20 October 2011 (20.10.2011) V I A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) United States Patent (10) Patent No.: US 9,598.458 B2 Shimizu Et Al
USO09598458B2 (12) United States Patent (10) Patent No.: US 9,598.458 B2 Shimizu et al. (45) Date of Patent: Mar. 21, 2017 (54) ASYMMETRICAUXILLARY GROUP 3,687,808 A 8/1972 Merigan et al. 3,745,162 A 7/1973 Helsley 4,022,791 A 5/1977 Welch, Jr. (71) Applicant: NYTE SCIENCES JAPAN, 4,113,869 A 9, 1978 Gardner ... Kagoshima-shi (JP) 4.415,732 A 1 1/1983 Caruthers et al. 4,458,066 A 7/1984 Caruthers et al. (72) Inventors: Mamoru Shimizu, Uruma (JP); 4,500,707 A 2f1985 Caruthers et al. Takeshi Wada, Kashiwa (JP) 4,542,142 A 9, 1985 Martel et al. 4,659,774 A 4, 1987 Webb et al. 4,663,328 A 5, 1987 Lafon (73) Assignee: YESCIENCES JAPAN, 4,668,777. A 5/1987 Caruthers et al. ... Kagoshima-shi (JP) 4,725,677 A 2/1988 Koster et al. 4,735,949 A 4, 1988 Domagala et al. (*) Notice: Subject to any disclaimer, the term of this 4,840,956 A 6/1989 Domagala et al. patent is extended or adjusted under 35 3:38 A . 3. EthOester Phet al. et al. U.S.C. 154(b) by 17 days. 4,973,679 A 1 1/1990 Caruthers et al. 4,981,957 A 1/1991 Lebleu et al. (21) Appl. No.: 14/414,604 5,047,524. A 9/1991 Andrus et al. 5,118,800 A 6/1992 Smith et al. (22) PCT Filed: Jul. 12, 2013 5,130,302 A 7/1992 Spielvogel et al. -
Annotation-1 Annotation-1
Annotation-1 Baseline Resuscitation Normal Saline Resuscitation PFP Shock Annotation-1 Aminoacids Arginine and proline metabolism Carnitine and fatty acid metabolsim Glutamate metabolism Glycerophospholipid biosynthesis Glycolysis and sugars GSH homeostasis GSH homeostasis/Glyoxlate Hexosamine Indole and Tryptophan Nucleotides Other Panthothenate metabolism Pentose Phosphate Pathway Serine biosynthesis and one-carbon metabolism Signaling Sulfur metabolism TCA cycle urea cycle relative row min row max Baseline_14 Baseline_16 Baseline_13 Baseline_15 Baseline_22 Baseline_2 Baseline_12 Baseline_3 Baseline_4 Baseline_9 Baseline_7 Baseline_8 Shock_13 Shock_12 Shock_15 Shock_22 Shock_14 Shock_16 Shock_2 Shock_3 Shock_7 Shock_4 Shock_8 Shock_9 Res_NS_14 Res_NS_13 Res_NS_16 Res_NS_12 Res_NS_22 Res_NS_15 Res_PFP_2 Res_PFP_3 Res_PFP_7 Res_PFP_4 Res_PFP_8 Res_PFP_9 Annotation-1 Annotation-1 Annotation Annotation-1 L-Arginine Aminoacids L-Isoleucine Aminoacids Leucine Aminoacids L-Cysteine Aminoacids L-Alanine Aminoacids L-Aspartate Aminoacids L-Glutamate Aminoacids L-Glutamine Aminoacids L-Histidine Aminoacids L-Lysine Aminoacids L-Methionine Aminoacids L-Tyrosine Aminoacids L-Asparagine Aminoacids L-Threonine Aminoacids L-Cystine Aminoacids L-Serine Aminoacids L-Proline Aminoacids L-Valine Aminoacids L-Tryptophan Aminoacids Glycine Aminoacids L-Kynurenine Aminoacids L-Phenylalanine Aminoacids CMP Nucleotides 6-Hydroxynicotinate Nucleotides 5-6-Dihydrouracil Nucleotides AMP Nucleotides dAMP Nucleotides GMP Nucleotides Guanine Nucleotides 2-5-Dihydroxypyridine -
Erythropoietic Protoporphyrias: Studies of the Natural History, Genotype-Phenotype Correlations, and Psychosocial Impact
Erythropoietic Protoporphyrias: Studies of the Natural History, Genotype-Phenotype Correlations, and Psychosocial Impact PI: Dr. Manisha Balwani NCT01688895 Document Date: Jun 26, 2015 RDCRN PC #7207 EPP Natural History Version Date: V2 26Jun2015 Rare Diseases Clinical Research Network Porphyrias Consortium Erythropoietic Protoporphyrias: Studies of the Natural History, Genotype-Phenotype Correlations, and Psychosocial Impact This protocol is for research purposes only and should not be copied, redistributed, or used for any other purpose. The procedures in this protocol are intended only for use by the Porphyrias Consortium investigators in carefully controlled settings. The Study Chair of this study should be consulted before using this protocol. Study Chair: Manisha Balwani, MD, MS Department of Genetics & Genomic Sciences Icahn School of Medicine at Mount Sinai One Gustave L. Levy Place, Box 1497 New York, NY 10029 Phone: 212-241-0915 Fax: 212-426-9065 Email: [email protected] Page 1 of 31 RDCRN PC #7207 EPP Natural History Version Date: V2 26Jun2015 Table of Contents Contents Participating Institutions/Investigators Table (contact information)............................................................... 4 1. Synopsis .................................................................................................................................................... 6 1.A. Protocol Overview .............................................................................................................................. 8 2. Objective -
35 Disorders of Purine and Pyrimidine Metabolism
35 Disorders of Purine and Pyrimidine Metabolism Georges van den Berghe, M.- Françoise Vincent, Sandrine Marie 35.1 Inborn Errors of Purine Metabolism – 435 35.1.1 Phosphoribosyl Pyrophosphate Synthetase Superactivity – 435 35.1.2 Adenylosuccinase Deficiency – 436 35.1.3 AICA-Ribosiduria – 437 35.1.4 Muscle AMP Deaminase Deficiency – 437 35.1.5 Adenosine Deaminase Deficiency – 438 35.1.6 Adenosine Deaminase Superactivity – 439 35.1.7 Purine Nucleoside Phosphorylase Deficiency – 440 35.1.8 Xanthine Oxidase Deficiency – 440 35.1.9 Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency – 441 35.1.10 Adenine Phosphoribosyltransferase Deficiency – 442 35.1.11 Deoxyguanosine Kinase Deficiency – 442 35.2 Inborn Errors of Pyrimidine Metabolism – 445 35.2.1 UMP Synthase Deficiency (Hereditary Orotic Aciduria) – 445 35.2.2 Dihydropyrimidine Dehydrogenase Deficiency – 445 35.2.3 Dihydropyrimidinase Deficiency – 446 35.2.4 Ureidopropionase Deficiency – 446 35.2.5 Pyrimidine 5’-Nucleotidase Deficiency – 446 35.2.6 Cytosolic 5’-Nucleotidase Superactivity – 447 35.2.7 Thymidine Phosphorylase Deficiency – 447 35.2.8 Thymidine Kinase Deficiency – 447 References – 447 434 Chapter 35 · Disorders of Purine and Pyrimidine Metabolism Purine Metabolism Purine nucleotides are essential cellular constituents 4 The catabolic pathway starts from GMP, IMP and which intervene in energy transfer, metabolic regula- AMP, and produces uric acid, a poorly soluble tion, and synthesis of DNA and RNA. Purine metabo- compound, which tends to crystallize once its lism can be divided into three pathways: plasma concentration surpasses 6.5–7 mg/dl (0.38– 4 The biosynthetic pathway, often termed de novo, 0.47 mmol/l). starts with the formation of phosphoribosyl pyro- 4 The salvage pathway utilizes the purine bases, gua- phosphate (PRPP) and leads to the synthesis of nine, hypoxanthine and adenine, which are pro- inosine monophosphate (IMP). -
An Overview of Biosynthesis Pathways – Inspiration for Pharmaceutical and Agrochemical Discovery
An Overview of Biosynthesis Pathways – Inspiration for Pharmaceutical and Agrochemical Discovery Alan C. Spivey [email protected] 19th Oct 2019 Lessons in Synthesis - Azadirachtin • Azadirachtin is a potent insect anti-feedant from the Indian neem tree: – exact biogenesis unknown but certainly via steroid modification: O MeO C OAc O 2 H O OH O H O OH 12 O O C 11 O 14 OH oxidative 8 O H 7 cleavage highly hindered C-C bond HO OH AcO OH AcO OH for synthesis! H H of C ring H MeO2C O AcO H tirucallol azadirachtanin A azadirachtin (cf. lanosterol) (a limanoid = tetra-nor-triterpenoid) – Intense synhtetic efforts by the groups of Nicolaou, Watanabe, Ley and others since structural elucidation in 1987. –1st total synthesis achieved in 2007 by Ley following 22 yrs of effort – ~40 researchers and over 100 person-years of research! – 64-step synthesis – Veitch Angew. Chem. Int. Ed. 2007, 46, 7629 (DOI) & Veitch Angew. Chem. Int. Ed. 2007, 46, 7633 (DOI) – Review ‘The azadirachtin story’ see: Veitch Angew. Chem. Int. Ed. 2008, 47, 9402 (DOI) Format & Scope of Presentation • Metabolism & Biosynthesis – some definitions, 1° & 2° metabolites • Shikimate Metabolites – photosynthesis & glycolysis → shikimate formation → shikimate metabolites – Glyphosate – a non-selective herbicide • Alkaloids – acetylCoA & the citric acid cycle → -amino acids → alkaloids – Opioids – powerful pain killers • Fatty Acids and Polyketides –acetylCoA → malonylCoA → fatty acids, prostaglandins, polyketides, macrolide antibiotics – NSAIDs – anti-inflammatory’s • Isoprenoids/terpenes -
Recent Syntheses of Steroidal Oxazoles, Oxazolines and Oxazolidines
A Platinum Open Access Journal Review for Organic Chemistry Free to Authors and Readers DOAJ Seal Arkivoc 2021, part i, 471-490 Recent syntheses of steroidal oxazoles, oxazolines and oxazolidines Besma Bendif,a,b Malika Ibrahim-Ouali,*a and Frédéric Dumur c aAix Marseille Univ, CNRS, Centrale Marseille, iSm2, F-13397 Marseille, France bLaboratoire de Chimie Appliquée, Faculté des Sciences, Université du 08 mai 1945 Guelma, Algeria cAix Marseille Univ, CNRS, ICR, UMR 72 73, F-13397 Marseille, France Email: [email protected] Received 03-15-2021 Accepted 04-11-2021 Published on line 05-08-2021 Abstract It was found that the introduction of heterocycles to steroids often leads in a change of their physiological activity and the appearance of new interesting biological precursors. Recent developments in the syntheses of steroidal oxazoles, oxazolines, and oxazolidines are described herein. The biological activities of those steroidal derivatives for which data are available are given. Keywords: Steroids, oxazoles, oxazolines, oxazolidines DOI: https://doi.org/10.24820/ark.5550190.p011.512 Page 471 ©AUTHOR(S) Arkivoc 2021, i, 471-490 Bendif, B. et al. Table of Contents 1. Introduction 2. Synthesis of Steroidal Oxazoles 3. Synthesis of Steroidal Oxazolines 4. Synthesis of Steroidal Oxazolidines 5. Conclusions Acknowledgements References 1. Introduction Steroids constitute an extensive and important class of biologically active polycyclic compounds that are widely used for therapeutic purposes.1-3 Even after decades of research, the total synthesis of steroid nuclei by improved strategies continues to receive considerable attention. Numerous methods have been exploited for the total synthesis of steroids which are widely distributed in nature and which possess practical medical importance. -
Excited State Dynamics of Isocytosine; a Hybrid Case of Canonical Nucleobase Photodynamics
The Journal of Physical Chemistry Letters This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies. Excited State Dynamics of Isocytosine; a Hybrid Case of Canonical Nucleobase Photodynamics Journal: The Journal of Physical Chemistry Letters Manuscript ID jz-2017-020322.R1 Manuscript Type: Letter Date Submitted by the Author: n/a Complete List of Authors: Berenbeim, Jacob; UC Santa Barbara, Chemistry and Biochemistry Boldissar, Samuel; UCSB, Department of Chemistry Siouri, Faady; UCSB, Department of Chemistry Gate, Gregory; UCSB, Department of Chemistry Haggmark, Michael; UC Santa Barbara, Chemistry and Biochemistry Aboulache, Briana; University of California Santa Barbara Cohen, Trevor; UC Santa Barbara, Chemistry and Biochemistry De Vries, Mattanjah; UCSB, Department of Chemistry ACS Paragon Plus Environment Page 1 of 12 The Journal of Physical Chemistry Letters 1 2 3 4 Excited State Dynamics of Isocytosine; A Hybrid Case of Canonical 5 Nucleobase Photodynamics 6 7 Jacob A. Berenbeim, Samuel Boldissar, Faady M. Siouri, Gregory Gate, Michael R. 8 Haggmark, Briana Aboulache, Trevor Cohen, and Mattanjah S. de Vries* 9 10 Department of Chemistry and Biochemistry, University of California Santa 11 12 Barabara, CA 93106-9510 13 *E-mail: [email protected] 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 1 ACS Paragon Plus Environment The Journal of Physical Chemistry Letters Page 2 of 12 1 2 3 Abstract 4 5 We present resonant two-photon ionization (R2PI) spectra of isocytosine (isoC) and pump-probe 6 results on two of its tautomers. -
The Biosynthetic Gene Cluster for the Anticancer Drug Bleomycin From
Journal of Industrial Microbiology & Biotechnology (2001) 27, 378–385 D 2001 Nature Publishing Group 1367-5435/01 $17.00 www.nature.com/jim The biosynthetic gene cluster for the anticancer drug bleomycin from Streptomyces verticillus ATCC15003 as a model for hybrid peptide–polyketide natural product biosynthesis B Shen, L Du, C Sanchez, DJ Edwards, M Chen and JM Murrell Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA The hybrid peptide–polyketide backbone of bleomycin (BLM) is assembled by the BLM megasynthetase that consists of both nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) modules. BlmIX/BlmVIII/BlmVII constitute a natural hybrid NRPS/PKS/NRPS system, serving as a model for both hybrid NRPS/PKS and PKS/NRPS systems. Sequence analysis and functional comparison of domains and modules of BlmIX/BlmVIII/BlmVII with those of nonhybrid NRPS and PKS systems suggest that (1) the same catalytic sites appear to be conserved in both hybrid NRPS–PKS and nonhybrid NRPS or PKS systems, with the exception of the KS domains in the hybrid NRPS/PKS systems that are unique; (2) specific interpolypeptide linkers may play a critical role in intermodular communication to facilitate transfer of the growing intermediates between the interacting NRPS and/or PKS modules; and (3) posttranslational modification of the BLM megasynthetase has been accomplished by a single PPTase with a broad substrate specificity toward the apo forms of both acyl carrier proteins (ACPs) and peptidyl carrier -
Noncanonical Coproporphyrin-Dependent Bacterial Heme Biosynthesis Pathway That Does Not Use Protoporphyrin
Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin Harry A. Daileya,b,c,1, Svetlana Gerdesd, Tamara A. Daileya,b,c, Joseph S. Burcha, and John D. Phillipse aBiomedical and Health Sciences Institute and Departments of bMicrobiology and cBiochemistry and Molecular Biology, University of Georgia, Athens, GA 30602; dMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439; and eDivision of Hematology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132 Edited by J. Clark Lagarias, University of California, Davis, CA, and approved January 12, 2015 (received for review August 25, 2014) It has been generally accepted that biosynthesis of protoheme of a “primitive” pathway in Desulfovibrio vulgaris (13). This path- (heme) uses a common set of core metabolic intermediates that way, named the “alternative heme biosynthesis” path (or ahb), has includes protoporphyrin. Herein, we show that the Actinobacteria now been characterized by Warren and coworkers (15) in sulfate- and Firmicutes (high-GC and low-GC Gram-positive bacteria) are reducing bacteria. In the ahb pathway, siroheme, synthesized unable to synthesize protoporphyrin. Instead, they oxidize copro- from uroporphyrinogen III, can be further metabolized by suc- porphyrinogen to coproporphyrin, insert ferrous iron to make Fe- cessive demethylation and decarboxylation to yield protoheme (14, coproporphyrin (coproheme), and then decarboxylate coproheme 15) (Fig. 1 and Fig. S1). A similar pathway exists for protoheme- to generate protoheme. This pathway is specified by three genes containing archaea (15, 16). named hemY, hemH, and hemQ. The analysis of 982 representa- Current gene annotations suggest that all enzymes for pro- tive prokaryotic genomes is consistent with this pathway being karyotic heme synthetic pathways are now identified. -
Inhibition of G Protein-Activated Inwardly Rectifying K Channels by Phencyclidine
244 Current Neuropharmacology, 2011, 9, 244-246 Inhibition of G Protein-Activated Inwardly Rectifying K+ Channels by Phencyclidine Toru Kobayashi1,2,*, Daisuke Nishizawa1 and Kazutaka Ikeda1 1Division of Psychobiology, Tokyo Institute of Psychiatry, 2-1-8 Kamikitazawa, Setagaya-ku, Tokyo 156-8585, Japan; 2Department of Project Programs, Center for Bioresource-based Researches, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, Niigata 951-8585, Japan Abstract: Addictive drugs, such as opioids, ethanol, cocaine, amphetamine, and phencyclidine (PCP), affect many functions of the nervous system and peripheral organs, resulting in severe health problems. G protein-activated inwardly rectifying K+ (GIRK, Kir3) channels play an important role in regulating neuronal excitability through activation of various Gi/o protein-coupled receptors including opioid and CB1 cannabinoid receptors. Furthermore, the channels are directly activated by ethanol and inhibited by cocaine at toxic levels, but not affected by methylphenidate, methampheta- mine, and 3,4-methylenedioxymethamphetamine (MDMA) at toxic levels. The primary pharmacological action of PCP is blockade of N-methyl-D-aspartate (NMDA) receptor channels that are associated with its psychotomimetic effects. PCP also interacts with several receptors and channels at relatively high concentrations. However, the molecular mechanisms underlying the various effects of PCP remain to be clarified. Here, we investigated the effects of PCP on GIRK channels using the Xenopus oocyte expression system. PCP weakly but significantly inhibited GIRK channels at micromolar concentrations, but not Kir1.1 and Kir2.1 channels. The PCP concentrations effective in inhibiting GIRK channels overlap clinically relevant brain concentrations in severe intoxication. The results suggest that partial inhibition of GIRK channels by PCP may contribute to some of the toxic effects after overdose. -
The Effect of Vitamin Supplementation on Subclinical
molecules Review The Effect of Vitamin Supplementation on Subclinical Atherosclerosis in Patients without Manifest Cardiovascular Diseases: Never-ending Hope or Underestimated Effect? Ovidiu Mitu 1,2,* , Ioana Alexandra Cirneala 1,*, Andrada Ioana Lupsan 3, Mircea Iurciuc 4 , 5 5 2, Ivona Mitu , Daniela Cristina Dimitriu , Alexandru Dan Costache y , Antoniu Octavian Petris 1,2 and Irina Iuliana Costache 1,2 1 Department of Cardiology, Clinical Emergency Hospital “Sf. Spiridon”, 700111 Iasi, Romania 2 1st Medical Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania 3 Department of Cardiology, University of Medicine, Pharmacy, Science and Technology, 540139 Targu Mures, Romania 4 Department of Cardiology, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania 5 2nd Morpho-Functional Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania * Correspondence: [email protected] (O.M.); [email protected] (I.A.C.); Tel.: +40-745-279-714 (O.M.) Medical Student, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania. y Academic Editors: Raluca Maria Pop, Ada Popolo and Stefan Cristian Vesa Received: 25 March 2020; Accepted: 7 April 2020; Published: 9 April 2020 Abstract: Micronutrients, especially vitamins, play an important role in the evolution of cardiovascular diseases (CVD). It has been speculated that additional intake of vitamins may reduce the CVD burden by acting on the inflammatory and oxidative response starting from early stages of atherosclerosis, when the vascular impairment might still be reversible or, at least, slowed down. The current review assesses the role of major vitamins on subclinical atherosclerosis process and the potential clinical implications in patients without CVD. -
Pinacol Rearrangement
Pinacol rearrangement The pinacol–pinacolone rearrangement is a method for converting a 1,2-diol to a carbonyl compound in organic chemistry. The 1,2-rearrangement takes place under acidic conditions. The name of the rearrangement reaction comes from the rearrangement of pinacol to pinacolone.[1] This reaction was first described by Wilhelm Rudolph Fittig in 1860 of the famed Fittig reaction involving coupling of 2 aryl halides in presence of sodium metal in dry ethereal solution.[2] Contents Mechanism Example of asymmetrical pinacol rearrangement Stereochemistry of the rearrangement History See also References Mechanism In the course of this organic reaction, protonation of one of the –OH groups occurs and a carbocation is formed. If the – OH groups are not alike (i.e. the pinacol is asymmetrical), then the one which creates a more stable carbocation participates in the reaction. Subsequently, an alkyl group from the adjacent carbon migrates to the carbocation center. The driving force for this rearrangement step is believed to be the relative stability of the resultant oxonium ion. Although the initial carbocation is already tertiary, the oxygen can stabilize the positive charge much more favorably due to the complete octet configuration at all centers. It can also be seen as the -OH's lone pairs pushing an alkyl group off as seen in the asymmetrical pinacol example. The migration of alkyl groups in this reaction occurs in accordance with their usual migratory aptitude, i.e.hydride > phenyl carbanion > tertiary carbanion (if formed by migration) > secondary carbanion (if formed by migration) > methyl carbanion. {Why carbanion? Because every migratory group leaves by taking electron pair with it.} The conclusion is that the group which stabilizes the carbocation more effectively is migrated.