Resolving Close Encounters: Stability in the HD 5319 and HD 7924
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born. -
Miniature Exoplanet Radial Velocity Array I: Design, Commissioning, and Early Photometric Results
Miniature Exoplanet Radial Velocity Array I: design, commissioning, and early photometric results Jonathan J. Swift Steven R. Gibson Michael Bottom Brian Lin John A. Johnson Ming Zhao Jason T. Wright Paul Gardner Nate McCrady Emilio Falco Robert A. Wittenmyer Stephen Criswell Peter Plavchan Chantanelle Nava Reed Riddle Connor Robinson Philip S. Muirhead David H. Sliski Erich Herzig Richard Hedrick Justin Myles Kevin Ivarsen Cullen H. Blake Annie Hjelstrom Jason Eastman Jon de Vera Thomas G. Beatty Andrew Szentgyorgyi Stuart I. Barnes Downloaded From: http://astronomicaltelescopes.spiedigitallibrary.org/ on 05/21/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx Journal of Astronomical Telescopes, Instruments, and Systems 1(2), 027002 (Apr–Jun 2015) Miniature Exoplanet Radial Velocity Array I: design, commissioning, and early photometric results Jonathan J. Swift,a,*,† Michael Bottom,a John A. Johnson,b Jason T. Wright,c Nate McCrady,d Robert A. Wittenmyer,e Peter Plavchan,f Reed Riddle,a Philip S. Muirhead,g Erich Herzig,a Justin Myles,h Cullen H. Blake,i Jason Eastman,b Thomas G. Beatty,c Stuart I. Barnes,j,‡ Steven R. Gibson,k,§ Brian Lin,a Ming Zhao,c Paul Gardner,a Emilio Falco,l Stephen Criswell,l Chantanelle Nava,d Connor Robinson,d David H. Sliski,i Richard Hedrick,m Kevin Ivarsen,m Annie Hjelstrom,n Jon de Vera,n and Andrew Szentgyorgyil aCalifornia Institute of Technology, Departments of Astronomy and Planetary Science, 1200 E. California Boulevard, Pasadena, California 91125, United States bHarvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, United States cThe Pennsylvania State University, Department of Astronomy and Astrophysics, Center for Exoplanets and Habitable Worlds, 525 Davey Laboratory, University Park, Pennsylvania 16802, United States dUniversity of Montana, Department of Physics and Astronomy, 32 Campus Drive, No. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i, -
Arxiv:0809.1275V2
How eccentric orbital solutions can hide planetary systems in 2:1 resonant orbits Guillem Anglada-Escud´e1, Mercedes L´opez-Morales1,2, John E. Chambers1 [email protected], [email protected], [email protected] ABSTRACT The Doppler technique measures the reflex radial motion of a star induced by the presence of companions and is the most successful method to detect ex- oplanets. If several planets are present, their signals will appear combined in the radial motion of the star, leading to potential misinterpretations of the data. Specifically, two planets in 2:1 resonant orbits can mimic the signal of a sin- gle planet in an eccentric orbit. We quantify the implications of this statistical degeneracy for a representative sample of the reported single exoplanets with available datasets, finding that 1) around 35% percent of the published eccentric one-planet solutions are statistically indistinguishible from planetary systems in 2:1 orbital resonance, 2) another 40% cannot be statistically distinguished from a circular orbital solution and 3) planets with masses comparable to Earth could be hidden in known orbital solutions of eccentric super-Earths and Neptune mass planets. Subject headings: Exoplanets – Orbital dynamics – Planet detection – Doppler method arXiv:0809.1275v2 [astro-ph] 25 Nov 2009 Introduction Most of the +300 exoplanets found to date have been discovered using the Doppler tech- nique, which measures the reflex motion of the host star induced by the planets (Mayor & Queloz 1995; Marcy & Butler 1996). The diverse characteristics of these exoplanets are somewhat surprising. Many of them are similar in mass to Jupiter, but orbit much closer to their 1Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Rd. -
Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55 -
Mètodes De Detecció I Anàlisi D'exoplanetes
MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits -
AMD-Stability and the Classification of Planetary Systems
A&A 605, A72 (2017) DOI: 10.1051/0004-6361/201630022 Astronomy c ESO 2017 Astrophysics& AMD-stability and the classification of planetary systems? J. Laskar and A. C. Petit ASD/IMCCE, CNRS-UMR 8028, Observatoire de Paris, PSL, UPMC, 77 Avenue Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] Received 7 November 2016 / Accepted 23 January 2017 ABSTRACT We present here in full detail the evolution of the angular momentum deficit (AMD) during collisions as it was described in Laskar (2000, Phys. Rev. Lett., 84, 3240). Since then, the AMD has been revealed to be a key parameter for the understanding of the outcome of planetary formation models. We define here the AMD-stability criterion that can be easily verified on a newly discovered planetary system. We show how AMD-stability can be used to establish a classification of the multiplanet systems in order to exhibit the planetary systems that are long-term stable because they are AMD-stable, and those that are AMD-unstable which then require some additional dynamical studies to conclude on their stability. The AMD-stability classification is applied to the 131 multiplanet systems from The Extrasolar Planet Encyclopaedia database for which the orbital elements are sufficiently well known. Key words. chaos – celestial mechanics – planets and satellites: dynamical evolution and stability – planets and satellites: formation – planets and satellites: general 1. Introduction motion resonances (MMR, Wisdom 1980; Deck et al. 2013; Ramos et al. 2015) could justify the Hill-type criteria, but the The increasing number of planetary systems has made it nec- results on the overlap of the MMR island are valid only for close essary to search for a possible classification of these planetary orbits and for short-term stability. -
Voided Certificate of Employee Information Reports
Public Contracts Equal Employment Opportunity Compliance Monitoring Program Voided Certificate of Employee Information Report Report run on: June 6, 2017 3:22 PM Name of Company Cert Street City State Zip (PC) 2 HD 37407 245 EAST 30TH NEW YORK CITY NY 10016 1515 BOARDWALK, INC 18317 121 WASHINGTON ST TOMS RIVER NJ 08753 174 NEWARK AVENUE ASSOCIATES, LP 34742 103 EISENHOWER PARKWAY ROSELAND NJ 07068 1993-N2 PROPERTIES, NO. 3 LIMITED PARTNERSHI 19621 12100 WILSHIRE BLVD LOS ANGELES CA 90025 1ST CALL PAINTING CONTRACTORS, LLC 37000 980-B DEHART PLACE ELIZABETH NJ 07202 3-2-1 QUALITY PRINTING 21779 100 JERSEY AVENUE NEW BRUNSWICK NJ 08901 3-D MFG.-DBA- AMERICAN LA-FRANCE 2831 500 S. AIRPORT ROAD SHAWANO WI 54166 4 FRONT VIDEO DESIGN INC. 22299 1500 BROADWAY #509 NEW YORK NY 10036 55 WASHINGTON STREET LLC 28132 P.O. BOX 66 CLOSTER NJ 07624 9-15 SOUTH MAIN STREET CORP. 20587 1125 ATLANTIC AVE., SUITE 617 ATLANTIC CITY NJ 08401 A & A ENGINEERING 9780 300 CORPORATE CENTER DRIVE MANALAPAN NJ 07726 A & B WIPER SUPPLY, INC. 6848 116 FOUNTAIN ST. PHILADELPHIA PA 19127 A & E CARPENTRY, INC. 8048 584 STUDIO RD. RIDGEFIELD NJ 07657 A & L UNIFORMS, L L C 37818 2605 SOUTH BROAD STREET TRENTON NJ 08610 A & P TUTORING, LLC 34701 4201 CHURCH ROAD #242 MT. LAUREL NJ 08054 A & R AUTO SUPPLY, INC. 7169 300 ATLANTIC CITY BLVD. TOMS RIVER NJ 08757 A & S FUEL OIL CO. INC. 25667 95 CALAIS ROAD PO BOX 22 IRONIA NJ 07845 A & W TECHNICAL SALES, INC. 33404 420 COMMERCE LANE, SUITE 3 WEST BERLIN NJ 08091 A AND C LABORATORIES, INC 17387 168 W. -
Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD -
Download This Article in PDF Format
A&A 585, A134 (2016) Astronomy DOI: 10.1051/0004-6361/201526729 & c ESO 2016 Astrophysics The HARPS search for southern extra-solar planets XXXVIII. Bayesian re-analysis of three systems. New super-Earths, unconfirmed signals, and magnetic cycles?;?? R. F. Díaz1, D. Ségransan1, S. Udry1, C. Lovis1, F. Pepe1, X. Dumusque2;1, M. Marmier1, R. Alonso3;4, W. Benz5, F. Bouchy1;6, A. Coffinet1, A. Collier Cameron7, M. Deleuil6, P. Figueira8, M. Gillon9, G. Lo Curto10, M. Mayor1, C. Mordasini5, F. Motalebi1, C. Moutou6;11, D. Pollacco12, E. Pompei10, D. Queloz1;13, N. Santos8;14, and A. Wyttenbach1 1 Observatoire astronomique de l’Université de Genève, 51 Ch. des Maillettes, 1290 Versoix, Switzerland e-mail: [email protected] 2 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 3 Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain 4 Dpto. de Astrofísica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain 5 Physikalisches Institut, Universitat Bern, Silderstrasse 5, 3012 Bern, Switzerland 6 Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388 Marseille, France 7 School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, UK 8 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal 9 Institut d’Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août 17, Bât. B5C, 4000 Liège, Belgium 10 European Southern Observatory, 3107 Alonso -
Robotically Discovering Earth's Nearest Neighbors: 54 LightYears Away
Your source for the latest research news Breaking: Three Planets Orbit a Very Near… Science News from research organizations Robotically discovering Earth's nearest neighbors: 54 lightyears away Date: April 28, 2015 Source: University of Hawaii at Manoa Summary: Astronomers discovered a planetary system orbiting a nearby star that is only 54 lightyears away. All three planets orbit their star at a distance closer than Mercury orbits the sun, completing their orbits in just five, 15, and 24 days. Share: 752 167 0 12 12 Total shares: 943 FULL STORY This is an artist's impression of a view from the HD 7924 planetary system looking back toward our sun, which would be easily visible to the naked eye. Since HD 7924 is in our northern sky, an observer looking back at the sun would see objects like the Southern Cross and the Magellanic Clouds close to our sun in their sky. Credit: Karen Teramura & BJ Fulton, University of Hawaii, Institute for Astronomy A team of astronomers using groundbased telescopes in Hawaiʻi, California and Arizona recently discovered a planetary system orbiting a nearby star that is only 54 lightyears away. All three planets orbit their star at a distance closer than Mercury orbits the sun, completing their orbits in just 5, 15 and 24 days. Astronomers from the University of Hawaiʻi at Mānoa, the University of California, Berkeley, the University of California Observatories and Tennessee State University found the planets using measurements from the Automated Planet Finder (APF) Telescope at Lick Observatory in California, the W.