Point-To-Point Fibre Channel Arbitrated Loop
Total Page:16
File Type:pdf, Size:1020Kb
CMR INSTITUTE OF TECHNOLOGY Internal Assessment Test 1 – Sept. 2016 Scheme and solution Sub: STORAGE AREA NETWORKS Code: 10IS765 Date: 8/ 09 / 2016 Duration: 90 mins Max Marks: 50 Sem: VII A & B Branch: ISE/CSE Note: Answer any five questions. 1 Explain FC connectivity with related diagrams (6m) The FC architecture supports three basic interconnectivity options: point-topoint, arbitrated loop (FC-AL), and fabric connect. Point-to-Point Point-to-point is the simplest FC configuration — two devices are connected directly to each other, as shown in Figure 6-6. This configuration provides a dedicated connection for data transmission between nodes. However, the point-to-point configuration offers limited connectivity, as only two devices can communicate with each other at a given time. Moreover, it cannot be scaled to accommodate a large number of network devices. Standard DAS usess pointto-point connectivity. Fibre Channel Arbitrated Loop In the FC-AL configuration, devices are attached to a shared loop, as shown in Figure 6-7. FC-AL has the characteristics of a token ring topology and a physical star topology. In FC-AL, each device contends with other devices to perform I/O operations. Devices on the loop must “arbitrate” to gain control of the loop. At any given time, only one device can perform I/O operations on the loop.As a loop configuration, FC-AL can be implemented without any interconnectingdevices by directly connecting one device to another in a ring through cables However, FC-AL implementations may also use hubs whereby the arbitrated loop is physically connected in a star topology. The FC-AL configuration has the following limitations in terms of scalability: FC-AL shares the bandwidth in the loop. Only one ■■device can perform I/O operations at a time. Because each device in a loop has to wait for its turn to process an I/O request, the speed of data transmission is low in an FC-AL topology. ■■FC-AL uses 8-bit addressing. It can support up to 127 devices on a loop. ■■Adding or removing a device results in loop re-initialization, which can cause a momentary pause in loop traffic. FC-AL Transmission When a node in the FC-AL topology attempts to transmit data, the node sends an arbitration (ARB) frame to each node on the loop. If two nodes simultaneously attempt to gain control of the loop, the node with the highest priority is allowed to communicate with another node. This priority is determined on the basis of Arbitrated Loop Physical Address (AL-PA) and Loop ID, When the initiator node receives the ARB request it sent, it gains control of the loop. The initiator then transmits data to the node with which it has established a virtual connection. Figure 6-8 illustrates the process of data transmission in an FC-AL configuration. Fibre Channel Switched Fabric Unlike a loop configuration, a Fibre Channel switched fabric (FC-SW) network provides interconnected devices, dedicated bandwidth, and scalability. The addition or removal of a device in a switched fabric is minimally disruptive; it does not affect the ongoing traffic between other devices. FC-SW is also referred to as fabric connect. A fabric is a logical space in which all nodes communicate with one another in a network. This virtual space can be created with a switch or a network of switches. Each switch in a fabric contains a unique domain identifier, which is part of the fabric’s addressing scheme. In FC-SW, nodes do not share a loop; instead, data is transferred through a dedicated path between the nodes. Each port in a fabric has a unique 24-bit fibre channel address for communication. Figure 6-9 shows an example of FC-SW. A fabric topology can be described by the number of tiers it contains. The number of tiers in a fabric is based on the number of switches traversed between two points that are farthest from each other. However, note that this number is based on the infrastructure constructed by the fabric topology; it disregards how the storage and server are connected across the switches. When the number of tiers in a fabric increases, the distance that a fabric management message must travel to reach each switch in the fabric also increases. The increase in the distance also increases the time taken to propagate and complete a fabric reconfiguration event, such as the addition of a new switch, or a zone set propagation event (detailed later in this chapter). Figure 6-10 illustrates two-tier and three-tier fabric architecture. FC-SW Transmission FC-SW uses switches that are intelligent devices. They can switch data traffic from an initiator node to a target node directly through switch ports. Frames are routed between source and destination by the fabric. As shown in Figure 6-11, if node B wants to communicate with node D, Nodes should individually login first and then transmit data via the FC-SW. This link is considered a dedicated connection between the initiator and the target. 2.a.Explain SCSI-3 architecture.(5m) SCSI-3 Architecture The SCSI-3 architecture defines and categorizes various SCSI-3 standards and requirements for SCSI-3 implementations The SCSI-3 architecture was approved and published as the standard X.3.270-1996 by the ANSI. This architecture helps developers, hardware designers, and users to understand and effectively utilize SCSI. The three major components of a SCSI architectural model are as follows: ■■SCSI-3 command protocol: This consists of primary commands that are common to all devices as well as device-specific commands that are unique to a given class of devices. ■■Transport layer protocols: These are a standard set of rules by which devices communicate and share information. ■■Physical layer interconnects: These are interface details such as electrical signaling methods and data transfer modes. Common access methods are the ANSI software interfaces for SCSI devices. Figure 5-3 shows the SCSI-3 standards architecture with interrelated groups of other standards within SCSI-3. b.What is zoning? Discuss a scenario where soft zoning is preferred & where hard zoning is preferred.(5M) 3. a.A host generates 8000 I/Os at peak utilization with an average I/O size of 32KB.The response time is currently measured at an average of 12 ms during peak utilizations. When synchronous replication is implemented with a fiber channel link to its remote site, what is the response time experienced by the host if the network latency is 6ms per I/O? (5m) b.Write about Monitoring Components in storage infrastructure in detail (5m) Hosts, networks, and storage are components within the storage environment that should be monitored for accessibility, capacity, performance, and security. Hosts Mission-critical application hosts should be monitored continuously. The accessibility of a host depends on the status of the hardware components and software processes running on it. For example, an application crash due to host hardware failure can cause instant unavailability of the data to the user Servers are used in a cluster to ensure high availability. In a server virtualization environment, multiple virtual machines share a pool of resources. These resources are dynamically reallocated, which ensures application accessibility and ease of management. File system utilization of hosts also needs to be monitored. Monitoring helps in estimating the file system’s growth rate and helps in predicting when it will reach 100 percent. Accordingly, the administrator can extend (manually or automatically) the file system’s space proactively to prevent a failure resulting from a file system being full. New provisioning technologies even enable the allocation of storage on demand as the need arises. Alternatively, system administrators can enforce a quota for users, provisioning a fixed amount of space for their files. For example, a quota could be specified at a user level, restricting the maximum space to 10 GB per user, or at a file level that restricts a file to a maximum of 100 MB. Server performance mainly depends on I/O profile, utilization of CPU and memory. For example, if a server running an application is experiencing 80 percent of CPU utilization continuously, this suggests that the server may be running out of processing power, which can lead to degraded performance and slower response time. Administrators can take several actions to correct the problem, such as upgrading or adding more processors, shifting the workload to different servers, and restricting the number of simultaneous client access. In a virtualized environment, CPU and memory may be allocated dynamically from another physical server or from the same server. Memory utilization is measured by the amount of free memory available. Databases, applications, and file systems utilize the server’s physical memory(RAM) for data manipulation. Insufficient memory leads to excessive swapping and paging on the disk, which in turn affects response time to the applications. Security monitoring on servers involves tracking of login failures and execution of unauthorized applications or software processes. Proactive measures against unauthorized access to the servers are based on the threat identified. For example, an administrator can block access to an unauthorized user if multiple login failures are logged. Storage Network The storage network needs to be monitored to ensure proper communication between the server and the storage array. Uninterrupted access to data over the storage network depends on the accessibility of the physical and logical components in the storage network. The physical components of a storage network include elements such as switches, ports, cables, GBICs, and power supplies. The logical components include constructs, such as zones and fabrics. Any failure in the physical or logical components may cause data unavailability.