To Whom It May Concern
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sunday, March 4, 2012
Joint Meeting of the Southeastern and Southwestern Branches Entomological Society of America 4-7 March 2012 Little Rock, Arkansas 0 Dr. Norman C. Leppla President, Southeastern Branch of the Entomological Society of America, 2011-2012 Dr. Allen E. Knutson President, Southwestern Branch of the Entomological Society of America, 2011-2012 1 2 TABLE OF CONTENTS Presidents Norman C. Leppla (SEB) and Allen E. 1 Knutson (SWB) ESA Section Names and Acronyms 5 PROGRAM SUMMARY 6 Meeting Notices and Policies 11 SEB Officers and Committees: 2011-2012 14 SWB Officers and Committees: 2011-2012 16 SEB Award Recipients 19 SWB Award Recipients 36 SCIENTIFIC PROGRAM SATURDAY AND SUNDAY SUMMARY 44 MONDAY SUMMARY 45 Plenary Session 47 BS Student Oral Competition 48 MS Student Oral Competition I 49 MS Student Oral Competition II 50 MS Student Oral Competition III 52 MS Student Oral Competition IV 53 PhD Student Oral Competition I 54 PhD Student Oral Competition II 56 BS Student Poster Competition 57 MS Student Poster Competition 59 PhD Student Poster Competition 62 Linnaean Games Finals/Student Awards 64 TUESDAY SUMMARY 65 Contributed Papers: P-IE (Soybeans and Stink Bugs) 67 Symposium: Spotted Wing Drosophila in the Southeast 68 Armyworm Symposium 69 Symposium: Functional Genomics of Tick-Pathogen 70 Interface Contributed Papers: PBT and SEB Sections 71 Contributed Papers: P-IE (Cotton and Corn) 72 Turf and Ornamentals Symposium 73 Joint Awards Ceremony, Luncheon, and Photo Salon 74 Contributed Papers: MUVE Section 75 3 Symposium: Biological Control Success -
Butterflies of Ontario & Summaries of Lepidoptera
ISBN #: 0-921631-12-X BUTTERFLIES OF ONTARIO & SUMMARIES OF LEPIDOPTERA ENCOUNTERED IN ONTARIO IN 1991 BY A.J. HANKS &Q.F. HESS PRODUCTION BY ALAN J. HANKS APRIL 1992 CONTENTS 1. INTRODUCTION PAGE 1 2. WEATHER DURING THE 1991 SEASON 6 3. CORRECTIONS TO PREVIOUS T.E.A. SUMMARIES 7 4. SPECIAL NOTES ON ONTARIO LEPIDOPTERA 8 4.1 The Inornate Ringlet in Middlesex & Lambton Cos. 8 4.2 The Monarch in Ontario 8 4.3 The Status of the Karner Blue & Frosted Elfin in Ontario in 1991 11 4.4 The West Virginia White in Ontario in 1991 11 4.5 Butterfly & Moth Records for Kettle Point 11 4.6 Butterflies in the Hamilton Study Area 12 4.7 Notes & Observations on the Early Hairstreak 15 4.8 A Big Day for Migrants 16 4.9 The Ocola Skipper - New to Ontario & Canada .17 4.10 The Brazilian Skipper - New to Ontario & Canada 19 4.11 Further Notes on the Zarucco Dusky Wing in Ontario 21 4.12 A Range Extension for the Large Marblewing 22 4.13 The Grayling North of Lake Superior 22 4.14 Description of an Aberrant Crescent 23 4.15 A New Foodplant for the Old World Swallowtail 24 4.16 An Owl Moth at Point Pelee 25 4.17 Butterfly Sampling in Algoma District 26 4.18 Record Early Butterfly Dates in 1991 26 4.19 Rearing Notes from Northumberland County 28 5. GENERAL SUMMARY 29 6. 1990 SUMMARY OF ONTARIO BUTTERFLIES, SKIPPERS & MOTHS 32 Hesperiidae 32 Papilionidae 42 Pieridae 44 Lycaenidae 48 Libytheidae 56 Nymphalidae 56 Apaturidae 66 Satyr1dae 66 Danaidae 70 MOTHS 72 CONTINUOUS MOTH CYCLICAL SUMMARY 85 7. -
Alfred Russel Wallace and the Darwinian Species Concept
Gayana 73(2): Suplemento, 2009 ISSN 0717-652X ALFRED RUSSEL WALLACE AND THE Darwinian SPECIES CONCEPT: HIS paper ON THE swallowtail BUTTERFLIES (PAPILIONIDAE) OF 1865 ALFRED RUSSEL WALLACE Y EL concepto darwiniano DE ESPECIE: SU TRABAJO DE 1865 SOBRE MARIPOSAS papilio (PAPILIONIDAE) Jam ES MA LLET 1 Galton Laboratory, Department of Biology, University College London, 4 Stephenson Way, London UK, NW1 2HE E-mail: [email protected] Abstract Soon after his return from the Malay Archipelago, Alfred Russel Wallace published one of his most significant papers. The paper used butterflies of the family Papilionidae as a model system for testing evolutionary hypotheses, and included a revision of the Papilionidae of the region, as well as the description of some 20 new species. Wallace argued that the Papilionidae were the most advanced butterflies, against some of his colleagues such as Bates and Trimen who had claimed that the Nymphalidae were more advanced because of their possession of vestigial forelegs. In a very important section, Wallace laid out what is perhaps the clearest Darwinist definition of the differences between species, geographic subspecies, and local ‘varieties.’ He also discussed the relationship of these taxonomic categories to what is now termed ‘reproductive isolation.’ While accepting reproductive isolation as a cause of species, he rejected it as a definition. Instead, species were recognized as forms that overlap spatially and lack intermediates. However, this morphological distinctness argument breaks down for discrete polymorphisms, and Wallace clearly emphasised the conspecificity of non-mimetic males and female Batesian mimetic morphs in Papilio polytes, and also in P. -
1 Curriculum Vitae Peter Stiling Education Academic
CURRICULUM VITAE PETER STILING Office of the Provost University of South Florida 4202 East Fowler Avenue Tampa, FL 33620-5150 Tel: (813) 974-5558 Email: [email protected] EDUCATION Ph.D. Zoology - University College Cardiff, Wales, 1979 B.S. (Hons) Biology - University of East Anglia, England, 1976 ACADEMIC POSITIONS 2002-present, Professor, University of South Florida 1996-2002, Associate Professor, University of South Florida 1990-1996, Assistant Professor, University of South Florida 1985-1990, Research Associate, Florida State University 1983-1985, Lecturer, University of the West Indies, Trinidad 1980-1983, Research Assistant, Florida State University AWARDS 2013 Theodore and Venette Askounes-Ashford Distinguished Scholar Award 2012 Fellow AAAS (American Association for the Advancement of Science) 2008 Faculty Award for Research, Scholarly and Creative Excellence 2004 Winner – Best paper 2002-2003, Royal Entomological Society. 2003 President’s Award for Faculty Excellence 2000-2001, Visiting Scientist, Smithsonian Institution 1995 Teaching Incentive Program Award ADMINISTRATIVE APPOINTMENTS Assistant Vice Provost, Strategic Initiatives, 2016-present My role as Assistant Vice Provost, Strategic Initiatives, centers around four strategic initiatives: 1. The University of South Florida System STEM Collaborative. Over the last decade, the University of South Florida System has placed great emphasis on STEM, the science, technology, engineering and math fields and medicine. This is an area of critical importance not only in Tampa Bay, but also across the nation. The President’s Council of Advisors on Science and Technology, PCAST, found that economic forecasts predicted a need for producing, over the next decade, one million more college graduates in STEM fields than expected under current assumptions. -
Cactus Moth Cactoblastis Cactorum
Cactus Moth Cactoblastis cactorum Image credit: Ignacio Baez, USDA Agricultural Research Service, Bugwood.org, #5015068 Introduction • Native region: South America • Used as biological control agent in multiple countries for prickly pear cactus – Which is considered an invasive plant • Considered an invasive species in the United States Image credit: Jeffrey W. Lotz, Florida Department of Agriculture and Consumer Services, Bugwood.org , #5199023 History of the Cactus Moth • Australia – Prickly pear cactus infested over 60 million acres – Cactus moth introduced as biocontrol agent (1920s) – Highly successful (16 million Australia before introduction of cactus acres reclaimed) moth, 1940 • Other countries ̶ South Africa (1933), Hawaii (1950), Caribbean (1957) Image credit: Alan P. Dodd, USDA APHIS Distribution in the U.S. No sampling Sampled but not found Intercepted or detected, but not established Established by survey or consensus Under eradication Map based on NAPIS Pest Tracker, accessed 1/16/2014 The Threat • Major economic & environmental threat in the U.S. and Mexico – Agricultural – Economical – Ecological – Cultural – Ecotourism and recreational industries Damage to cactus and cactus moth larvae Image credit: Stephen Davis, USDA APHIS PPQ, Bugwood.org, #2130067 Identification • The best stage for identification of the cactus moth is the larva Younger larva – Orange or red & black bands – 25 mm to 30 mm in length Mature larva Image credit: top- Jeffrey W. Lotz, Florida Department of Agriculture and Consumer Services, Bugwood.org , #5199049; bottom - Susan Ellis, USDA APHIS PPQ, Bugwood.org, #1267002 Identification • Adult – Non-descript gray- brown – Translucent hind wings – 22 to 40 mm – Females slightly larger than males Image credit: top - Ignacio Baez, USDA Agricultural Research Service, Bugwood.org , #5015059; bottom - Jeffrey W. -
Anchored Phylogenomics Illuminates the Skipper Butterfly Tree of Life
Anchored phylogenomics illuminates the skipper butterfly tree of life The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Toussaint, E. F. A., J. W. Breinholt, C. Earl, A. D. Warren, A. V. Z. Brower, M. Yago, K. M. Dexter, et al. 2018. “Anchored phylogenomics illuminates the skipper butterfly tree of life.” BMC Evolutionary Biology 18 (1): 101. doi:10.1186/s12862-018-1216-z. http:// dx.doi.org/10.1186/s12862-018-1216-z. Published Version doi:10.1186/s12862-018-1216-z Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:37298562 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Toussaint et al. BMC Evolutionary Biology (2018) 18:101 https://doi.org/10.1186/s12862-018-1216-z RESEARCH ARTICLE Open Access Anchored phylogenomics illuminates the skipper butterfly tree of life Emmanuel F. A. Toussaint1* , Jesse W. Breinholt1,2, Chandra Earl1, Andrew D. Warren1, Andrew V. Z. Brower3, Masaya Yago4, Kelly M. Dexter1, Marianne Espeland5, Naomi E. Pierce6, David J. Lohman7,8,9 and Akito Y. Kawahara1 Abstract Background: Butterflies (Papilionoidea) are perhaps the most charismatic insect lineage, yet phylogenetic relationships among them remain incompletely studied and controversial. This is especially true for skippers (Hesperiidae), one of the most species-rich and poorly studied butterfly families. Methods: To infer a robust phylogenomic hypothesis for Hesperiidae, we sequenced nearly 400 loci using Anchored Hybrid Enrichment and sampled all tribes and more than 120 genera of skippers. -
Zoology 325 General Entomology – Lecture Department of Biological Sciences University of Tennessee at Martin Fall 2013
Zoology 325 General Entomology – lecture Department of Biological Sciences University of Tennessee at Martin Fall 2013 Instructor: Kevin M. Pitz, Ph.D. Office: 308 Brehm Hall Phone: (731) 881-7173 (office); (731) 587-8418 (home, before 7:00pm only) Email: [email protected] Office hours: I am generally in my office or in Brehm Hall when not in class or at lunch. I take lunch from 11:00am-noon every day. I am in class from 8am-5pm on Monday, and from 8:00am-11:00am + 2:00pm-3:30pm on T/Th. I have no classes on Wednesday and Friday. My door is always open when I am available, and you are encouraged to stop by any time I am in if you need something. You can guarantee I will be there if we schedule an appointment. Text (required): The Insects: an Outline of Entomology. 4th Edition. P.J. Gullan and P.S. Cranston. Course Description: (4) A study of the biology, ecology, morphology, natural history, and taxonomy of insects. Emphasis on positive and negative human-insect interactions and identification of local insect fauna. This course requires field work involving physical activity. Three one-hour lectures and one three-hour lab (or equivalent). Prereq: BIOL 130-140 with grades of C or better. (Modified from course catalogue) Prerequisites: BIOL 130-140 Course Objectives: Familiarity with the following: – Insect morphology, both internal and external – Insect physiology and development – Insect natural history and ecology – Positive and negative human-insect interactions – Basic insect management practices On top of the academic objectives associated with course material, I expect students to hone skills in critical reading, writing, and thinking. -
Myrmecology in the Internet: Possibilities of Information Gathering
Beitr. Ent. Keltern ISSN 0005 - 805X Beitr. Ent. 55 (2005) 2 485 55 (2005) 2 S. 485 - 498 27.12.2005 Myrmecology in the internet: Possibilities of information gathering (Hymenoptera, Formicidae) with 12 tables CHRISTIANA KLINGENBERG and MANFRED VERHAAGH Summary A well advanced information system about ants exists on the internet. Many myrmecologists all over the world offer useful information as text files, images or databases. A good part of the information focuses on re- gional faunas and biogeographic regions, with updated species checklists and geographic distribution maps. Many internet sites deal with specific ant groups or single genera and provide dichotomous and sometimes interactive identification keys, extensive information about the biology and/or geographic distribution of the species. Text information is often illustrated with images of living or dry mounted ants. Additionally, detailed pages about anatomy, mounting of ants, colony husbandry or ant conservation (red lists) can be found. In discussion forums it is possible to exchange facts and thoughts about all myrmecological facets with other interested people. A special offer for taxonomists is the increasing number of databases about museum collections and their type catalogues. Zusammenfassung Für Ameisen gibt es mittlerweile ein sehr gut entwickeltes Informationssystem im Internet. Weltweit bieten zahlreiche Myrmekologen brauchbare Informationen in Form von Textbeiträgen, Bildern und Datenbanken an. Ein guter Teil der Information beschäftigt sich mit regionalen Faunen bzw. biogeographischen Regionen, z.B. in Form von Artenlisten und Verbreitungskarten. Viele Internetseiten handeln auch spezielle Ameisentaxa ab, stellen dichotome oder gar interaktive Bestimmungsschlüssel vor und offerieren ausführliche Informationen zur Biologie und Verbreitung der Arten. Die Texte werden häufig durch Bilder präparierter oder lebender Ameisen ergänzt. -
Entomology (ENTOM) 1
Entomology (ENTOM) 1 ENTOM/ENVIR ST 205 — OUR PLANET, OUR HEALTH ENTOMOLOGY (ENTOM) 3 credits. An introduction to the multiple determinants of health, global disease ENTOM/AGROECOL/AGRONOMY/C&E SOC/ENVIR ST 103 — burden and disparities, foundational global health principles, and the AGROECOLOGY: AN INTRODUCTION TO THE ECOLOGY OF FOOD AND overlap between ecosystem stability, planetary boundaries, and human AGRICULTURE health. Explore the core fundamentals of global health scholarship, 3 credits. including but not limited to infectious disease, sanitation, and mental health, and also consider ecological perspectives on these issues Agroecology has blossomed across the world in recent decades as not through the lens of planetary boundaries. Attention is placed on how only a science, but also a practice, and a movement. Employ the multiple human-mediated global change (e.g. climate change, biodiversity loss, disciplines and perspectives that Agroecology affords to analyze our land-use patterns, geochemical cycling, agricultural practice) impacts agricultural and food systems wihin a broader context of dynamic social human health and the ecosystem services we depend on. An overview of and ecological relationships. Enroll Info: None pertinent issues in sustainability science and planetary health discourse, Requisites: None including the 'Anthropocene' and resilience to understand and critically Course Designation: Breadth - Biological Sci. Counts toward the Natural assess global trends. Enroll Info: None Sci req Requisites: None Level - Elementary Course Designation: Breadth - Biological Sci. Counts toward the Natural L&S Credit - Counts as Liberal Arts and Science credit in L&S Sci req Sustain - Sustainability Level - Elementary Repeatable for Credit: No L&S Credit - Counts as Liberal Arts and Science credit in L&S Last Taught: Fall 2020 Repeatable for Credit: No Last Taught: Summer 2021 ENTOM/ENVIR ST 201 — INSECTS AND HUMAN CULTURE-A SURVEY COURSE IN ENTOMOLOGY ENTOM 289 — HONORS INDEPENDENT STUDY 3 credits. -
Phylogeny and Evolution of Lepidoptera
EN62CH15-Mitter ARI 5 November 2016 12:1 I Review in Advance first posted online V E W E on November 16, 2016. (Changes may R S still occur before final publication online and in print.) I E N C N A D V A Phylogeny and Evolution of Lepidoptera Charles Mitter,1,∗ Donald R. Davis,2 and Michael P. Cummings3 1Department of Entomology, University of Maryland, College Park, Maryland 20742; email: [email protected] 2Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 3Laboratory of Molecular Evolution, Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland 20742 Annu. Rev. Entomol. 2017. 62:265–83 Keywords Annu. Rev. Entomol. 2017.62. Downloaded from www.annualreviews.org The Annual Review of Entomology is online at Hexapoda, insect, systematics, classification, butterfly, moth, molecular ento.annualreviews.org systematics This article’s doi: Access provided by University of Maryland - College Park on 11/20/16. For personal use only. 10.1146/annurev-ento-031616-035125 Abstract Copyright c 2017 by Annual Reviews. Until recently, deep-level phylogeny in Lepidoptera, the largest single ra- All rights reserved diation of plant-feeding insects, was very poorly understood. Over the past ∗ Corresponding author two decades, building on a preceding era of morphological cladistic stud- ies, molecular data have yielded robust initial estimates of relationships both within and among the ∼43 superfamilies, with unsolved problems now yield- ing to much larger data sets from high-throughput sequencing. Here we summarize progress on lepidopteran phylogeny since 1975, emphasizing the superfamily level, and discuss some resulting advances in our understanding of lepidopteran evolution. -
Biodiversity and Ecological Potential of Plum Island, New York
Biodiversity and ecological potential of Plum Island, New York New York Natural Heritage Program i New York Natural Heritage Program The New York Natural Heritage Program The NY Natural Heritage Program is a partnership NY Natural Heritage has developed two notable between the NYS Department of Environmental online resources: Conservation Guides include the Conservation (NYS DEC) and The Nature Conservancy. biology, identification, habitat, and management of many Our mission is to facilitate conservation of rare animals, of New York’s rare species and natural community rare plants, and significant ecosystems. We accomplish this types; and NY Nature Explorer lists species and mission by combining thorough field inventories, scientific communities in a specified area of interest. analyses, expert interpretation, and the most comprehensive NY Natural Heritage also houses iMapInvasives, an database on New York's distinctive biodiversity to deliver online tool for invasive species reporting and data the highest quality information for natural resource management. planning, protection, and management. In 1990, NY Natural Heritage published Ecological NY Natural Heritage was established in 1985 and is a Communities of New York State, an all inclusive contract unit housed within NYS DEC’s Division of classification of natural and human-influenced Fish, Wildlife & Marine Resources. The program is communities. From 40,000-acre beech-maple mesic staffed by more than 25 scientists and specialists with forests to 40-acre maritime beech forests, sea-level salt expertise in ecology, zoology, botany, information marshes to alpine meadows, our classification quickly management, and geographic information systems. became the primary source for natural community NY Natural Heritage maintains New York’s most classification in New York and a fundamental reference comprehensive database on the status and location of for natural community classifications in the northeastern rare species and natural communities. -
Revised World Catalogue of Eucopina, Eucosma, Pelochrista, and Phaneta (Lepidoptera: Tortricidae: Eucosmini)
Zootaxa 3746 (2): 301–337 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3746.2.4 http://zoobank.org/urn:lsid:zoobank.org:pub:A7DD3F31-C3F5-4FED-BD46-157DE7464EEA Revised world catalogue of Eucopina, Eucosma, Pelochrista, and Phaneta (Lepidoptera: Tortricidae: Eucosmini) TODD M. GILLIGAN1 & DONALD J. WRIGHT2 1 Colorado State University, Department of Bioagricultural Sciences and Pest Management, Fort Collins, CO 80523 USA. E-mail: [email protected] 2 3349 Morrison Ave., Cincinnati, OH 45220 USA. E-mail: [email protected] Abstract A revised world catalogue of Eucopina, Eucosma, Pelochrista, and Phaneta is provided. Assignment to genus is based on generic redescriptions by Gilligan et al. (2013). A total of 709 names (including subspecies and synonyms) are listed, including 251 new combinations and 52 revised combinations. Key words: Olethreutinae, Lepidoptera, Tortricidae, Eucosmini Introduction The olethreutine lineage containing Eucosma, Pelochrista, and Phaneta is one of the largest in Tortricidae, with more than 500 described taxa. Its taxonomic history is a classic example of the confusion that results from a lack of clarity regarding generic concepts (Gilligan & Wright 2013, Gilligan et al. 2013). Here we present, in the form of a revised catalogue, the taxonomic implications of a phylogenetic analysis of the group by Gilligan et al. (2013). That study produced revised definitions of Eucosma and Pelochrista based on female genital morphology, concluded that nearly all North American Phaneta belong in the redefined Eucosma, and described Eucopina as a new genus of Pinaceae-feeding species that previously had been placed in Eucosma.