Searches for Massive Highly Ionising Particles at the ATLAS Experiment and in Polar Volcanic Rocks, and Performance Studies of the First Level ATLAS Trigger System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Searching for Stable Massive Particles in the ATLAS Transition Radiation Tracker
Searching for Stable Massive Particles in the ATLAS Transition Radiation Tracker by Steven Schramm A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Bachelor of Science (Hons) in THE FACULTY OF SCIENCE (Physics and Astronomy) The University Of British Columbia (Vancouver) April 2011 c Steven Schramm, 2011 Abstract The search for new particles is an important topic in modern particle physics. New stable massive particles are predicted by various models, including R-parity con- serving variants of supersymmetry. The ATLAS Transition Radiation Tracker can be used to look for charged stable massive particles by using the momentum and velocity of particles passing through the detector to calculate its mass. A program named TRTCHAMP has been written to perform this analysis. Recently, ATLAS changed their data retention policies to phase out the use of a particular format of output file created during reconstruction. TRTCHAMP relies on this file type, and therefore this change prevents the algorithm from work- ing in its original state. However, this problem can be resolved by integrating TRTCHAMP into the official reconstruction, which has now been done. This paper documents the changes involved in integrating TRTCHAMP with the existing InDetLowBetaFinder reconstruction package. Topics discussed in- clude the structure of reconstruction algorithms in ATLAS, the retrieval of calibra- tion constants from the detector conditions database, and the parsing of necessary parameters from multiple reconstruction data containers. To conclude, the output of TRTCHAMP is shown to accurately estimate the velocity of protons in mini- mum bias tracks. Additionally, mass plots generated with the TRTCHAMP results are shown to agree with the known mass for both monte carlo and real protons in minimum bias tracks, and agreement is shown between the input and output masses for a monte carlo sample of 300 GeV R-Hadrons. -
Durham E-Theses
Durham E-Theses Black holes, vacuum decay and thermodynamics CUSPINERA-CONTRERAS, JUAN,LEOPOLDO How to cite: CUSPINERA-CONTRERAS, JUAN,LEOPOLDO (2020) Black holes, vacuum decay and thermodynamics, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/13421/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Black holes, vacuum decay and thermodynamics Juan Leopoldo Cuspinera Contreras A Thesis presented for the degree of Doctor of Philosophy Institute for Particle Physics Phenomenology Department of Physics University of Durham England September 2019 To my family Black holes, vacuum decay and thermodynamics Juan Leopoldo Cuspinera Contreras Submitted for the degree of Doctor of Philosophy September 2019 Abstract In this thesis we study two fairly different aspects of gravity: vacuum decay seeded by black holes and black hole thermodynamics. The first part of this work is devoted to the study of black holes within the (higher dimensional) Randall- Sundrum braneworld scenario and their effect on vacuum decay rates. -
Detection of Cosmic Rays at the LHC Detection of Cosmic Rays at the LHC
Particle and Astroparticle Physics at the Large Hadron Collider --Hadronic Interactions-- Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA NTU, Singapore November 15th 2019 Outline • Introduction on the LHC and LHC physics program • LHC results for Astroparticle physics • Measurements of event characteristics at 13 TeV • Forward measurements • Cosmic ray measurements • LHC and light ions? • Summary The LHC Machine and Experiments MoEDAL LHCf FASER totem CM energy → Run-1: (2010-2012) 7/8 TeV Run-2: (2015-2018) 13 TeV -> Now 8 experiments Run-2 starts proton-proton Run-2 finished 24/10/18 6:00am 2018 2010-2012: Run-1 at 7/8 TeV CM energy Collected ~ 27 fb-1 2015-2018: Run-2 at 13 TeV CM Energy Collected ~ 140 fb-1 2021-2023/24 : Run-3 Expect ⇨ 14 TeV CM Energy and ~ 200/300 fb-1 The LHC is also a Heavy Ion Collider ALICE Data taking during the HI run • All experiments take AA or pA data (except TOTEM) Expected for Run-3: in addition short pO and OO runs ⇨ pO certainly of interest for Cosmic Ray Physics Community! 4 10 years of LHC Operation • LHC: 7 TeV in March 2010 ->The highest energy in the lab! • LHC @ 13 TeV from 2015 onwards March 30 2010 …waiting.. • Most important highlight so far: …since 4:00 am The discovery of a Higgs boson • Many results on Standard Model process measurements, QCD and particle production, top-physics, b-physics, heavy ion physics, searches, Higgs physics • Waiting for the next discovery… -> Searches beyond the Standard Model 12:58 7 TeV collisions!!! New Physics Hunters -
Link to the Live Plenary Sessions
IWARA2020 Video Conference Mexico City time zone, Mexico 9th International Workshop on Astronomy and Relativistic Astrophysics 6 – 12 September, 2020 Live Plenary Talks Program SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY DAYS/HOUR 06/09/2020 07/09/2020 08/09/2020 09/09/2020 10/09/2020 11/09/2020 12/09/2020 COSMOLOGY, DE MMA, DE, DM, CCGG COMPSTARS, DM, GWS DENSE MATTER, QCD DM, DE, GWS, BHS DENSE MATTER, SNOVAE ARCHAEOASTRONOMY TOPICS DM, COMPACT STARS X- & CR- RAYS, MWA PARTICLES, ϒ-RAYS QGP, QFT, HIC, GWS GRAVITATION, GALAXIES DM, COMPACT STARS BHS, GRBS, SNOVAE GRAVITY, BHS, GWS NSS, SNOVAE, GRAVITY QCD, HIC, SNOVAE DM, COSMOLOGY EROSITA DE, BHS, COSMOLOGY LIVE PLENARY TALKS PETER HESS & THOMAS BOLLER & STEVEN GULLBERG & PETER HESS & Steven Gullberg & LUIS UREÑA-LOPEZ & PETER HESS & MODERATORS CESAR ZEN GABRIELLA PICCINELLI CESAR ZEN THOMAS BOLLER Luis Ureña-Lopes BENNO BODMANN CESAR ZEN 07:00 WAITING ROOM WAITING ROOM WAITING ROOM WAITING ROOM WAITING ROOM WAITING ROOM WAITING ROOM 07:45 OPENING 08:00 R. SACAHUI P. SLANE A. SANDOVAL S. FROMENTEAU G. PICCINELLI V. KARAS F. MIRABEL60’ 08:30 M. GAMARRA U. BARRES G. WOLF J. RUEDA R. XU J. STRUCKMEIER60’ 09:00 ULLBERG ARRISON ANAUSKE ENEZES EXHEIMER S. G D. G M. H D. M 60’ V. D D. ROSIŃSKA 09:30 V. ORTEGA G. ROMERO D. VASAK D. PAGE J. AICHELIN M. VARGAS 10:00 – CONFERENCE-BREAK: VIDEO-SYNTHESIS OF RECORDED VIDEOS LIVE SPOTLIGHTS TALKS MODERATORS MARIANA VARGAS MAGAÑA & GABRIELLA PICCINELLI 10:15 J. HORVATH Spotlight Session 1 SPOTLIGHT SESSION 2 Spotlight Session 3 Spotlight Session 4 Spotlight Session 5 SPOTLIGHT SESSION 6 MARCOS MOSHINSKY 10:45 AWARD 11:15 – CONFERENCE-BREAK: VIDEO-SYNTHESIS OF RECORDED VIDEOS LIVE PLENARY TALKS PETER HESS & THOMAS BOLLER & STEVEN GULLBERG & PETER HESS & Steven Gullberg & LUIS UREÑA-LOPEZ & PETER HESS & MODERATORS CESAR ZEN GABRIELLA PICCINELLI CESAR ZEN THOMAS BOLLER Luis Ureña-Lopes BENNO BODMANN CESAR ZEN C. -
Laboratori Nazionali Di Frascati
International Committee for Future Accelerators Sponsored by the Particles and Fields Commission of IUPAP Beam Dynamics Newsletter No. 51 Issue Editor: S. Chattopadhyay Editor in Chief: W. Chou April 2010 3 Contents 1 FOREWORD ........................................................................................................ 11 1.1 FROM THE CHAIRMAN ............................................................................................. 11 1.2 FROM THE EDITOR .................................................................................................. 12 2 INTERNATIONAL LINEAR COLLIDER (ILC) ............................................ 14 2.1 FIFTH INTERNATIONAL ACCELERATOR SCHOOL FOR LINEAR COLLIDERS ............... 14 3 THEME SECTION: ACCELERATOR SCIENCE AND TECHNOLOGY IN THE UK ................................................................................................................ 20 3.1 OVERVIEW – AN EMERGING PARADIGM OF COLLABORATION BETWEEN UNIVERSITIES, NATIONAL FACILITIES AND INDUSTRY ............................................ 20 3.1.1 Introduction .................................................................................................. 20 3.1.2 Mission of UK Accelerator Science and Technology .................................. 20 3.1.3 The Model: Integrated Accelerator Community and Stakeholders .............. 21 3.1.4 The Research Program Driven by Science ................................................... 21 3.1.4.1 Research Focus: Current .............................................................. -
Non-Collider Searches for Stable Massive Particles
Non-collider searches for stable massive particles S. Burdina, M. Fairbairnb, P. Mermodc,, D. Milsteadd, J. Pinfolde, T. Sloanf, W. Taylorg aDepartment of Physics, University of Liverpool, Liverpool L69 7ZE, UK bDepartment of Physics, King's College London, London WC2R 2LS, UK cParticle Physics department, University of Geneva, 1211 Geneva 4, Switzerland dDepartment of Physics, Stockholm University, 106 91 Stockholm, Sweden ePhysics Department, University of Alberta, Edmonton, Alberta, Canada T6G 0V1 fDepartment of Physics, Lancaster University, Lancaster LA1 4YB, UK gDepartment of Physics and Astronomy, York University, Toronto, ON, Canada M3J 1P3 Abstract The theoretical motivation for exotic stable massive particles (SMPs) and the results of SMP searches at non-collider facilities are reviewed. SMPs are defined such that they would be suffi- ciently long-lived so as to still exist in the cosmos either as Big Bang relics or secondary collision products, and sufficiently massive such that they are typically beyond the reach of any conceiv- able accelerator-based experiment. The discovery of SMPs would address a number of important questions in modern physics, such as the origin and composition of dark matter and the unifi- cation of the fundamental forces. This review outlines the scenarios predicting SMPs and the techniques used at non-collider experiments to look for SMPs in cosmic rays and bound in mat- ter. The limits so far obtained on the fluxes and matter densities of SMPs which possess various detection-relevant properties such as electric and magnetic charge are given. Contents 1 Introduction 4 2 Theory and cosmology of various kinds of SMPs 4 2.1 New particle states (elementary or composite) . -
Three Duality Symmetries Between Photons and Cosmic String Loops, and Macro and Micro Black Holes
Symmetry 2015, 7, 2134-2149; doi:10.3390/sym7042134 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Article Three Duality Symmetries between Photons and Cosmic String Loops, and Macro and Micro Black Holes David Jou 1;2;*, Michele Sciacca 1;3;4;* and Maria Stella Mongiovì 4;5 1 Departament de Física, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain 2 Institut d’Estudis Catalans, Carme 47, Barcelona 08001, Spain 3 Dipartimento di Scienze Agrarie e Forestali, Università di Palermo, Viale delle Scienze, Palermo 90128, Italy 4 Istituto Nazionale di Alta Matematica, Roma 00185 , Italy 5 Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica (DICGIM), Università di Palermo, Viale delle Scienze, Palermo 90128, Italy; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (D.J.); [email protected] (M.S.); Tel.: +34-93-581-1658 (D.J.); +39-091-23897084 (M.S.). Academic Editor: Sergei Odintsov Received: 22 September 2015 / Accepted: 9 November 2015 / Published: 17 November 2015 Abstract: We present a review of two thermal duality symmetries between two different kinds of systems: photons and cosmic string loops, and macro black holes and micro black holes, respectively. It also follows a third joint duality symmetry amongst them through thermal equilibrium and stability between macro black holes and photon gas, and micro black holes and string loop gas, respectively. The possible cosmological consequences of these symmetries are discussed. Keywords: photons; cosmic string loops; black holes thermodynamics; duality symmetry 1. Introduction Thermal duality relates high-energy and low-energy states of corresponding dual systems in such a way that the thermal properties of a state of one of them at some temperature T are related to the properties of a state of the other system at temperature 1=T [1–6]. -
Generic Affinities, Posthumanisms and Science-Fictional Imaginings
GENERIC AFFINITIES, POSTHUMANISMS, SCIENCE-FICTIONAL IMAGININGS SPECULATIVE MATTER: GENERIC AFFINITIES, POSTHUMANISMS AND SCIENCE-FICTIONAL IMAGININGS By LAURA M. WIEBE, B.A., M.A. A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy McMaster University © Copyright by Laura Wiebe, October 2012 McMaster University DOCTOR OF PHILOSOPHY (2012) Hamilton, Ontario (English and Cultural Studies) TITLE: Speculative Matter: Generic Affinities, Posthumanisms and Science-Fictional Imaginings AUTHOR: Laura Wiebe, B.A. (University of Waterloo), M.A. (Brock University) SUPERVISOR: Professor Anne Savage NUMBER OF PAGES: vi, 277 ii ABSTRACT Amidst the technoscientific ubiquity of the contemporary West (or global North), science fiction has come to seem the most current of genres, the narrative form best equipped to comment on and work through the social, political and ethical quandaries of rapid technoscientific development and the ways in which this development challenges conventional understandings of human identity and rationality. By this framing, the continuing popularity of stories about paranormal phenomena and supernatural entities – on mainstream television, or in print genres such as urban fantasy and paranormal romance – may seem to be a regressive reaction against the authority of and experience of living in technoscientific modernity. Nevertheless, the boundaries of science fiction, as with any genre, are relational rather than fixed, and critical engagements with Western/Northern technoscientific knowledge and practice and modern human identity and being may be found not just in science fiction “proper,” or in the scholarly field of science and technology studies, but also in the related genres of fantasy and paranormal romance. -
Upgrade of the Global Muon Trigger for the Compact Muon Solenoid Experiment at CERN”
DISSERTATION/DOCTORAL THESIS Titel der Dissertation/Title of the Doctoral Thesis “Upgrade of the Global Muon Trigger for the Compact Muon Solenoid experiment at CERN” verfasst von/submitted by Mag. Dinyar Sebastian Rabady angestrebter akademischer Grad/in partial fulfilment of the requirements for the degree of Doktor der Naturwissenschaften (Dr. rer. nat.) Wien, im Jänner 2018/Vienna, in January 2018 Studienkennzahl lt. Studienblatt/ A 796 605 411 degree programme code as it appears on the student record sheet: Studienrichtung lt. Studienblatt/ Physik field of study as it appears onthe student record sheet: Betreut von/Supervisor: Dipl.-Ing. Dr. Claudia-Elisabeth Wulz Hon.-Prof. Dipl.-Phys. Dr. Eberhard Widmann Für meinen Großvater. Abstract The Large Hadron Collider is a large particle accelerator at the CERN research labo- ratory, designed to provide particle physics experiments with collisions at unprece- dented centre-of-mass energies. For its second running period both the number of colliding particles and their collision energy were increased. To cope with these more challenging conditions and maintain the excellent performance seen during the first running period, the Level-1 trigger of the Compact Muon Solenoid experiment — a so- phisticated electronics system designed to filter events in real-time — was upgraded. This upgrade consisted of the complete replacement of the trigger electronics andafull redesign of the system’s architecture. While the calorimeter trigger path now follows a time-multiplexed processing model where the entire trigger data for a collision are received by a single processing board, the muon trigger path was split into regional track finding systems where each newly introduced track finder receives data from all three muon subdetectors for a certain geometric detector slice and reconstructs fully formed muon tracks from this. -
The Very Forward CASTOR Calorimeter of the CMS Experiment
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) CERN-EP-2020-180 2021/02/11 CMS-PRF-18-002 The very forward CASTOR calorimeter of the CMS experiment The CMS Collaboration* Abstract The physics motivation, detector design, triggers, calibration, alignment, simulation, and overall performance of the very forward CASTOR calorimeter of the CMS exper- iment are reviewed. The CASTOR Cherenkov sampling calorimeter is located very close to the LHC beam line, at a radial distance of about 1 cm from the beam pipe, and at 14.4 m from the CMS interaction point, covering the pseudorapidity range of −6.6 < h < −5.2. It was designed to withstand high ambient radiation and strong magnetic fields. The performance of the detector in measurements of forward energy density, jets, and processes characterized by rapidity gaps, is reviewed using data collected in proton and nuclear collisions at the LHC. ”Published in the Journal of Instrumentation as doi:10.1088/1748-0221/16/02/P02010.” arXiv:2011.01185v2 [physics.ins-det] 10 Feb 2021 © 2021 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license *See Appendix A for the list of collaboration members Contents 1 Contents 1 Introduction . .1 2 Physics motivation . .3 2.1 Forward physics in proton-proton collisions . .3 2.2 Ultrahigh-energy cosmic ray air showers . .5 2.3 Proton-nucleus and nucleus-nucleus collisions . .5 3 Detector design . .6 4 Triggers and operation . .9 5 Event reconstruction and calibration . 12 5.1 Noise and baseline . 13 5.2 Gain correction factors . 15 5.3 Channel-by-channel intercalibration . -
Book of Abstracts Ii Contents
TeV Particle Astrophysics 2019 Monday, 2 December 2019 - Friday, 6 December 2019 Book of Abstracts ii Contents A Unique Multi-Messenger Signal of QCD Axion Dark Matter ............... 1 The Light Dark Matter eXperiment, LDMX .......................... 1 Why there is no simultaneous detection of Gamma rays and x-rays from x-ray bright galaxy clusters? A hydrodynamical study on the manufacturing of cosmic rays in the evolving dynamical states of galaxy clusters ............................ 1 Mathematical results on hyperinflation ............................ 2 Cuckoo’s eggs in neutron stars: can LIGO hear chirps from the dark sector? . 3 Lensing of fast radio bursts: future constraints on primordial black hole density with an extended mass function and a new probe of exotic compact fermion/ boson stars . 3 Potential dark matter signals at neutrino telescopes ..................... 4 Anomalous 21-cm EDGES Signal and Moduli Dominated Era ................ 4 Precision Measurement of Primary Cosmic Rays with Alpha MAgnetic spectrometer on ISS ................................................ 4 Properties of Secondary Cosmic Ray Lithium, Beryllium and Boron measured with the Alpha Magnetic Spectrometer on the ISS ......................... 5 The Role of Magnetic Field Geometry in the Evolution of Neutron Star Merger Accretion Disks ............................................. 5 Dependence of accessible dark matter annihilation cross sections on the density profiles of dSphs ............................................. 6 Ways of Seeing: Finding BSM physics at the LHC ...................... 6 Probing the Early Universe with Axion Physics ....................... 6 Evidence the 3.5 keV line is not from dark matter decay ................... 7 Global study of effective Higgs portal dark matter models using GAMBIT . 7 Angular power spectrum analysis on current and future high-energy neutrino data . 8 Testing the EWPT of 2HDM at future lepton Colliders .................. -
Can the Ball Lightning Be the Manifestation of a Micro Black Hole?
Physics & Astronomy International Journal Opinion Open Access Can the ball lightning be the manifestation of a micro black hole? Abstract Volume 5 Issue 1 - 2021 The physical nature of the ball lightning (BL) is still the mystery regardless of several Vladimir F Burov,1 Sergey V Sheleg2 proposed theories. The hypothesis stating that the BL can represent the “micro black hole” 1ZIO-KOTES Ltd, Novosibirsk, Russian Federation (MBH), which, interacting with the terrestrial gravity force, generates the directed radiation, 2ENIT Inc, Scottsdale, AZ 85261, USA which allows it to “levitate”, deserves special interest. Having taken this possibility into account, the analysis had been held with regard to the ability of the MBH to generate Correspondence: Sergey V Sheleg, ENIT Inc, Scottsdale, USA, electromagnetic radiation (ER) for “levitation”, with the BL weighing one gram as a basic Tel +1 (850) 364-8462, Email point. Additionally, the duration of its potential lifecycle is evaluated. The performed calculations attest to the fact that the BL cannot represent the MBH. Received: May 10, 2021 | Published: May 20, 2021 Keywords: The ball lightning, micro black holes, electromagnetic radiation Introduction 2 rcg = 2/GMbh , The ball lightning (BL) is quite a rare atmospheric phenomenon.1 Its physical nature still remains a mystery. The variety of ball lightning −11 where rGg −=gravitational radius( m) ; 6.67430× 10 , theories had been proposed for the past several years, but unfortunately, −2 none of them cannot describe all the observable parameters of N×× m² kg – gravitational constant, Mbh − the mass of the 2 this natural phenomenon. Rabinowitz proposed an interesting MBH(kg), с − 3×108m/s.