Link to the Live Plenary Sessions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Durham E-Theses
Durham E-Theses Black holes, vacuum decay and thermodynamics CUSPINERA-CONTRERAS, JUAN,LEOPOLDO How to cite: CUSPINERA-CONTRERAS, JUAN,LEOPOLDO (2020) Black holes, vacuum decay and thermodynamics, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/13421/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Black holes, vacuum decay and thermodynamics Juan Leopoldo Cuspinera Contreras A Thesis presented for the degree of Doctor of Philosophy Institute for Particle Physics Phenomenology Department of Physics University of Durham England September 2019 To my family Black holes, vacuum decay and thermodynamics Juan Leopoldo Cuspinera Contreras Submitted for the degree of Doctor of Philosophy September 2019 Abstract In this thesis we study two fairly different aspects of gravity: vacuum decay seeded by black holes and black hole thermodynamics. The first part of this work is devoted to the study of black holes within the (higher dimensional) Randall- Sundrum braneworld scenario and their effect on vacuum decay rates. -
Discovery of Grbs at Tev Energies
Major Progress in Understanding of GRBs: Discovery of TeraelectronVolt Gamma-Ray Emission Razmik Mirzoyan On behalf of the MAGIC Collaboration Max-Planck-Institute for Physics Munich, Germany This year we celebrate the 30 year jubilee of ground-based VHE g-ray astronomy • The first 9s detection of the Crab Nebula marked the birth of the VHE g-ray astronomy as an independent branch of astronomy • This detection was reported by the 10m diameter Whipple IACT team in Arizona, lead by the pioneer of VHE g-ray astronomy Trevor Weekes, in 1989 • With the detection of the first gigantic signal from the GRB190114C (in the first 30 s the gamma-ray rate was x 100 Crab!) we want to celebrate the 30 years jubilee of VHE g-ray astronomy ! 25th of July 2019, 36th ICRC, Razmik Mirzoyan: GRBs: Discovery of TeV 2 Madison, WI, USA Gamma-Ray Emission The Astronomer’s Telegram Offline analyses revealed signal > 50 s 25th of July 2019, 36th ICRC, Razmik Mirzoyan: GRBs: Discovery of TeV 3 Madison, WI, USA Gamma-Ray Emission Gamma Ray Bursts • Most powerful, violent, distant explosions in the Universe • 2 different populations, short and long bursts • Long GRBs: T > ~ 2s; massive star collapse > ultra-relativistic jet • Recent detection of a gravitational wave signal consistent with a binary neutron star merger and associated to a short GRB • Both long and short GRBs have been detected at E < 100 GeV • No strict division in time between prompt and afterglow 25th of July 2019, 36th ICRC, Razmik Mirzoyan: GRBs: Discovery of TeV 4 Madison, WI, USA Gamma-Ray Emission Past Hint from a GRB @ E ≥ 20 TeV AIROBICC & GRB 920925c Padilla et al., 1998 • AIROBICC in 1990’s was an air Cherenkov integrating array of 7x7 40cm Ø PMT-based stations covering ≥ 32000m2 • From GRB 920925c one expected 0.93 events while 11 were observed. -
The Case of Linear Canonical Transforms
Independent simultaneous discoveries visualized through network analysis: the case of linear canonical transforms Sofia Liberman & Kurt Bernardo Wolf Scientometrics An International Journal for all Quantitative Aspects of the Science of Science, Communication in Science and Science Policy ISSN 0138-9130 Scientometrics DOI 10.1007/s11192-015-1602-x 1 23 Your article is protected by copyright and all rights are held exclusively by Akadémiai Kiadó, Budapest, Hungary. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Scientometrics DOI 10.1007/s11192-015-1602-x Independent simultaneous discoveries visualized through network analysis: the case of linear canonical transforms 1 2 Sofia Liberman • Kurt Bernardo Wolf Received: 20 November 2014 Ó Akade´miai Kiado´, Budapest, Hungary 2015 Abstract We describe the structural dynamics of two groups of scientists in relation to the independent simultaneous discovery (i.e., definition and application) of linear canonical transforms. This mathematical construct was built as the transfer kernel of paraxial optical systems by Prof. Stuart A. -
Three Duality Symmetries Between Photons and Cosmic String Loops, and Macro and Micro Black Holes
Symmetry 2015, 7, 2134-2149; doi:10.3390/sym7042134 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Article Three Duality Symmetries between Photons and Cosmic String Loops, and Macro and Micro Black Holes David Jou 1;2;*, Michele Sciacca 1;3;4;* and Maria Stella Mongiovì 4;5 1 Departament de Física, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain 2 Institut d’Estudis Catalans, Carme 47, Barcelona 08001, Spain 3 Dipartimento di Scienze Agrarie e Forestali, Università di Palermo, Viale delle Scienze, Palermo 90128, Italy 4 Istituto Nazionale di Alta Matematica, Roma 00185 , Italy 5 Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica (DICGIM), Università di Palermo, Viale delle Scienze, Palermo 90128, Italy; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (D.J.); [email protected] (M.S.); Tel.: +34-93-581-1658 (D.J.); +39-091-23897084 (M.S.). Academic Editor: Sergei Odintsov Received: 22 September 2015 / Accepted: 9 November 2015 / Published: 17 November 2015 Abstract: We present a review of two thermal duality symmetries between two different kinds of systems: photons and cosmic string loops, and macro black holes and micro black holes, respectively. It also follows a third joint duality symmetry amongst them through thermal equilibrium and stability between macro black holes and photon gas, and micro black holes and string loop gas, respectively. The possible cosmological consequences of these symmetries are discussed. Keywords: photons; cosmic string loops; black holes thermodynamics; duality symmetry 1. Introduction Thermal duality relates high-energy and low-energy states of corresponding dual systems in such a way that the thermal properties of a state of one of them at some temperature T are related to the properties of a state of the other system at temperature 1=T [1–6]. -
GRB 190114C: an Upgraded Legend Arxiv:1901.07505V2 [Astro-Ph.HE] 25 Mar 2019
GRB 190114C: An Upgraded Legend Yu Wang1;2, Liang Li 1, Rahim Moradi 1;2, Remo Ruffini 1;2;3;4;5;6 1ICRANet, P.zza della Repubblica 10, 65122 Pescara, Italy. 2ICRA and Dipartimento di Fisica, Sapienza Universita` di Roma, P.le Aldo Moro 5, 00185 Rome, Italy. 3ICRANet - INAF, Viale del Parco Mellini 84, 00136 Rome, Italy. 4Universite´ de Nice Sophia Antipolis, CEDEX 2, Grand Chateauˆ Parc Valrose, Nice, France. 5ICRANet-Rio, Centro Brasileiro de Pesquisas F´ısicas, Rua Dr. Xavier Sigaud 150, 22290–180 Rio de Janeiro, Brazil. 6ICRA, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, I-00128 Rome, Italy. [email protected], [email protected], [email protected], ruffi[email protected] arXiv:1901.07505v2 [astro-ph.HE] 25 Mar 2019 1 Gamma-ray burst (GRB) 190114C first resembles the legendary GRB 130427A: Both are strong sources of GeV emission, exhibiting consistent GeV spectral evolution, and almost identical in detail for the morphology of light-curves in X-ray, gamma-ray and GeV bands, inferring a standard system with differ- ent scales. GRB 190114C is richer than GRB 130427A: a large percentage of ∼ 30% energy is thermal presenting in the gamma-ray prompt emission, mak- ing it as one of the most thermal-prominent GRBs; Moreover, GRB 190114C extends the horizon of GRB research, that for the first time the ultra-high energy TeV emission (> 300 GeV) is detected in a GRB as reported by the MAGIC team. Furthermore, GRB 190114C urges us to revisit the traditional theoretical framework, since most of the GRB’s energy may emit in the GeV and TeV range, not in the conventional MeV range. -
Link to Parallel Sessions
Parallel Sessions Video-Recorded Talks and Visual Presentations IWARA2020 Video Conference 9th International Workshop on Astronomy and Relativistic Astrophysics 6 – 12 September, 2020 Parallel Sessions: video-recorded talks and visual presentations click on names to access click on names to access titles and abstracts titles and abstracts SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY DAYS 06/09/2020 07/09/2020 08/09/2020 09/09/2020 10/09/2020 11/09/2020 12/09/2020 QM, PARTICLES COSMOLOGY, DE X- & CR- RAYS, QM COMPSTARS, DM, DE DENSE MATTER, QCD DM, DE, GWS, BHS ATOMS, NUCLE, SNOVAE DM, COMPACT STARS SNOVAE, GRAVITY, DM GWS, ϒ-RAYS, QGP QCD, QFT, HIC, GWS, NSS GRAVITATION, GALAXIES TOPICS MERGERS, QED, BHS, NSS, BHS, GWS COSMOLOGY, PARTICLES HIC, SNOVAE, BHS DM, COSMOLOGY, FTH. QCD, LIFE, GRBS GRBS, COMPSTARS GRAVITY COMPSTARS, GALAXIES PARTICLES, GALAXIES INFLATION COSMOLOGY, OA, KT VIDEO-RECORDED TALKS AND PRESENTATIONS E. OKS A.F. ALI A. CHAKRABORTY A.M.A.H. DIAB A.H. AGUILAR C. WUENSCHE F.S. GUZMÁN A. P.-MARTINEZ B. NAYAK A.N. TAWFIK A. G. GRUNFELD D. CASTILLO I. Radinschi C.-J. XIA D. HADJIMICHEF A. CABO C. FRAJUCA E.R. QUERTS J.R.-BECERRIL D. PEREZ G.Q.-ANGULO E. ERFANI K. M.-DELMESTRE F. KÖPP REMOTE ACCESS M. BHUYAN D.M.-PARET J.A.C.N. VERA I. KULIKOV L. JAIME G. PECCINI N.N. SCOCCOLA G. NIZ R. RIAZ L. SHAO M. A.G. GARCIA H.P.-ROJAS S.B. POPOV R.K. CHOWDHURY S. HOU S. Chattopadhyay M.L.L. DA SILVA P. -
2019 ANNUAL REPORT Institute of Cosmos Sciences of the University of Barcelona
INSTITUTE OF COSMOS SCIENCES UNIVERSITY OF BARCELONA 2019 ANNUAL REPORT Institute of Cosmos Sciences of the University of Barcelona. Published in Barcelona, July 1st 2020. This report has been written and designed by the Scientific Office. Cover photography by Eduard Masana CONTENTS FORWORD 4 GOVERNING BODIES 6 ICCUB IN FIGURES 7 RESEARCH HIGHLIGHTS 9 Cosmology and Large Scale Structure 10 Experimental Particle Physics 11 Galaxy Structure and Evolution 12 Gravitation and Cosmology 13 Hadronic, nuclear and atomic physics 14 High Energy Astrophysics 15 Particle Physics Phenomenolgy 16 Quantum Field Theory and String Theory 17 Quantum Technologies 18 Star Formation 19 LIFE AT THE ICCUB 20 TECHNOLOGICAL UNIT 25 OUTREACH 26 FOREWORD 2019 has been for the ICCUB a year marked by the Maria de Maetzu awards. Our first one finished on June, and we reapplied for a renewal without success, although we obtained a very high score that has encouraged us to define an ambitious strategic program for the next four years and to apply again. The four years of our first award have allowed us to consolidate the structure of our institute and this year has been very rich in results. In July 2019 we have officially become members of the Virgo consortium, thus strengthening our Gravitational Waves strategic line. We are contributing to Virgo both in instrument development through our Technological Unit, and science through an initial PhD position and the involvement of several of our senior researchers. © EGO /Virgo Collaboration/Perciballi Let me here remark the significant consolidation of our Technological Unit during this year after the opening of its new labs and offices in the Parc Científic. -
Generic Affinities, Posthumanisms and Science-Fictional Imaginings
GENERIC AFFINITIES, POSTHUMANISMS, SCIENCE-FICTIONAL IMAGININGS SPECULATIVE MATTER: GENERIC AFFINITIES, POSTHUMANISMS AND SCIENCE-FICTIONAL IMAGININGS By LAURA M. WIEBE, B.A., M.A. A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy McMaster University © Copyright by Laura Wiebe, October 2012 McMaster University DOCTOR OF PHILOSOPHY (2012) Hamilton, Ontario (English and Cultural Studies) TITLE: Speculative Matter: Generic Affinities, Posthumanisms and Science-Fictional Imaginings AUTHOR: Laura Wiebe, B.A. (University of Waterloo), M.A. (Brock University) SUPERVISOR: Professor Anne Savage NUMBER OF PAGES: vi, 277 ii ABSTRACT Amidst the technoscientific ubiquity of the contemporary West (or global North), science fiction has come to seem the most current of genres, the narrative form best equipped to comment on and work through the social, political and ethical quandaries of rapid technoscientific development and the ways in which this development challenges conventional understandings of human identity and rationality. By this framing, the continuing popularity of stories about paranormal phenomena and supernatural entities – on mainstream television, or in print genres such as urban fantasy and paranormal romance – may seem to be a regressive reaction against the authority of and experience of living in technoscientific modernity. Nevertheless, the boundaries of science fiction, as with any genre, are relational rather than fixed, and critical engagements with Western/Northern technoscientific knowledge and practice and modern human identity and being may be found not just in science fiction “proper,” or in the scholarly field of science and technology studies, but also in the related genres of fantasy and paranormal romance. -
Marcos Moshinsky Kiev, Ukraine, 20 Apr
Marcos Moshinsky Kiev, Ukraine, 20 Apr. 1921 - Mexico City, Mexico, 1 Apr. 2009 Nomination 9 June 1986 Field Physics Title Professor at the Universidad Nacional Auto#noma de Me#xico Commemoration – The impressive biographical data of Marcus Moshinsky is very well documented in the Yearbook that we have in front of us, so I think there’s no sense in reading it to you. I think I can do justice to his genius better by telling you my personal recollections on four encounters with his work, which show the breadth of his intellectual horizon. The first was very long ago in 1951. I was in Gottingen and there appeared a paper in Physics Review which derived the essential consequences of general relativity just by solving the Schrödinger Equation in an external gravitational potential, and we were very perplexed. It was not talking about the non- Euclidian geometry, and it came from Princeton, where Einstein was still alive and dominating. The paper sort of said that, actually, we don’t need Einstein, we can derive all this very simply. We tried to find a mistake, as there were many crazy theories around, but we couldn’t find anything so we decided it was correct. Then we didn’t know what to do, since he had apparently found an effect which is present, as is the one of general relativity, so perhaps you should add them since both are correct. But if you do that then you get a factor 2 and destroy all the agreement with the experiment, so that’s not what you want to do. -
Book of Abstracts Ii Contents
TeV Particle Astrophysics 2019 Monday, 2 December 2019 - Friday, 6 December 2019 Book of Abstracts ii Contents A Unique Multi-Messenger Signal of QCD Axion Dark Matter ............... 1 The Light Dark Matter eXperiment, LDMX .......................... 1 Why there is no simultaneous detection of Gamma rays and x-rays from x-ray bright galaxy clusters? A hydrodynamical study on the manufacturing of cosmic rays in the evolving dynamical states of galaxy clusters ............................ 1 Mathematical results on hyperinflation ............................ 2 Cuckoo’s eggs in neutron stars: can LIGO hear chirps from the dark sector? . 3 Lensing of fast radio bursts: future constraints on primordial black hole density with an extended mass function and a new probe of exotic compact fermion/ boson stars . 3 Potential dark matter signals at neutrino telescopes ..................... 4 Anomalous 21-cm EDGES Signal and Moduli Dominated Era ................ 4 Precision Measurement of Primary Cosmic Rays with Alpha MAgnetic spectrometer on ISS ................................................ 4 Properties of Secondary Cosmic Ray Lithium, Beryllium and Boron measured with the Alpha Magnetic Spectrometer on the ISS ......................... 5 The Role of Magnetic Field Geometry in the Evolution of Neutron Star Merger Accretion Disks ............................................. 5 Dependence of accessible dark matter annihilation cross sections on the density profiles of dSphs ............................................. 6 Ways of Seeing: Finding BSM physics at the LHC ...................... 6 Probing the Early Universe with Axion Physics ....................... 6 Evidence the 3.5 keV line is not from dark matter decay ................... 7 Global study of effective Higgs portal dark matter models using GAMBIT . 7 Angular power spectrum analysis on current and future high-energy neutrino data . 8 Testing the EWPT of 2HDM at future lepton Colliders .................. -
Can the Ball Lightning Be the Manifestation of a Micro Black Hole?
Physics & Astronomy International Journal Opinion Open Access Can the ball lightning be the manifestation of a micro black hole? Abstract Volume 5 Issue 1 - 2021 The physical nature of the ball lightning (BL) is still the mystery regardless of several Vladimir F Burov,1 Sergey V Sheleg2 proposed theories. The hypothesis stating that the BL can represent the “micro black hole” 1ZIO-KOTES Ltd, Novosibirsk, Russian Federation (MBH), which, interacting with the terrestrial gravity force, generates the directed radiation, 2ENIT Inc, Scottsdale, AZ 85261, USA which allows it to “levitate”, deserves special interest. Having taken this possibility into account, the analysis had been held with regard to the ability of the MBH to generate Correspondence: Sergey V Sheleg, ENIT Inc, Scottsdale, USA, electromagnetic radiation (ER) for “levitation”, with the BL weighing one gram as a basic Tel +1 (850) 364-8462, Email point. Additionally, the duration of its potential lifecycle is evaluated. The performed calculations attest to the fact that the BL cannot represent the MBH. Received: May 10, 2021 | Published: May 20, 2021 Keywords: The ball lightning, micro black holes, electromagnetic radiation Introduction 2 rcg = 2/GMbh , The ball lightning (BL) is quite a rare atmospheric phenomenon.1 Its physical nature still remains a mystery. The variety of ball lightning −11 where rGg −=gravitational radius( m) ; 6.67430× 10 , theories had been proposed for the past several years, but unfortunately, −2 none of them cannot describe all the observable parameters of N×× m² kg – gravitational constant, Mbh − the mass of the 2 this natural phenomenon. Rabinowitz proposed an interesting MBH(kg), с − 3×108m/s. -
Mankind May Be Impossible to Manufacture out Any Artificial Real
The Journal of American Science, 2(1), 2006, Zhang, Artificial Real Gravitational Black Hole (BH) Mankind May Be Impossible to Manufacture out Any Artificial Real Gravitational Black Hole (BH) Forever ---- Part 3 of “New Concepts to Big Bang and Black Holes” [6][7]---- ----A incidental comment to BBC News about artificial BH on 3/17 /2005---- Dongsheng Zhang Graduated in 1957 From Beijing University of Aeronautics and Astronautics. China. Permanent address: 17 Pontiac Road, West Hartford, CT 06117-2129, U.S.A. Email: [email protected] Abstract: Recently, many scientists in different countries did some alarmist talks to “artificial black holes”. Probably, those scientists only depended upon their unreal image to talk about “artificial black hole”. They might not conscientiously study the characteristics of a real gravitational BH, and not calculated out the exact values of various parameter of a real gravitational BH in detail. Most scientists hankered after new modern theories, such as string theory, but almost neglect to apply classical theories, such as Hawking’s formulas about BHs in calculations of BHs. However, BH is the product of classical theories, it can be correctly explained only by classical theories. Some experimental scientists probably made up news about manufacturing artificial BHs for their special purpose. Thus, they did not apply the suitable formulas to calculate out correct value of every parameter of a real gravitational BH so that they might consciously or unconsciously obscured the principal differences between a real gravitational BH and non-BH with specious arguments. The calculated fundamental formulas in this article originate from GTR and Hawking about theory of BH, through qualitatively analyses and detailed calculations to various parameters of different real BHs, this article will show that, any “artificial BH ” will have no possibility to be manufactured out by mankind forever.