Large Sets in Constructive Set Theory

Total Page:16

File Type:pdf, Size:1020Kb

Large Sets in Constructive Set Theory Large Sets in Constructive Set Theory Albert Zieger Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Mathematics December 2014 ii The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. c 2014 The University of Leeds and Albert Ziegler The right of Albert Ziegler to be identified as Author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. iii Acknowledgements I would like to thank my supervisor Professor Michael Rathjen for sharing his vast ex- perience and for providing valuable guidance through both the mathematical and the organisational challenges of life as a PhD student. I am grateful to the Leeds Logic Group for their continued support and stimulating dis- cussions, for organising interesting talks and providing such a friendly environment. As a fellow of the network “From Mathematical Logic to Applications” (MALOA), I would also like to thank the European Union’s Marie Curie Initial Training Networks programme for their funding and training. I would also like to express my gratitude to my family for their love and support. iv Abstract This thesis presents an investigation into large sets and large set axioms in the context of the constructive set theory CZF. We determine the structure of large sets by classifying their von Neumann stages and use a new modified cumulative hierarchy to characterise their arrangement in the set theoretic universe. We prove that large set axioms have good metamathematical prop- erties, including absoluteness for the common relative model constructions of CZF and a preservation of the witness existence properties CZF enjoys. Furthermore, we use realizability to establish new results about the relative consistency of a plurality of inac- cessibles versus the existence of just one inaccessible. Developing a constructive theory of clubs, we present a characterisation theorem for Mahlo sets connecting classical and constructive approaches to Mahloness and determine the amount of induction contained in the assertion of a Mahlo set. We then present a characterisation theorem for 2-strong sets which proves them to be equivalent to a logically simpler concept. We also investigate several topics connected to elementary embeddings of the set theo- retic universe into a transitive class model of CZF, where considering different equiva- lent classical formulations results in a rich and interconnected spectrum of measurability for the constructive case. We pay particular attention to the question of cofinality of elementary embeddings, achieving both very strong cofinality properties in the case of Reinhardt embeddings and constructing models of the failure of cofinality in the case of ordinary measurable embeddings, some of which require only surprisingly low con- ditions. We close with an investigation of constructive principles incompatible with elementary embeddings. v To Annika and Fiona vi vii Contents Acknowledgements . iii Abstract . iv Dedication . .v Contents . vi List of figures . xii List of tables . xiv 1 Introduction 1 2 Preliminaries 7 2.1 Notations and Conventions . .7 2.2 CZF, Similar Constructive Set Theories and Related Axioms . 12 2.3 The Concepts of Largeness under Consideration . 20 2.3.1 Tiny Large Sets . 21 2.3.2 Small Large Sets . 24 2.3.3 Large Large Sets . 28 CONTENTS viii 3 What do Large Sets look like? 35 3.1 Introduction and Results . 35 3.2 Proof of Theorem 3.2 . 36 3.3 Why 3? . 38 3.4 A much stronger Classification Theorem in case of Subcountability . 39 4 How Constructive are Large Set Axioms? 43 4.1 Models of Constructive Set Theory . 44 4.1.1 Applicative Topologies . 45 4.1.2 Models of Set Theory Based on Applicative Topologies . 48 4.1.3 The Consistency of Tiny Large Set Axioms . 50 4.1.4 The Absoluteness of Inaccessibility . 56 4.1.5 The Consistency of Small Large Set Axioms . 64 4.1.6 The Consistency of Large Large Set Axioms . 70 4.2 The Existence of Witnesses . 77 4.2.1 Realizability with Truth . 78 4.2.2 Absoluteness Proofs . 83 4.2.3 Realizing Elementary Embeddings . 92 4.2.4 Theories with Good Properties . 95 5 How are Large Sets arranged in the Universe? 97 5.1 Ordinals and the Cumulative Hierarchy . 99 5.2 The Modified Hierarchy . 102 5.3 The Modified Hierarchy as a Hierarchy of Sets . 106 CONTENTS ix 5.4 Interaction with Large Sets . 109 5.5 Further Applications of the Methods Developed in this Chapter . 114 6 How many Large Sets are there? 117 6.1 A Realizability Model with Inaccessible pca . 120 6.2 A second Inaccessible . 124 6.3 A third Inaccessible . 130 6.4 Another ! Inaccessibles . 130 6.5 A Proper Class of Inaccessibles . 132 6.6 Proper Classes and Inexhaustible Classes . 134 6.7 An Inexhaustible Class of Inaccessibles . 136 7 A Closer Look into Mahlo Sets 139 7.1 A Constructive Rendering of Clubs . 140 7.1.1 Preliminaries and Definitions . 140 7.1.2 Limits of Clubs . 145 7.1.3 Intersections of Clubs . 149 7.1.4 An Ordinalless Approach . 152 7.2 Classical and Constructive Mahloness . 158 7.2.1 Characterising Mahlo Sets using Dependent Choice . 158 7.2.2 A Variation without Choice . 161 7.2.3 A Club Based Characterisation for Axiom M . 163 7.3 How much Induction is contained in Mahloness? . 164 7.3.1 Unleashing M . 166 CONTENTS x 7.3.2 Nondeterministic Inductive Definitions equivalent to M . 170 8 Expressing Weak Compactness 175 8.1 Different Renderings of the same Classical Concept . 175 8.2 A Simpler Characterisation of 2-Strong Sets . 179 9 Elementary Embeddings 187 9.1 How Inaccessible must the Critical Point of a Measurable be? . 188 9.1.1 Improving on Transitivity . 189 9.1.2 IEA for Critical Points with more Traction . 192 9.1.3 The Modified von Neumann Hierarchy for more Closure . 197 9.2 The Strength of Restricted Elementary Embeddings . 201 9.2.1 Inaccessibility and Mahloness . 202 9.2.2 Beyond Mahlo . 206 9.3 Cofinality of Elementary Embeddings . 210 9.3.1 The Constructive Case . 212 9.3.2 Approximating Subset Relations . 213 9.3.3 Truth Values and Elementary Embeddings . 219 9.3.4 Subset Relations and Elementary Embeddings . 222 9.4 A Model with a Map j : V ! M ..................... 225 9.4.1 The pca . 226 9.4.2 The Realizability Model . 231 9.4.3 Critical Points and Cofinality in the Model . 243 9.4.4 The Limits of the Methods used in this Chapter . 249 CONTENTS xi 9.5 Stronger Assumptions yield a Fully Elementary Embedding refuting Co- finality . 252 9.5.1 What is and is not realized to be in M .............. 253 9.6 Hitting the Ceiling . 259 Bibliography 263 LIST OF FIGURES xii xiii List of figures 5.1 An Informal Map of the Universe . 98 9.1 Closure Properties of Critical Points . 189 LIST OF TABLES xiv xv List of tables 2.1 Orders of Precedence for Logical Symbols . .8 2.2 Atomic Formulae containing Class Terms . 10 2.3 Defined Terms . 11 2.4 Types of Relations . 12 LIST OF TABLES xvi 1 Chapter 1 Introduction Large cardinals play a pivotal role in classical set theory, both as useful tools to be applied in other set theoretic pursuits and as worthy objects of study in their own right, and even as ways to bolster ZFC’s strength in order to handle mathematical challenges outside of set theory (e.g. by supplying Grothendieck universes). There is little reason to believe that in the context of constructive set theory, similar axioms would prove less fruitful. On the contrary, due to the more modest strength claimed by predicative systems of constructive set theory such as CZF, which has achieved a prominent role as foundation for constructive mathematics since its introduction in [Acz78], it seems that mathematicians working in these systems might be forced to revert to an axiom of infinity more often than their classical colleagues if they want to achieve general results. Thus the advantage of adopting axioms of largeness might be even greater than in classical set theory. And indeed in the context of CZF, axioms like REA (which can be considered to be a principle of largeness) are commonly used e.g. in the development of formal topology or for general induction. Furthermore, systems which strive to preserve some level of predicativity like CZF present avenues of investigation which are closed for systems of as yet unmanageable strength like ZFC. Most prominently, the much praised linearity of consistency strengths of different large cardinal axioms becomes a quantifiable commodity in constructive set 1 INTRODUCTION 2 theory in the sense that the proof theoretic ordinal can be exactly determined for the sys- tem of CZF enhanced by large set axioms. Indeed, the research connected to constructive analoga for large cardinals in the context of CZF has in large part been focussed on their ordinal analysis (see e.g. [Rat98, Gib02, CR02, GRT05]). In contrast, the theory of what could roughly be called the more set theoretic properties and consequences of principles of largeness has perhaps not been quite as thoroughly developed (at least above the level of what we will call “tiny” large sets, i.e. beyond reg- ularity and its variants), and this thesis aims at making some contributions to remedy this situation.
Recommended publications
  • Set Theory, by Thomas Jech, Academic Press, New York, 1978, Xii + 621 Pp., '$53.00
    BOOK REVIEWS 775 BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 3, Number 1, July 1980 © 1980 American Mathematical Society 0002-9904/80/0000-0 319/$01.75 Set theory, by Thomas Jech, Academic Press, New York, 1978, xii + 621 pp., '$53.00. "General set theory is pretty trivial stuff really" (Halmos; see [H, p. vi]). At least, with the hindsight afforded by Cantor, Zermelo, and others, it is pretty trivial to do the following. First, write down a list of axioms about sets and membership, enunciating some "obviously true" set-theoretic principles; the most popular Hst today is called ZFC (the Zermelo-Fraenkel axioms with the axiom of Choice). Next, explain how, from ZFC, one may derive all of conventional mathematics, including the general theory of transfinite cardi­ nals and ordinals. This "trivial" part of set theory is well covered in standard texts, such as [E] or [H]. Jech's book is an introduction to the "nontrivial" part. Now, nontrivial set theory may be roughly divided into two general areas. The first area, classical set theory, is a direct outgrowth of Cantor's work. Cantor set down the basic properties of cardinal numbers. In particular, he showed that if K is a cardinal number, then 2", or exp(/c), is a cardinal strictly larger than K (if A is a set of size K, 2* is the cardinality of the family of all subsets of A). Now starting with a cardinal K, we may form larger cardinals exp(ic), exp2(ic) = exp(exp(fc)), exp3(ic) = exp(exp2(ic)), and in fact this may be continued through the transfinite to form expa(»c) for every ordinal number a.
    [Show full text]
  • The Logic of Brouwer and Heyting
    THE LOGIC OF BROUWER AND HEYTING Joan Rand Moschovakis Intuitionistic logic consists of the principles of reasoning which were used in- formally by L. E. J. Brouwer, formalized by A. Heyting (also partially by V. Glivenko), interpreted by A. Kolmogorov, and studied by G. Gentzen and K. G¨odel during the first third of the twentieth century. Formally, intuitionistic first- order predicate logic is a proper subsystem of classical logic, obtained by replacing the law of excluded middle A ∨¬A by ¬A ⊃ (A ⊃ B); it has infinitely many dis- tinct consistent axiomatic extensions, each necessarily contained in classical logic (which is axiomatically complete). However, intuitionistic second-order logic is inconsistent with classical second-order logic. In terms of expressibility, the intu- itionistic logic and language are richer than the classical; as G¨odel and Gentzen showed, classical first-order arithmetic can be faithfully translated into the nega- tive fragment of intuitionistic arithmetic, establishing proof-theoretical equivalence and clarifying the distinction between the classical and constructive consequences of mathematical axioms. The logic of Brouwer and Heyting is effective. The conclusion of an intuitionistic derivation holds with the same degree of constructivity as the premises. Any proof of a disjunction of two statements can be effectively transformed into a proof of one of the disjuncts, while any proof of an existential statement contains an effec- tive prescription for finding a witness. The negation of a statement is interpreted as asserting that the statement is not merely false but absurd, i.e., leads to a contradiction. Brouwer objected to the general law of excluded middle as claim- ing a priori that every mathematical problem has a solution, and to the general law ¬¬A ⊃ A of double negation as asserting that every consistent mathematical statement holds.
    [Show full text]
  • Sets in Homotopy Type Theory
    Predicative topos Sets in Homotopy type theory Bas Spitters Aarhus Bas Spitters Aarhus Sets in Homotopy type theory Predicative topos About me I PhD thesis on constructive analysis I Connecting Bishop's pointwise mathematics w/topos theory (w/Coquand) I Formalization of effective real analysis in Coq O'Connor's PhD part EU ForMath project I Topos theory and quantum theory I Univalent foundations as a combination of the strands co-author of the book and the Coq library I guarded homotopy type theory: applications to CS Bas Spitters Aarhus Sets in Homotopy type theory Most of the presentation is based on the book and Sets in HoTT (with Rijke). CC-BY-SA Towards a new design of proof assistants: Proof assistant with a clear (denotational) semantics, guiding the addition of new features. E.g. guarded cubical type theory Predicative topos Homotopy type theory Towards a new practical foundation for mathematics. I Modern ((higher) categorical) mathematics I Formalization I Constructive mathematics Closer to mathematical practice, inherent treatment of equivalences. Bas Spitters Aarhus Sets in Homotopy type theory Predicative topos Homotopy type theory Towards a new practical foundation for mathematics. I Modern ((higher) categorical) mathematics I Formalization I Constructive mathematics Closer to mathematical practice, inherent treatment of equivalences. Towards a new design of proof assistants: Proof assistant with a clear (denotational) semantics, guiding the addition of new features. E.g. guarded cubical type theory Bas Spitters Aarhus Sets in Homotopy type theory Formalization of discrete mathematics: four color theorem, Feit Thompson, ... computational interpretation was crucial. Can this be extended to non-discrete types? Predicative topos Challenges pre-HoTT: Sets as Types no quotients (setoids), no unique choice (in Coq), ..
    [Show full text]
  • The Iterative Conception of Set
    The Iterative Conception of Set Thomas Forster Centre for Mathematical Sciences Wilberforce Road Cambridge, CB3 0WB, U.K. September 4, 2009 Contents 1 The Cumulative Hierarchy 2 2 The Two-Constructor case 5 2.1 Set Equality in the Two-Constructor Case . 6 3 More Wands 9 3.1 Second-order categoricity .................... 9 3.2 Equality . 10 3.3 Restricted quantifiers . 10 3.4 Forcing . 11 4 Objections 11 4.1 Sets Constituted by their Members . 12 4.2 The End of Time . 12 4.2.1 What is it an argument against? . 13 4.3 How Many Wands? . 13 5 Church-Oswald models 14 5.1 The Significance of the Church-Oswald Interpretation . 16 5.2 Forti-Honsell Antifoundation . 16 6 Envoi: Why considering the two-wand construction might be helpful 17 1 Abstract The two expressions “The cumulative hierarchy” and “The iterative con- ception of sets” are usually taken to be synonymous. However the second is more general than the first, in that there are recursive procedures that generate some illfounded sets in addition to wellfounded sets. The inter- esting question is whether or not the arguments in favour of the more restrictive version—the cumulative hierarchy—were all along arguments for the more general version. The phrase “The iterative conception of sets” conjures up a picture of a particular set-theoretic universe—the cumulative hierarchy—and the constant conjunction of phrase-with-picture is so reliable that people tend to think that the cumulative hierarchy is all there is to the iterative conception of sets: if you conceive sets iteratively then the result is the cumulative hierarchy.
    [Show full text]
  • Set-Theoretic Geology, the Ultimate Inner Model, and New Axioms
    Set-theoretic Geology, the Ultimate Inner Model, and New Axioms Justin William Henry Cavitt (860) 949-5686 [email protected] Advisor: W. Hugh Woodin Harvard University March 20, 2017 Submitted in partial fulfillment of the requirements for the degree of Bachelor of Arts in Mathematics and Philosophy Contents 1 Introduction 2 1.1 Author’s Note . .4 1.2 Acknowledgements . .4 2 The Independence Problem 5 2.1 Gödelian Independence and Consistency Strength . .5 2.2 Forcing and Natural Independence . .7 2.2.1 Basics of Forcing . .8 2.2.2 Forcing Facts . 11 2.2.3 The Space of All Forcing Extensions: The Generic Multiverse 15 2.3 Recap . 16 3 Approaches to New Axioms 17 3.1 Large Cardinals . 17 3.2 Inner Model Theory . 25 3.2.1 Basic Facts . 26 3.2.2 The Constructible Universe . 30 3.2.3 Other Inner Models . 35 3.2.4 Relative Constructibility . 38 3.3 Recap . 39 4 Ultimate L 40 4.1 The Axiom V = Ultimate L ..................... 41 4.2 Central Features of Ultimate L .................... 42 4.3 Further Philosophical Considerations . 47 4.4 Recap . 51 1 5 Set-theoretic Geology 52 5.1 Preliminaries . 52 5.2 The Downward Directed Grounds Hypothesis . 54 5.2.1 Bukovský’s Theorem . 54 5.2.2 The Main Argument . 61 5.3 Main Results . 65 5.4 Recap . 74 6 Conclusion 74 7 Appendix 75 7.1 Notation . 75 7.2 The ZFC Axioms . 76 7.3 The Ordinals . 77 7.4 The Universe of Sets . 77 7.5 Transitive Models and Absoluteness .
    [Show full text]
  • A Taste of Set Theory for Philosophers
    Journal of the Indian Council of Philosophical Research, Vol. XXVII, No. 2. A Special Issue on "Logic and Philosophy Today", 143-163, 2010. Reprinted in "Logic and Philosophy Today" (edited by A. Gupta ans J.v.Benthem), College Publications vol 29, 141-162, 2011. A taste of set theory for philosophers Jouko Va¨an¨ anen¨ ∗ Department of Mathematics and Statistics University of Helsinki and Institute for Logic, Language and Computation University of Amsterdam November 17, 2010 Contents 1 Introduction 1 2 Elementary set theory 2 3 Cardinal and ordinal numbers 3 3.1 Equipollence . 4 3.2 Countable sets . 6 3.3 Ordinals . 7 3.4 Cardinals . 8 4 Axiomatic set theory 9 5 Axiom of Choice 12 6 Independence results 13 7 Some recent work 14 7.1 Descriptive Set Theory . 14 7.2 Non well-founded set theory . 14 7.3 Constructive set theory . 15 8 Historical Remarks and Further Reading 15 ∗Research partially supported by grant 40734 of the Academy of Finland and by the EUROCORES LogICCC LINT programme. I Journal of the Indian Council of Philosophical Research, Vol. XXVII, No. 2. A Special Issue on "Logic and Philosophy Today", 143-163, 2010. Reprinted in "Logic and Philosophy Today" (edited by A. Gupta ans J.v.Benthem), College Publications vol 29, 141-162, 2011. 1 Introduction Originally set theory was a theory of infinity, an attempt to understand infinity in ex- act terms. Later it became a universal language for mathematics and an attempt to give a foundation for all of mathematics, and thereby to all sciences that are based on mathematics.
    [Show full text]
  • Weak Measure Extension Axioms * 1 Introduction
    Weak Measure Extension Axioms Joan E Hart Union College Schenectady NY USA and Kenneth Kunen University of Wisconsin Madison WI USA hartjunionedu and kunenmathwiscedu February Abstract We consider axioms asserting that Leb esgue measure on the real line may b e extended to measure a few new nonmeasurable sets Strong versions of such axioms such as realvalued measurabilityin volve large cardinals but weak versions do not We discuss weak versions which are sucienttoprovevarious combinatorial results such as the nonexistence of Ramsey ultralters the existence of ccc spaces whose pro duct is not ccc and the existence of S and L spaces We also prove an absoluteness theorem stating that assuming our ax iom every sentence of an appropriate logical form which is forced to b e true in the random real extension of the universe is in fact already true Intro duction In this pap er a measure on a set X is a countably additive measure whose domain the measurable sets is some algebra of subsets of X The authors were supp orted by NSF Grant CCR The rst author is grateful for supp ort from the University of Wisconsin during the preparation of this pap er Both authors are grateful to the referee for a numb er of useful comments INTRODUCTION We are primarily interested in nite measures although most of our results extend to nite measures in the obvious way By the Axiom of Choice whichwealways assume there are subsets of which are not Leb esgue measurable In an attempt to measure them it is reasonable to p ostulate measure extension axioms
    [Show full text]
  • Faculty Document 2436 Madison 7 October 2013
    University of Wisconsin Faculty Document 2436 Madison 7 October 2013 MEMORIAL RESOLUTION OF THE FACULTY OF THE UNIVERSITY OF WISCONSIN-MADISON ON THE DEATH OF PROFESSOR EMERITA MARY ELLEN RUDIN Mary Ellen Rudin, Hilldale professor emerita of mathematics, died peacefully at home in Madison on March 18, 2013. Mary Ellen was born in Hillsboro, Texas, on December 7, 1924. She spent most of her pre-college years in Leakey, another small Texas town. In 1941, she went off to college at the University of Texas in Austin, and she met the noted topologist R.L. Moore on her first day on campus, since he was assisting in advising incoming students. He recognized her talent immediately and steered her into the math program, which she successfully completed in 1944, and she then went directly into graduate school at Austin, receiving her PhD under Moore’s supervision in 1949. After teaching at Duke University and the University of Rochester, she joined the faculty of the University of Wisconsin-Madison as a lecturer in 1959 when her husband Walter came here. Walter Rudin died on May 20, 2010. Mary Ellen became a full professor in 1971 and professor emerita in 1991. She also held two named chairs: she was appointed Grace Chisholm Young Professor in 1981 and Hilldale Professor in 1988. She received numerous honors throughout her career. She was a fellow of the American Academy of Arts and Sciences and was a member of the Hungarian Academy of Sciences, and she received honorary doctor of science degrees from the University of North Carolina, the University of the South, Kenyon College, and Cedar Crest College.
    [Show full text]
  • Arxiv:1901.02074V1 [Math.LO] 4 Jan 2019 a Xoskona Lrecrias Ih Eal Ogv Entv a Definitive a Give T to of Able Basis Be the Might Cardinals” [17]
    GENERIC LARGE CARDINALS AS AXIOMS MONROE ESKEW Abstract. We argue against Foreman’s proposal to settle the continuum hy- pothesis and other classical independent questions via the adoption of generic large cardinal axioms. Shortly after proving that the set of all real numbers has a strictly larger car- dinality than the set of integers, Cantor conjectured his Continuum Hypothesis (CH): that there is no set of a size strictly in between that of the integers and the real numbers [1]. A resolution of CH was the first problem on Hilbert’s famous list presented in 1900 [19]. G¨odel made a major advance by constructing a model of the Zermelo-Frankel (ZF) axioms for set theory in which the Axiom of Choice and CH both hold, starting from a model of ZF. This showed that the axiom system ZF, if consistent on its own, could not disprove Choice, and that ZF with Choice (ZFC), a system which suffices to formalize the methods of ordinary mathematics, could not disprove CH [16]. It remained unknown at the time whether models of ZFC could be found in which CH was false, but G¨odel began to suspect that this was possible, and hence that CH could not be settled on the basis of the normal methods of mathematics. G¨odel remained hopeful, however, that new mathemati- cal axioms known as “large cardinals” might be able to give a definitive answer on CH [17]. The independence of CH from ZFC was finally solved by Cohen’s invention of the method of forcing [2]. Cohen’s method showed that ZFC could not prove CH either, and in fact could not put any kind of bound on the possible number of cardinals between the sizes of the integers and the reals.
    [Show full text]
  • Constructive Set Theory
    CST Book draft Peter Aczel and Michael Rathjen CST Book Draft 2 August 19, 2010 Contents 1 Introduction 7 2 Intuitionistic Logic 9 2.1 Constructivism . 9 2.2 The Brouwer-Heyting-Kolmogorov interpretation . 11 2.3 Counterexamples . 13 2.4 Natural Deductions . 14 2.5 A Hilbert-style system for intuitionistic logic . 17 2.6 Kripke semantics . 19 2.7 Exercises . 21 3 Some Axiom Systems 23 3.1 Classical Set Theory . 23 3.2 Intuitionistic Set Theory . 24 3.3 Basic Constructive Set Theory . 25 3.4 Elementary Constructive Set Theory . 26 3.5 Constructive Zermelo Fraenkel, CZF ................ 26 3.6 On notations for axiom systems. 27 3.7 Class Notation . 27 3.8 Russell's paradox . 28 4 Basic Set constructions in BCST 31 4.1 Ordered Pairs . 31 4.2 More class notation . 32 4.3 The Union-Replacement Scheme . 35 4.4 Exercises . 37 5 From Function Spaces to Powerset 41 5.1 Subset Collection and Exponentiation . 41 5.2 Appendix: Binary Refinement . 44 5.3 Exercises . 45 3 CST Book Draft 6 The Natural Numbers 47 6.1 Some approaches to the natural numbers . 47 6.1.1 Dedekind's characterization of the natural numbers . 47 6.1.2 The Zermelo and von Neumann natural numbers . 48 6.1.3 Lawv`ere'scharacterization of the natural numbers . 48 6.1.4 The Strong Infinity Axiom . 48 6.1.5 Some possible additional axioms concerning ! . 49 6.2 DP-structures and DP-models . 50 6.3 The von Neumann natural numbers in ECST . 51 6.3.1 The DP-model N! .....................
    [Show full text]
  • Indiscernible Pairs of Countable Sets of Reals at a Given Projective Level
    Indiscernible pairs of countable sets of reals at a given projective level Vladimir Kanovei∗ Vassily Lyubetsky† January 1, 2020 Abstract 1 Using an invariant modification of Jensen’s “minimal Π2 singleton” forcing, we define a model of ZFC, in which, for a given n ≥ 2, there exists 1 an Πn unordered pair of non-OD (hence, OD-indiscernible) countable sets 1 of reals, but there is no Σn unordered pairs of this kind. Any two reals x1 6= x2 are discernible by a simple formula ϕ(x) := x < r for a suitable rational r. Therefore, the lowest (type-theoretic) level of sets where one may hope to find indiscernible elements, is the level of sets of reals. And in- deed, identifying the informal notion of definability with the ordinal definability (OD), one finds indiscernible sets of reals in appropriate generic models. Example 1. If reals a 6= b in 2ω form a Cohen-generic pair over L, then ω the constructibility degrees [a]L = {x ∈ 2 : L[x] = L[a]} and [b]L are OD- indiscernible disjoint sets of reals in L[a, b], by rather straightforward forcing arguments, see [2, Theorem 3.1] and a similar argument in [3, Theorem 2.5]. Example 2. As observed in [5], if reals a 6= b in 2ω form a Sacks-generic pair over L, then the constructibility degrees [a]L and [b]L still are OD-indiscernible disjoint sets in L[a, b], with the additional advantage that the unordered pair arXiv:1912.12962v1 [math.LO] 30 Dec 2019 {[a]L, [b]L } is an OD set in L[a, b] because [a]L, [b]L are the only two minimal degrees in L[a, b].
    [Show full text]
  • The Realm of Ordinal Analysis
    The Realm of Ordinal Analysis Michael Rathjen Department of Pure Mathematics, University of Leeds Leeds LS2 9JT, United Kingdom Denn die Pioniere der Mathematik hatten sich von gewissen Grundlagen brauchbare Vorstellungen gemacht, aus denen sich Schl¨usse,Rechnungsarten, Resultate ergaben, deren bem¨achtigten sich die Physiker, um neue Ergebnisse zu erhalten, und endlich kamen die Techniker, nahmen oft bloß die Resultate, setzten neue Rechnungen darauf und es entstanden Maschinen. Und pl¨otzlich, nachdem alles in sch¨onste Existenz gebracht war, kamen die Mathematiker - jene, die ganz innen herumgr¨ubeln, - darauf, daß etwas in den Grundlagen der ganzen Sache absolut nicht in Ordnung zu bringen sei; tats¨achlich, sie sahen zuunterst nach und fanden, daß das ganze Geb¨audein der Luft stehe. Aber die Maschinen liefen! Man muß daraufhin annehmen, daß unser Dasein bleicher Spuk ist; wir leben es, aber eigentlich nur auf Grund eines Irrtums, ohne den es nicht entstanden w¨are. ROBERT MUSIL: Der mathematische Mensch (1913) 1 Introduction A central theme running through all the main areas of Mathematical Logic is the classification of sets, functions or theories, by means of transfinite hierarchies whose ordinal levels measure their ‘rank’ or ‘complexity’ in some sense appropriate to the underlying context. In Proof Theory this is manifest in the assignment of ‘proof the- oretic ordinals’ to theories, gauging their ‘consistency strength’ and ‘computational power’. Ordinal-theoretic proof theory came into existence in 1936, springing forth from Gentzen’s head in the course of his consistency proof of arithmetic. To put it roughly, ordinal analyses attach ordinals in a given representation system to formal theories.
    [Show full text]