsible for the biosynthesis of those nitrogen-containing natural products and elucidating the mechanisms involved in the biosynthetic processes. The alkaloids discussed in this review are ditryptophenaline (dimeric diketopiperazine alkaloid), saframycin (tetrahydroisoquinoline alkaloid), strictosidine (monoterpene indole alkaloid), ergotamine (ergot alkaloid) and opiates (benzylisoquinoline and morphinan alkaloid). This review also discusses the engineered biosynthesis of these compounds, primarily through heterologous reconstitution of target biosynthetic pathways in suitable hosts, such as Escherichia coli, Saccharomyces cerevisiae and Aspergillus nidulans. Those heterologous biosynthetic systems can be used to confirm the functions of the isolated genes, economically scale up the production of the alkaloids for commercial distributions and engineer the biosynthetic pathways to produce valuable analogs of the alkaloids. In particular, extensive involvement of oxidation reactions catalyzed by oxidoreductases, such as cytochrome P450s, during the secondary metabolite biosynthesis is discussed in details. Keywords: alkaloids; biosynthesis; enzymes; engineered biosynthesis; aromatic amino acids 1. Introduction Alkaloids were originally defined as organic compounds of plant origin that possess strong bioactivities and exhibit basicity that is attributed to the presence of nitrogen [1]. However, harmful nitrogen-containing compounds, such as tetrodotoxin and saxitoxin (Figure1), that are isolated from animal or microorganism sources are frequently categorized as alkaloids recently. Similarly, compounds that do not show basicity due to conversion of an amine into an amide in the molecule as seen in colchicine (Figure1) are also generally identified as alkaloid-type compounds. Even synthetic compounds, such as procaine (Figure1), that have similar chemical structures or biological properties to plant alkaloids can be referred to as alkaloids. As such, it has become commonplace nowadays to define alkaloids as nitrogen-containing organic compounds that can produce pronounced physiological responses, with notable exceptions being amino acids, nucleic acids and certain natural nitrogen-containing compounds, such as tetracycline (polyketide) and kanamycin (aminoglycoside). The alkaloid class of natural products has been very important for humanity as a valuable source of pharmaceutical products, because they show a variety of biological activities at a very low dosage. Therefore, alkaloids have been frequently employed as lead compounds for drug discovery. On the other hand, during the past decade, development of new DNA sequencing Molecules 2016, 21, 1078; doi:10.3390/molecules21081078 www.mdpi.com/journal/molecules Molecules 2016, 21, 1078 2 of 19 technologies, in particular next-generation sequencing, has enabled us to easily explore “the master plan of alkaloidMolecules 2016 production”;, 21, 1078 that is, the genes responsible for the biosynthesis of alkaloids.2 By of 19 studying the master plan, we started to gain deep insight into “the implementation of the master plan”, has enabled us to easily explore “the master plan of alkaloid production”; that is, the genes responsible meaningfor the the biosynthesis mechanism of ofalkaloids. the biosynthesis By studying the of mast alkaloids.er plan, we Furthermore, started to gain deep we areinsight using into “the the gained knowledgeimplementation to look for ofnew the master alkaloids plan”, and meaning at the th samee mechanism time modify of the thebiosynthesis “master of plan” alkaloids. to engineer productionFurthermore, of modified we are naturalusing the gained products. knowledge In this to look article, for new we alkaloids focus onand five at the successful same time modify examples of the “master plan” to engineer production of modified natural products. In this article, we focus on five reconstitutionMolecules of 2016 alkaloid, 21, 1078 biosynthetic pathways in heterologous microbial hosts. Those2 five of 19 pathways are responsiblesuccessful for examples the formation of reconstitution of ditryptophenaline of alkaloid biosynthetic (dimeric pathways diketopiperazine in heterologous alkaloid),microbial hosts. saframycin Thosehas enabledfive pathways us to easily are exploreresponsible “the formaster the planformation of alkaloid of ditryptophenaline production”; that is,(dimeric the genes diketopiperazine responsible (tetrahydroisoquinolinealkaloid),for the biosynthesis saframycin alkaloid), of (tetrahydroisoquinoline alkaloids. strictosidineBy studying the alkalo mast (monoterpeneid),er plan, strictosidine we started indole (monoterpene to gain alkaloid), deep insight indole ergotamine into alkaloid), “the (ergot alkaloid)ergotamine andimplementation opiates (ergot (benzylisoquinoline alkaloid)of the master and opiatesplan”, andmeaning(benzylisoquinoline morphinan the mechanism alkaloid). and morphinanof the Discussion biosynthesis alkaloid). of of theDiscussion alkaloids. use of of microbes as catalyststheFurthermore, use for of themicrobes bioconversion we are as usingcatalysts the gainedfor of the advanced knowledge bioconversio alkaloidto lnook of foradvanced new intermediates alkaloids alkaloid and intermediates at can the same be found time can modify be elsewhere found [2]. Similarly,elsewhere readersthe “master [2]. are plan” Similarly, referred to engineer toreaders other production are review referred of articlesmodified to otherfor natural review the recentproducts. articles efforts In forthis the towardarticle, recent we engineering focusefforts on toward five plants for successful examples of reconstitution of alkaloid biosynthetic pathways in heterologous microbial hosts. improvedengineering production plants of for alkaloids improved and production their analogs of alka [3loids,4]. and We willtheir alsoanalogs discuss [3,4]. We the will recent also progress discuss in the theThose recent five progress pathways in theare responsibledevelopment for ofthe meth formationodology of ditryptophenalinefor generating va (dimericrious compounds diketopiperazine through development of methodology for generating various compounds through heterologous reconstitution heterologousalkaloid), saframycin reconstitution (tetrahydroisoquinoline and engineering of alkalo biosynthesisid), strictosidine pathways, (monoterpene especially indole those alkaloid),involved in ergotamine (ergot alkaloid) and opiates (benzylisoquinoline and morphinan alkaloid). Discussion of and engineeringthe bioproduction of biosynthesis of opioids.pathways, especially those involved in the bioproduction of opioids. the use of microbes as catalysts for the bioconversion of advanced alkaloid intermediates can be found elsewhere [2]. Similarly, readers are referred to other review articles for the recent efforts toward engineering plants for improved production of alkaloids and their analogs [3,4]. We will also discuss the recent progress in the development of methodology for generating various compounds through heterologous reconstitution and engineering of biosynthesis pathways, especially those involved in the bioproduction of opioids. Figure 1. Chemical structures of alkaloids in a broad sense: natural alkaloids of non-plant origin, Figure 1. Chemical structures of alkaloids in a broad sense: natural alkaloids of non-plant origin, tetrodotoxin and saxitoxin; a natural but non-basic alkaloid, colchicine; and a synthetic alkaloid, procaine. tetrodotoxin and saxitoxin; a natural but non-basic alkaloid, colchicine; and a synthetic alkaloid, procaine. 2. Ditryptophenaline 2. Ditryptophenaline Ditryptophenaline (1) is a dimeric diketopiperazine alkaloid [5] and has a complicated structure Figure 1. Chemical structures of alkaloids in a broad sense: natural alkaloids of non-plant origin, (Figure 2). Dimerization is found relatively frequently among natural products, as it is considered to be Ditryptophenalinetetrodotoxin and (1 saxitoxin;) is a dimeric a natural but diketopiperazine non-basic alkaloid, colchicine; alkaloid and [a5 sy]nthetic and hasalkalo aid, complicated procaine. structure an efficient way of enhancing the chemical complexity and diversity of metabolites being biosynthesized. (Figure2). Dimerization is found relatively frequently among natural products, as it is considered It can2. Ditryptophenaline also increase the valency of a compound, affording the molecule a higher affinity for its target or to be anhigher efficient stability way upon of forming enhancing a comple thex with chemical its target complexity [6].
Recommended publications
  • Title Total Biosynthesis of Opiates by Stepwise Fermentation Using
    Total biosynthesis of opiates by stepwise fermentation using Title engineered Escherichia coli. Nakagawa, Akira; Matsumura, Eitaro; Koyanagi, Takashi; Katayama, Takane; Kawano, Noriaki; Yoshimatsu, Kayo; Author(s) Yamamoto, Kenji; Kumagai, Hidehiko; Sato, Fumihiko; Minami, Hiromichi Citation Nature communications (2016), 7 Issue Date 2016-02-05 URL http://hdl.handle.net/2433/204378 This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; Right if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ Type Journal Article Textversion publisher Kyoto University ARTICLE Received 30 Oct 2015 | Accepted 7 Dec 2015 | Published 5 Feb 2016 DOI: 10.1038/ncomms10390 OPEN Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli Akira Nakagawa1, Eitaro Matsumura1, Takashi Koyanagi1, Takane Katayama2, Noriaki Kawano3, Kayo Yoshimatsu3, Kenji Yamamoto1, Hidehiko Kumagai1, Fumihiko Sato4 & Hiromichi Minami1 Opiates such as morphine and codeine are mainly obtained by extraction from opium poppies. Fermentative opiate production in microbes has also been investigated, and complete biosynthesis of opiates from a simple carbon source has recently been accom- plished in yeast. Here we demonstrate that Escherichia coli serves as an efficient, robust and flexible platform for total opiate synthesis. Thebaine, the most important raw material in opioid preparations, is produced by stepwise culture of four engineered strains at yields of 2.1 mg l À 1 from glycerol, corresponding to a 300-fold increase from recently developed yeast systems.
    [Show full text]
  • ATP-Citrate Lyase Has an Essential Role in Cytosolic Acetyl-Coa Production in Arabidopsis Beth Leann Fatland Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2002 ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis Beth LeAnn Fatland Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Fatland, Beth LeAnn, "ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis " (2002). Retrospective Theses and Dissertations. 1218. https://lib.dr.iastate.edu/rtd/1218 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis by Beth LeAnn Fatland A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Physiology Program of Study Committee: Eve Syrkin Wurtele (Major Professor) James Colbert Harry Homer Basil Nikolau Martin Spalding Iowa State University Ames, Iowa 2002 UMI Number: 3158393 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • “Biosynthesis of Morphine in Mammals”
    “Biosynthesis of Morphine in Mammals” D i s s e r t a t i o n zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg von Frau Nadja Grobe geb. am 21.08.1981 in Querfurt Gutachter /in 1. 2. 3. Halle (Saale), Table of Contents I INTRODUCTION ........................................................................................................1 II MATERIAL & METHODS ........................................................................................ 10 1 Animal Tissue ....................................................................................................... 10 2 Chemicals and Enzymes ....................................................................................... 10 3 Bacteria and Vectors ............................................................................................ 10 4 Instruments ........................................................................................................... 11 5 Synthesis ................................................................................................................ 12 5.1 Preparation of DOPAL from Epinephrine (according to DUNCAN 1975) ................. 12 5.2 Synthesis of (R)-Norlaudanosoline*HBr ................................................................. 12 5.3 Synthesis of [7D]-Salutaridinol and [7D]-epi-Salutaridinol ..................................... 13 6 Application Experiments .....................................................................................
    [Show full text]
  • Download The
    Mechanistic Studies on (S)-Norcoclaurine Synthase and Dimethylallyltryptophan Synthase by Louis Yu Pan Luk B.Sc., The University of British Columbia, 2004 A THESIS SUMBITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Chemistry) The University of British Columbia (Vancouver) September, 2010 © Louis Yu Pan Luk, 2010 ii Abstract In alkaloid biosynthesis, there are a limited number of enzymes that can catalyze an aromatic electrophilic substitution. One example is norcoclaurine synthase, which catalyzes an asymmetric Pictet-Spengler condensation of dopamine and 4-hydroxyphenylacetaldehyde to give (S)-norcoclaurine. This is the first committed step in the biosynthesis of the benzylisoquinoline alkaloids that include morphine and codeine. In this work, the gene encoding for the Thalictrum flavum norcoclaurine synthase is highly overexpressed in Escherichia coli and the His-tagged recombinant enzyme is purified for the first time. A continuous assay based on circular dichroism spectroscopy is developed and used to monitor the kinetics of the enzymatic reaction. Dopamine analogues bearing a methoxy or hydrogen substituent in place of the C-1 phenolic group were readily accepted by the enzyme whereas those bearing the same substituents at C-2 were not. This supports a mechanism involving a two-step cyclization of the putative iminium ion intermediate that does not proceed via a spirocyclic intermediate. The reaction of [3,5,6- 2 H3]-dopamine was found to be slowed by a kinetic isotope effect of 1.7 ± 0.2 on the value of kcat/KM. This is interpreted as showing that the deprotonation step causing re-aromatization is partially rate determining in the overall reaction.
    [Show full text]
  • 1 AMINO ACIDS Commonly, 21 L-Amino Acids Encoded by DNA Represent the Building Blocks of Animal, Plant, and Microbial Proteins
    1 AMINO ACIDS Commonly, 21 L-amino acids encoded by DNA represent the building blocks of animal, plant, and microbial proteins. The basic amino acids encountered in proteins are called proteinogenic amino acids 1.1). Biosynthesis of some of these amino acids proceeds by ribosomal processes only in microorganisms and plants and the ability to synthesize them is lacking in animals, including human beings. These amino acids have to be obtained in the diet (or produced by hydrolysis of body proteins) since they are required for normal good health and are referred to as essential amino acids. The essential amino acids are arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine. The rest of encoded amino acids are referred to as non-essential amino acids (alanine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, proline, serine, and tyrosine). Arginine and histidine are classified as essential, sometimes as semi-essential amino acids, as their amount synthesized in the body is not sufficient for normal growth of children. Although it is itself non-essential, cysteine (classified as conditionally essential amino acid) can partly replace methionine, which is an essential amino acid. Similarly, tyrosine can partly replace phenylalanine. 1.1 The glutamic acid group 1.1.1 Glutamic acid and glutamine Free ammonium ions are toxic to living cells and are rapidly incorporated into organic compounds. One of such transformations is the reaction of ammonia with 2-oxoglutaric acid from the citric acid cycle to produce L-glutamic acid. This reaction is known as reductive amination. Glutamic acid is accordingly the amino acid generated first as both constituent of proteins and a biosynthetic precursor.
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • Characterization of a Second Secologanin Synthase Isoform
    Dugé de Bernonville et al. BMC Genomics (2015) 16:619 DOI 10.1186/s12864-015-1678-y RESEARCH ARTICLE Open Access Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome Thomas Dugé de Bernonville1†, Emilien Foureau1†, Claire Parage1†, Arnaud Lanoue1, Marc Clastre1, Monica Arias Londono1,2, Audrey Oudin1, Benjamin Houillé1, Nicolas Papon1, Sébastien Besseau1, Gaëlle Glévarec1, Lucia Atehortùa2, Nathalie Giglioli-Guivarc’h1, Benoit St-Pierre1, Vincenzo De Luca3, Sarah E. O’Connor4 and Vincent Courdavault1* Abstract Background: Transcriptome sequencing offers a great resource for the study of non-model plants such as Catharanthus roseus, which produces valuable monoterpenoid indole alkaloids (MIAs) via a complex biosynthetic pathway whose characterization is still undergoing. Transcriptome databases dedicated to this plant were recently developed by several consortia to uncover new biosynthetic genes. However, the identification of missing steps in MIA biosynthesis based on these large datasets may be limited by the erroneous assembly of close transcripts and isoforms, even with the multiple available transcriptomes. Results: Secologanin synthases (SLS) are P450 enzymes that catalyze an unusual ring-opening reaction of loganin in the biosynthesis of the MIA precursor secologanin. We report here the identification and characterization in C. roseus of a new isoform of SLS, SLS2, sharing 97 % nucleotide sequence identity with the previously characterized SLS1. We also discovered that both isoforms further oxidize secologanin into secoxyloganin. SLS2 had however a different expression profile, being the major isoform in aerial organs that constitute the main site of MIA accumulation. Unfortunately, we were unable to find a current C.
    [Show full text]
  • LAP3, a Novel Plant Protein Required for Pollen Development, Is Essential for Proper Exine Formation Anna A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Valparaiso University Valparaiso University ValpoScholar Biology Faculty Publications Department of Biology 2009 LAP3, a novel plant protein required for pollen development, is essential for proper exine formation Anna A. Dobritsa University of Chicago Shuh-Ichi Nishikawa Nagoya University Daphne Preuss University of Chicago Ewa Urbanczyk-Wochniak Samuel Roberts Noble Foundation Lloyd W. Sumner Samuel Roberts Noble Foundation See next page for additional authors Follow this and additional works at: http://scholar.valpo.edu/bio_fac_pub Part of the Biology Commons Recommended Citation Dobritsa, A. A., Nishikawa, S. I., Preuss, D., Urbanczyk-Wochniak, E., Sumner, L. W., Hammond, A., Carlson, A. L. & Swanson, R. J. 2009 LAP3, a novel plant protein required for pollen development, is essential for proper exine formation. Sexual Plant Reproduction 22: 167-177. This Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Authors Anna A. Dobritsa, Shuh-Ichi Nishikawa, Daphne Preuss, Ewa Urbanczyk-Wochniak, Lloyd W. Sumner, Adam Hammond, Ann L. Carlson, and Rob Swanson This article is available at ValpoScholar: http://scholar.valpo.edu/bio_fac_pub/13 Sex Plant Reprod (2009) 22:167–177 DOI 10.1007/s00497-009-0101-8 ORIGINAL ARTICLE LAP3, a novel plant protein required for pollen development, is essential for proper exine formation Anna A. Dobritsa Æ Shuh-Ichi Nishikawa Æ Daphne Preuss Æ Ewa Urbanczyk-Wochniak Æ Lloyd W.
    [Show full text]
  • Regulation of Alkaloid Biosynthesis in Plants
    CONTRIBUTORS Numbers in parentheses indicate the pages on which the authors’ contributions begin. JAUME BASTIDA (87), Departament de Productes Naturals, Facultat de Farma` cia, Universitat de Barcelona, 08028 Barcelona, Spain YEUN-MUN CHOO (181), Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia PETER J. FACCHINI (1), Department of Biological Sciences, University of Calgary, Calgary, AB, Canada TOH-SEOK KAM (181), Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia RODOLFO LAVILLA (87), Parc Cientı´fic de Barcelona, Universitat de Barcelona, 08028 Barcelona, Spain DANIEL G. PANACCIONE (45), Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506-6108, USA CHRISTOPHER L. SCHARDL (45), Department of Plant Pathology, University of Kentucky, Lexington, KY 40546-0312, USA PAUL TUDZYNSKI (45), Institut fu¨r Botanik, Westfa¨lische Wilhelms Universita¨tMu¨nster, Mu¨nster D-48149, Germany FRANCESC VILADOMAT (87), Departament de Productes Naturals, Facultat de Farma` cia, Universitat de Barcelona, 08028 Barcelona, Spain vii PREFACE This volume of The Alkaloids: Chemistry and Biology is comprised of four very different chapters; a reflection of the diverse facets that comprise the study of alkaloids today. As awareness of the global need for natural products which can be made available as drugs on a sustainable basis increases, so it has become increas- ingly important that there is a full understanding of how key metabolic pathways can be optimized. At the same time, it remains important to find new biologically active alkaloids and to elucidate the mechanisms of action of those that do show potentially useful or novel biological effects. Facchini, in Chapter 1, reviews the significant studies that have been conducted with respect to how the formation of alkaloids in their various diverse sources are regulated at the molecular level.
    [Show full text]
  • Bifunctional CYP81AA Proteins Catalyse Identical Hydroxylations but Alternative Regioselective Phenol Couplings in Plant Xanthone Biosynthesis
    ARTICLE Received 27 Oct 2015 | Accepted 30 Mar 2016 | Published 5 May 2016 DOI: 10.1038/ncomms11472 OPEN Bifunctional CYP81AA proteins catalyse identical hydroxylations but alternative regioselective phenol couplings in plant xanthone biosynthesis Islam El-Awaad1,2,w, Marco Bocola3, Till Beuerle1,2, Benye Liu1,2 & Ludger Beerhues1,2 Xanthones are natural products present in plants and microorganisms. In plants, their biosynthesis starts with regioselective cyclization of 2,30,4,6-tetrahydroxybenzophenone to either 1,3,5- or 1,3,7-trihydroxyxanthones, catalysed by cytochrome P450 (CYP) enzymes. Here we isolate and express CYP81AA-coding sequences from Hypericum calycinum and H. perforatum in yeast. Microsomes catalyse two consecutive reactions, that is, 30-hydro- xylation of 2,4,6-trihydroxybenzophenone and C–O phenol coupling of the resulting 2,30, 4,6-tetrahydroxybenzophenone. Relative to the inserted 30-hydroxyl, the orthologues Hc/HpCYP81AA1 cyclize via the para position to form 1,3,7-trihydroxyxanthone, whereas the paralogue HpCYP81AA2 directs cyclization to the ortho position, yielding the isomeric 1,3,5- trihydroxyxanthone. Homology modelling and reciprocal mutagenesis reveal the impact of S375, L378 and A483 on controlling the regioselectivity of HpCYP81AA2, which is converted into HpCYP81AA1 by sextuple mutation. However, the reciprocal mutations in HpCYP81AA1 barely affect its regiospecificity. Product docking rationalizes the alternative C–O phenol coupling reactions. Our results help understand the machinery of bifunctional CYPs. 1 Institute of Pharmaceutical Biology, Technische Universita¨t Braunschweig, Mendelssohnstrae 1, Braunschweig 38106, Germany. 2 Center of Pharmaceutical Engineering (PVZ), Technische Universita¨t Braunschweig, Franz-Liszt-Strae 35A, Braunschweig 38106, Germany. 3 Institute of Biotechnology, RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany.
    [Show full text]
  • Deploying Microbial Synthesis for Halogenating and Diversifying Medicinal Alkaloid Scaffolds
    Downloaded from orbit.dtu.dk on: Sep 28, 2021 Deploying Microbial Synthesis for Halogenating and Diversifying Medicinal Alkaloid Scaffolds Bradley, Samuel Alan; Zhang, Jie; Jensen, Michael Krogh Published in: Frontiers in Bioengineering and Biotechnology Link to article, DOI: 10.3389/fbioe.2020.594126 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Bradley, S. A., Zhang, J., & Jensen, M. K. (2020). Deploying Microbial Synthesis for Halogenating and Diversifying Medicinal Alkaloid Scaffolds. Frontiers in Bioengineering and Biotechnology, 8, [594126]. https://doi.org/10.3389/fbioe.2020.594126 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. fbioe-08-594126 October 19, 2020 Time: 19:15 # 1 REVIEW published: 23 October 2020 doi: 10.3389/fbioe.2020.594126 Deploying Microbial Synthesis for Halogenating and Diversifying Medicinal Alkaloid Scaffolds Samuel A. Bradley, Jie Zhang and Michael K.
    [Show full text]
  • Divergent Camptothecin Biosynthetic Pathway in Ophiorrhiza Pumila
    Yang et al. BMC Biology (2021) 19:122 https://doi.org/10.1186/s12915-021-01051-y RESEARCH ARTICLE Open Access Divergent camptothecin biosynthetic pathway in Ophiorrhiza pumila Mengquan Yang2†, Qiang Wang1,3†, Yining Liu2, Xiaolong Hao1, Can Wang1, Yuchen Liang2, Jianbo Chen3, Youli Xiao2ˆ and Guoyin Kai1* Abstract Background: The anticancer drug camptothecin (CPT), first isolated from Camptotheca acuminata, was subsequently discovered in unrelated plants, including Ophiorrhiza pumila. Unlike known monoterpene indole alkaloids, CPT in C. acuminata is biosynthesized via the key intermediate strictosidinic acid, but how O. pumila synthesizes CPT has not been determined. Results: In this study, we used nontargeted metabolite profiling to show that 3α-(S)-strictosidine and 3-(S), 21-(S)- strictosidinic acid coexist in O. pumila. After identifying the enzymes OpLAMT, OpSLS, and OpSTR as participants in CPT biosynthesis, we compared these enzymes to their homologues from two other representative CPT-producing plants, C. acuminata and Nothapodytes nimmoniana, to elucidate their phylogenetic relationship. Finally, using labelled intermediates to resolve the CPT biosynthesis pathway in O. pumila,weshowedthat3α-(S)-strictosidine, not 3-(S), 21- (S)-strictosidinic acid, is the exclusive intermediate in CPT biosynthesis. Conclusions: In our study, we found that O. pumila, another representative CPT-producing plant, exhibits metabolite diversity in its central intermediates consisting of both 3-(S), 21-(S)-strictosidinic acid and 3α-(S)-strictosidine and utilizes 3α-(S)-strictosidine as the exclusive intermediate in the CPT biosynthetic pathway, which differs from C. acuminata.Our results show that enzymes likely to be involved in CPT biosynthesis in O. pumila, C. acuminata,andN.
    [Show full text]