PCI Express and Advanced Switching: Evolutionary Path to Building Next Generation Interconnects

Total Page:16

File Type:pdf, Size:1020Kb

PCI Express and Advanced Switching: Evolutionary Path to Building Next Generation Interconnects PCI Express and Advanced Switching: Evolutionary Path to Building Next Generation Interconnects David Mayhew and Venkata Krishnan StarGen, Inc. Marlborough, MA 01752 [Mayhew, Krishnan]@StarGen.com http://www.stargen.com Abstract widespread adoption of a PCIe follow-on technology called Advanced Switching (AS)[2]. With processor and memory technologies pushing the performance limit, the bottleneck is It has long been the goal of many in both the clearly shifting towards the system interconnect. computer and communications industries to Any solution that addresses PCI’s bus-based bridge the gap between their respective systems. interconnect, which has serious scalability In many ways, the adoption of inexpensive problems, must also protect the huge legacy computational interfaces and parts by the infrastructure. PCI Express provides such an telecommunications industry has already realized evolutionary approach and allows a smooth this goal in part; but the emergence of PCIe, to a migration towards building a highly scalable small degree, and AS, to a much greater degree, next generation interconnect. Advanced will make the integration of computer and Switching further boosts the capabilities of PCI communications equipment a reality. Express by allowing a rich application space to be covered that includes multiprocessing and 1.1. Terminology peer-to-peer communication. Indeed, the synergy For sake of this discussion, we define three types between PCI Express and Advanced Switching of interconnects typically used in today’s permits the adoption of an evolutionary yet systems. Based on where it resides as well its revolutionary approach for building the purpose, interconnects may be classified as a (a) interconnect of the future. Processor (b) Mezzanine (c) Local Area interconnect. 1. Introduction System interconnects are currently in a The Processor interconnect, typically known as significant state of flux. The resolution of this the processor or front side bus, is the final (or uncertainty will have a significant impact on initial) conduit for data moving into (or from) the system architecture, and, in the longer term, on CPU’s on-chip cache/registers. A processor the definition of a system itself. The historic interconnect is typically used to connect the distinctions between processor buses, mezzanine processor to another component that contains a interconnects, and LANs will be challenged by memory controller and one or more mezzanine the wide scale adoption of low-latency, high- level interconnection ports[3] bandwidth switched serial interconnects. A mezzanine interconnect has historically been a The current uncertainty surrounding system processor (CPU) independent interconnect with interconnects should resolve itself in a relatively very limited reach (typically measured in short time with the nearly unanimous backing centimeters not meters). They generally employ from the industry for the PCI-SIG controlled - an address/data read/write data model with and yet largely Intel created - PCI Express memory-like semantics. These interfaces have (PCIe)[1] specification. We believe that the been targeted at allowing simple translation emergence of PCIe as the heir apparent to the between processor bus memory operations and PCI interconnect legacy will result in the mezzanine interconnects transactions. PCI is, to date, by far the most popular and successful of some of the technologies that have/are the mezzanine interconnects. attempting to displace PCI as the standard mezzanine interconnect of the future provide a Finally, Local Area interconnects or networks completely transparent PCI bus programming (LANs) grew up between the public access model (namely PCI-X[8], HyperTransport[9], network (WANs) and mezzanine interconnects. and PCIe[1]). Of equal interest are fortunes of LANs have continued to mature into protocols InfiniBand[10] and RapidIO[11], which lack PCI that now completely blur the historic distinction transparency. Conversely, PCI-X’s compatibility between LAN and WAN, with perhaps the only with both the logical and physical characteristics significant current distinction being that LANs of PCI resulted in its relatively quick adoption in use computer-borne technology (Ethernet) and the computational server space. WANs use telecommunication protocols (SONET and OC-48). For our purposes, the Shared parallel interconnects do, in most distinction between a LAN and a mezzanine respects, present the worst set of characteristics interconnect lies in the LAN’s reliance on of the three mezzanine structures. The primary protocols that do not share the mezzanine’s advantage of sharing is that, for very small memory read/write semantics, though it may be systems, it is relatively easy to implement. better to draw a simpler distinction based on the Unfortunately, shared parallel interconnects have ability, or lack there of, to issue a read at the some fundamental electrical limitations (loads on hardware level. Mezzanine interconnects can a circuit), speed concerns (capacitance of lots of read and write; LANs can only write. bus loads), reliability problems (the ability for one ill-behaved resident on a bus to make 1.2. Mezzanine Interconnects communication between all other residents There are three types of mezzanine impossible), scalability problems (everyone interconnects: shared parallel, switched parallel, shares bandwidth from a common pool; the more and switched serial. The distinction between residents on the bus the smaller the effective shared and switched is based on whether an bandwidth per resident), and physical distance interconnect’s electrical interface has a multi- problems (skew in source clocked parallel drop capability (shared) or whether the interface structures places fundamental limitations on the only supports point-to-point connections distance between connectors). (switched). The distinction between parallel and serial is based on whether an interface is source 1.2.2. Switched Parallel Interconnects clocked, that is, the interface is strobed by a Many of the fundamental limitations of shared clock signal (parallel) or whether the interface parallel interconnects are addressed by switched relies on some form of clock recovery, that is, parallel interconnects. The electrical loading, the interface is self clocked (serial). reliability, scalability, and, to some degree, speed and physical distance issues of shared structures 1.2.1. Shared Parallel Interconnects are solved by the adoption of switched The list of significant shared parallel structures. Signal skew remains an issue, as does interconnects is long and storied. A few of the the effective width of such connections when major players here include: S-100[4], PC-AT[5], cabled, but, for some applications, a switched Multi-Bus (II)[6], VME[6], PCI[7], and PCI- parallel interconnect is the best current X[8]. As previously stated, PCI is, to date, the technology. In general, a parallel interface can shining star of this category and, indeed, of all always be made serial. The only real issue is categories. Its ubiquity provides an existence whether an appreciable amount of silicon proof for the purported advantages of mezzanine supports a potentially serial version of a parallel interconnects. Namely that mezzanine interface. interconnects allow a vendor independent mechanism in which a broad range of processor A number of new standards are emerging that architectures can talk to a broader range of fall into the switched parallel mode of operation, devices types. most notably HyperTransport[9] and RapidIO[11] (attempting to migrate to a serial Of note is the fact that currently almost the entire interface), though switch parallel interconnects software infrastructure of the computer industry are hardly new[12][13][14]. is tied to the interconnect model of PCI. At least 1.2.3. Switched Serial Interconnects discussion of Advanced Switching in Section 3. Switched serial interconnects solve the last of the Finally, Section 4 concludes the paper. issues with interconnect technology, which is the physical reach. A parallel interface, by definition 2. PCI Express has at least 2 signals (one clock and one data). A One of the reasons for PCI’s remarkable success serial interface can be reduced to a single signal. was that a few of its visionary pioneers Serial signals can also be ganged into groups of recognized the importance of a standard model physically independent streams that can be for bridging between PCI bus segments[15]. This striped on arbitrary bit intervals (bytes seem to capability was intended to solve the electrical be very popular). In many instances, the physical load restrictions of PCI by allowing a single (pair reach of an interconnect dictates the scale of if on an add-in card) load on one bus to spawn an system solution that can be addressed by the entirely new subordinate bus segment that could technology. have a full compliment of additional electrical loads. This standardization allowed for the Many of the interconnect solutions that were creation of a robust, software-independent, PCI- initially parallel solutions have migrated to serial to-PCI bridge market with a standard software solutions. The shift from parallel to serial is model for recognizing devices behind bridges. naturally made when transitioning a technology More importantly for PCIe, it provided a legacy from a copper-cabled solution to an optical software transparent model for switching within solution. However, high solution cost remains a the PCI model: a
Recommended publications
  • What Is It and How We Use It
    Infiniband Overview What is it and how we use it What is Infiniband • Infiniband is a contraction of "Infinite Bandwidth" o can keep bundling links so there is no theoretical limit o Target design goal is to always be faster than the PCI bus. • Infiniband should not be the bottleneck. • Credit based flow control o data is never sent if receiver can not guarantee sufficient buffering What is Infiniband • Infiniband is a switched fabric network o low latency o high throughput o failover • Superset of VIA (Virtual Interface Architecture) o Infiniband o RoCE (RDMA over Converged Ethernet) o iWarp (Internet Wide Area RDMA Protocol) What is Infiniband • Serial traffic is split into incoming and outgoing relative to any port • Currently 5 data rates o Single Data Rate (SDR), 2.5Gbps o Double Data Rate (DDR), 5 Gbps o Quadruple Data Rate (QDR), 10 Gbps o Fourteen Data Rate (FDR), 14.0625 Gbps o Enhanced Data Rate (EDR) 25.78125 Gbps • Links can be bonded together, 1x, 4x, 8x and 12x HDR - High Data Rate NDR - Next Data Rate Infiniband Road Map (Infiniband Trade Association) What is Infiniband • SDR, DDR, and QDR use 8B/10B encoding o 10 bits carry 8 bits of data o data rate is 80% of signal rate • FDR and EDR use 64B/66B encoding o 66 bits carry 64 bits of data Signal Rate Latency SDR 200ns DDR 140ns QDR 100ns Hardware 2 Hardware vendors • Mellanox o bought Voltaire • Intel o bought Qlogic Infiniband business unit Need to standardize hardware. Mellanox and Qlogic cards work in different ways.
    [Show full text]
  • FICON Native Implementation and Reference Guide
    Front cover FICON Native Implementation and Reference Guide Architecture, terminology, and topology concepts Planning, implemention, and migration guidance Realistic examples and scenarios Bill White JongHak Kim Manfred Lindenau Ken Trowell ibm.com/redbooks International Technical Support Organization FICON Native Implementation and Reference Guide October 2002 SG24-6266-01 Note: Before using this information and the product it supports, read the information in “Notices” on page vii. Second Edition (October 2002) This edition applies to FICON channel adaptors installed and running in FICON native (FC) mode in the IBM zSeries procressors (at hardware driver level 3G) and the IBM 9672 Generation 5 and Generation 6 processors (at hardware driver level 26). © Copyright International Business Machines Corporation 2001, 2002. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . vii Trademarks . viii Preface . ix The team that wrote this redbook. ix Become a published author . .x Comments welcome. .x Chapter 1. Overview . 1 1.1 How to use this redbook . 2 1.2 Introduction to FICON . 2 1.3 zSeries and S/390 9672 G5/G6 I/O connectivity. 3 1.4 zSeries and S/390 FICON channel benefits . 5 Chapter 2. FICON topology and terminology . 9 2.1 Basic Fibre Channel terminology . 10 2.2 FICON channel topology. 12 2.2.1 Point-to-point configuration . 14 2.2.2 Switched point-to-point configuration . 15 2.2.3 Cascaded FICON Directors configuration. 16 2.3 Access control. 18 2.4 Fibre Channel and FICON terminology.
    [Show full text]
  • Infiniband Event-Builder Architecture Test-Beds for Full Rate Data
    International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing Journal of Physics: Conference Series 331 (2011) 022008 doi:10.1088/1742-6596/331/2/022008 Infiniband Event-Builder Architecture Test-beds for Full Rate Data Acquisition in LHCb Enrico Bonaccorsi and Juan Manuel Caicedo Carvajal and Jean-Christophe Garnier and Guoming Liu and Niko Neufeld and Rainer Schwemmer CERN, 1211 Geneva 23, Switzerland E-mail: [email protected] Abstract. The LHCb Data Acquisition system will be upgraded to address the requirements of a 40 MHz readout of the detector. It is not obvious that a simple scale-up of the current system will be able to meet these requirements. In this work we are therefore re-evaluating various architectures and technologies using a uniform test-bed and software framework. Infiniband is a rather uncommon technology in the domain of High Energy Physics data acquisition. It is currently mainly used in cluster based architectures. It has however interesting features which justify our interest : large bandwidth with low latency, a minimal overhead and a rich protocol suite. An InfiniBand test-bed has been and set-up, and the purpose is to have a software interface between the core software of the event-builder and the software related to the communication protocol. This allows us to run the same event-builder over different technologies for comparisons. We will present the test-bed architectures, and the performance of the different entities of the system, sources and destinations, according to their implementation. These results will be compared with 10 Gigabit Ethernet testbed results.
    [Show full text]
  • Test, Simulation, and Integration of Fibre Channel Networked Systems by Mike Glass Principal Marketing Engineer Data Device Corporation
    Test, Simulation, and Integration of Fibre Channel Networked Systems By Mike Glass Principal Marketing Engineer Data Device Corporation September 2006 Test, Simulation, and Integration Of Fibre Channel Networked Systems Introduction Fibre Channel is a high-speed networking technology deployed on a number of military/aerospace platforms and programs. These include F- 18E/F, F-16, F-35, B1-B, B-2, E-2D, the Apache Longbow and MMH helicopters, and AESA Radar. Applications for Fibre Channel include mission computers, processor and DSP clusters; data storage; video processing, distribution, and displays; sensors such as radar, FLIR, and video; serial backplanes and IFF. Basic characteristics of Fibre Channel include a choice of copper and optical media options; 1 and 2 Gb operation, including auto-speed negotiation; and operation on multiple topologies including point-to-point, arbitrated loop, and switched fabric. In addition, Fibre Channel provides low latency to the single-digit microsecond level; address scalability with a space up to 224 ports; broadcast and multicast operation; unacknowledged and acknowledged classes of service; a means for providing variable quality of service (QoS); and multiple upper layer protocols (ULPs). Test and simulation applications for deployable Fibre Channel networks include the development of board and box-level systems and sub-systems, network integration, production test, and equipment maintenance. For software development and network integration, it’s often necessary to rely on Fibre Channel testers and analyzers to simulate unavailable equipment for traffic generation and monitoring. Some development and integration environments provide demanding requirements for real-time data monitoring, storage, and subsequent offline analysis. For production test and field maintenance, low cost testers are often better-suited than higher-priced analyzers.
    [Show full text]
  • Etsi Gr Ip6 009 V1.1.1 (2017-03)
    ETSI GR IP6 009 V1.1.1 (2017-03) GROUP REPORT IPv6-based Industrial Internet leveraging 6TiSCH technology Disclaimer The present document has been produced and approved by the IPv6 Integration (IP6) ETSI Industry Specification Group (ISG) and represents the views of those members who participated in this ISG. It does not necessarily represent the views of the entire ETSI membership. 2 ETSI GR IP6 009 V1.1.1 (2017-03) Reference DGR/IP6-0009 Keywords 6TiSCH, IPv6, network ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
    [Show full text]
  • News Letter V7
    Robin MacGillivray, BCS President, SBC West Message to Telecom Consultants Let me start out by wishing each of you a very Happy New Year, with hopes that 2004 will be your most successful year ever! Through your recommendations you have influenced millions of UPDATE dollars in revenue for the SBC family of companies Solutions for Success and it’s my commitment to you to do all we can to continue to earn your trust and confidence in Consultant/Vendor Sales Group 2004. That’s what “Stand & Deliver” is all about. February 2004 It’s a theme we’re using internally to constantly remind ourselves of our promise to you that we will always be the brand you can trust to deliver World-Class products and reliable service to your clients. It’s my personal goal to Stand & Deliver beyond your expectations. We believe the best competitive strategy we have for keeping Douglas Ireland customers is our ability to meet their needs, the first time, on time, SM everytime. There’s probably nothing more critical to the success of SBC FreedomLink Creating Special our business. As we enter a new year, there are a lot of things going National Wi-Fi Hotspot Network on that may directly impact you and your clients. Here are a few: ͷ SBC Internet Services, Inc. is now creating one of the nation’s We’re now offering Long Distance at incredible prices in all 13 states SBC Long Distance serves. largest wireless Internet access networks, commonly known as ͷ We’re offering all sorts of spectacular packages and bundles to Wi-Fi hotspots, under the FreedomLinkSM marquee.
    [Show full text]
  • Putting Switched Fabric to Work for Software Radio
    PUTTING SWITCHED FABRIC TO WORK FOR SOFTWARE RADIO Rodger H. Hosking (Pentek, Inc., Upper Saddle River, NJ, USA, [email protected]) ABSTRACT In order to take advantage of the wealth of high- volume, low-cost devices for mass-market electronics, and The most difficult problem for designers of high- to reap the same benefits of easier connectivity, even the performance, software radio systems is simply moving data most powerful high-end software radio RISC and DSP within the system because of data throughput limitations. processors from Freescale and Texas Instruments are now Driving this dilemma are processors with higher clock rates sporting gigabit serial interfaces. and wider buses, data converter products with higher sampling rates, more complex digital communication 2. GIGABIT SERIAL STANDARDS standards with increased bandwidths, disk storage devices with faster I/O rates, FPGAs and DSPs offering incredible The descriptive phrase “gigabit serial” covers a truly diverse computational rates, and system connections and network range of implementations and application spaces. Figure 1 links operating at higher speeds. shows most of the popular standards used in embedded Traditional system architectures relying on buses and systems suitable for software radio, along with how each parallel connections between system boards and mezzanines standard is normally deployed in a system. fall far short of delivering the required peak rates, and suffer even worse if they must be shared and arbitrated. New Standard Main Application strategies for solving these problems exploit gigabit serial Gigabit Ethernet Computer Networking links and switched fabric standards to create significantly FibreChannel Data Storage more powerful architectures ideally suited for embedded software radio systems.
    [Show full text]
  • Brocade Mainframe Connectivity Solutions
    PART 1: BROCADE MAINFRAME CHAPTER 2 CONNECTIVITY SOLUTIONS The modern IBM mainframe, also known as IBM zEnterprise, has a distinguished 50-year history BROCADEMainframe I/O and as the leading platform for reliability, availability, serviceability, and scalability. It has transformed Storage Basics business and delivered innovative, game-changing technology that makes the extraordinary possible, and has improved the way the world works. For over 25 of those years, Brocade, MAINFRAME the leading networking company in the IBM mainframe ecosystem, has provided non-stop The primary purpose of any computing system is to networks for IBM mainframe customers. From parallel channel extension to ESCON, FICON, process data obtained from Input/Output devices. long-distance FCIP connectivity, SNA/IP, and IP connectivity, Brocade has been there with IBM CONNECTIVITY and our mutual customers. Input and Output are terms used to describe the SOLUTIONStransfer of data between devices such as Direct This book, written by leading mainframe industry and technology experts from Brocade, discusses Access Storage Device (DASD) arrays and main mainframe SAN and network technology, best practices, and how to apply this technology in your storage in a mainframe. Input and Output operations mainframe environment. are typically referred to as I/O operations, abbreviated as I/O. The facilities that control I/O operations are collectively referred to as the mainframe’s channel subsystem. This chapter provides a description of the components, functionality, and operations of the channel subsystem, mainframe I/O operations, mainframe storage basics, and the IBM System z FICON qualification process. STEVE GUENDERT DAVE LYTLE FRED SMIT Brocade Bookshelf www.brocade.com/bookshelf i BROCADE MAINFRAME CONNECTIVITY SOLUTIONS STEVE GUENDERT DAVE LYTLE FRED SMIT BROCADE MAINFRAME CONNECTIVITY SOLUTIONS ii © 2014 Brocade Communications Systems, Inc.
    [Show full text]
  • Be Based on Ethernet, Infiniband, Or Fibre Channel in DEPTH / STORAGE
    Running SAN traffic over the LAN is becoming a realistic proposition, but will this future converged network be based on Ethernet, InfiniBand, or Fibre Channel IN DEPTH / STORAGE realistic proposition, but will this future converged network e Channel? By Andy Dornan One Network To Rule Them All ONVERGENCE IS about more iSCSI is a viable option, it’s mostly used in than just voice and data. Storage low-end networks that need speeds of 1 Gbps and networking vendors prom- or less. And even here, many users prefer to ise that the next-generation net- keep the SAN separate from the LAN, even if work will unite local and storage both are built from the same commodity Gi- Carea networks, virtualizing both over a single gabit Ethernet switches. network at 20 Gbps, 40 Gbps, or even 100 The new push toward unified networks dif- Gbps. And it isn’t just the networks that are fers from iSCSI in both its ambition and the coming together.The future SAN also involves resources behind it. Vendors from across the convergence of storage with memory. The networking and storage industries are collabo- same principles that originally abstracted rating on new standards that aim to unite mul- storage out of a local server can be applied to tiple networks into one. Startups Xsigo and RAM, too, while storage targets shift from 3Leaf Systems already have shipped propri- hard disks to flash memory. etary hardware and software aimed at virtual Longtime SAN users might feel a sense of I/O that can converge SAN with LAN, though n a m déjà vu.
    [Show full text]
  • Control Plane Vs
    Everything You Wanted To Know about Storage (But Were Too Proud To Ask) Part Mauve J Metz, Cisco Dror Goldenberg, Mellanox Chad Hintz, Cisco Fred Knight, NetApp November 1, 2016 Today’s Presenters J Metz Dror Goldenberg Chad Hintz Fred Knight SNIA Board VP Software SNIA-ESF Standards of Directors Architecture Board Technologist Cisco Mellanox Cisco NetApp 2 SNIA Legal Notice ! " The material contained in this presentation is copyrighted by the SNIA unless otherwise noted. ! " Member companies and individual members may use this material in presentations and literature under the following conditions: ! " Any slide or slides used must be reproduced in their entirety without modification ! " The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these presentations. ! " This presentation is a project of the SNIA. ! " Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be, or should be construed as legal advice or an opinion of counsel. If you need legal advice or a legal opinion please contact your attorney. ! " The information presented herein represents the author's personal opinion and current understanding of the relevant issues involved. The author, the presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information. NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK. 3 About SNIA 4 Agenda ! " Channel vs. Bus Host Network Storage ! " Control Plane vs. Data Plane ! " Fabric vs. Network Channel Busses Control Plane Data Plane Fabric Network 5 Off We Go! ! " Channel vs.
    [Show full text]
  • Starlink Switched Fabric Data Interconnect PMC
    StarLink Switched Fabric Data Interconnect PMC Features Switched Fabric Interconnect PMC The StarLink PMC card 400Mbytes/sec total sustained bandwidth provides the Zero protocol, PCI to PCI transfers converted to packets which user with a automatically route through the fabric flexible, switched fab- 64-bit, 66MHz PCI Interface ric board PCI to StarFabric bridge (2 ports) interconnect system that easily scales from a few to many boards. The 6 port StarFabric switch flexibility of the system is a virtue of the underlying packet 4 ports via PMC Pn4 connectors or switching technology, where data is automatically and trans- – 2 ports via front panel RJ-45’s & 2 ports via Pn4 connectors parently routed through a fabric network of switches to it’s destination. 800 Mbytes switching cross-sectional bandwidth Quality of service features for real-time determinism StarLink is based on StarFabric technology from Stargen Inc. StarFabric is a high-speed serial, switched-fabric technology. Robust LVDS physical layer The system is based on two types of device, a PCI to Star- High availability features Fabric bridge, and a StarFabric switch. The elegance of Star- Fabric is in it’s simplicity, as a network of bridges and Low power operation switches presents itself to the application as a collection of VxWorks drivers bridged PCI devices. Memory attached to one node, is made visible in PCI address space to the other nodes in the net- Air-cooled and conduction-cooled versions available. work. This is an existing architecture in many systems (i.e. cPCI), so from a software interface perspective, a group of cards linked through StarFabric network, appears the same as Description if they were connected to each other through non-transparent Many Signal Processing problems demand the use of multiple PCI to PCI bridges.
    [Show full text]
  • Connectrix Storage Area Networking Portfolio
    Data Sheet Dell EMC Connectrix Storage Area Networking Portfolio Connectrix Enables Business Applications The Connectrix™ family of directors and switches moves your vital business information to where it’s needed securely, with the highest performance, the highest availability and unsurpassed reliability. Connectrix is the only storage networking platform that offers Dell EMC E-Lab™ interoperability testing. Connectrix products can connect physical or virtual servers through Fibre Channel Storage Area Networks (SAN) technology. Connectrix enables all application environments from Oracle, Microsoft and SAP to local backup/restore, and business continuity/disaster recovery solutions over distance. Connectivity Matters for Data Storage: NVMe/FC All-flash storage environments require a network that is deterministic, and easy to manage with low latencies. Connectrix has always delivered low latency, deterministic behavior, scalability and reliability. So, as you move to Solid State Drives (SSD) or Storage Class Memory (SCM), make sure your storage network can keep pace. Today’s storage networks deliver up to 64 Gigabit per second (Gb/s) Fibre Channel speeds. The latest Connectrix systems include exclusive diagnostic and error-collection capabilities, as well as the ability to monitor, analyze and identify specific data automatically to avoid errors, reduce bottlenecks and automate your networking resources. Connectrix models allow seamless transition to Non-Volatile Memory Express Fibre Channel (NVMe/FC) workloads without any hardware upgrade in the SAN. In addition, Connectrix platforms support the concurrent use of both traditional SCSI-based Fibre Channel and NVMe/FC traffic, allowing organizations to easily integrate Fibre Channel networks with NVMe-based storage. Live Optics with SAN Health – Free SAN Assessment If you’re thinking about upgrading your storage environment, make sure your SAN isn’t a bottleneck by running Live Optics with SAN Health.
    [Show full text]