How Gödel Transformed Set Theory, Volume 53, Number 4

Total Page:16

File Type:pdf, Size:1020Kb

How Gödel Transformed Set Theory, Volume 53, Number 4 How Gödel Transformed Set Theory Juliet Floyd and Akihiro Kanamori urt Gödel (1906–1978), with his work on of reals and the like. He stipulated that two sets the constructible universe L, established have the same power if there is a bijection between the relative consistency of the Axiom of them, and, implicitly at first, that one set has a Choice and the Continuum Hypothesis. higher power than another if there is an injection KMore broadly, he secured the cumulative of the latter into the first but no bijection. In an hierarchy view of the universe of sets and ensured 1878 publication he showed that R, the plane R × R, the ascendancy of first-order logic as the framework and generally Rn are all of the same power, but for set theory. Gödel thereby transformed set the- there were still only the two infinite powers as set ory and launched it with structured subject mat- out by his 1873 proof. At the end of the publica- ter and specific methods of proof as a distinctive tion Cantor asserted a dichotomy: field of mathematics. What follows is a survey of prior developments in set theory and logic in- Every infinite set of real numbers ei- tended to set the stage, an account of how Gödel ther is countable or has the power of the marshaled the ideas and constructions to formu- continuum. late L and establish his results, and a description This was the Continuum Hypothesis (CH) in its of subsequent developments in set theory that res- nascent context, and the continuum problem, to re- onated with his speculations. The survey trots out solve this hypothesis, would become a major mo- in quick succession the groundbreaking work at the tivation for Cantor’s large-scale investigations of beginning of a young subject. infinite numbers and sets. In his Grundlagen of 1883, Cantor developed the Numbers, Types, and Well-Ordering transfinite numbers and the key concept of well- Set theory was born on that day in December 1873 ordering. The progression of transfinite numbers when Georg Cantor (1845–1918) established that could be depicted, in his later notation, in terms the continuum is not countable: There is no bijec- of natural extensions of arithmetical operations: tion between the natural numbers N = {0, 1, 2, 3,...} and the real numbers R, since 0, 1, 2,...ω,ω+1,ω+2,...ω+ ω(= ω·2), for any (countable) sequence of reals one can spec- ...ω·3,...ω·ω(= ω2),...ω3,...ωω,... ify nested intervals so that any real in the inter- section will not be in the sequence. Cantor soon in- A relation ≺ is a well-ordering of a set if and only vestigated ways to define bijections between sets if it is a strict linear ordering of the set such that every nonempty subset has a ≺-least element. Well- Juliet Floyd is professor of philosophy at Boston University. orderings carry the sense of sequential counting, Her email address is [email protected]. and the transfinite numbers serve as standards Akihiro Kanamori is professor of mathematics at Boston for gauging well-orderings. Cantor called the set of University. His email address is [email protected]. natural numbers N the first number class (I) and APRIL 2006 NOTICES OF THE AMS 419 the set of numbers whose predecessors are in bi- are now to be the cardinal numbers of the succes- jective correspondence with (I) the second number sive number classes from the Grundlagen and thus class (II). The infinite numbers in the above display to exhaust all the infinite cardinal numbers. Can- ℵ are all in (II). Cantor conceived of (II) as bounded tor pointed out that 2 0 is the cardinal number of above and showed that (II) itself is not countable. R, but frustrated in his efforts to establish CH he Proceeding upward, Cantor called the set of num- did not even mention the hypothesis, which could ℵ bers whose predecessors are in bijective corre- now have been stated as 2 0 = ℵ1 . Every well- spondence with (II) the third number class (III), ordered set has an aleph as its cardinal number, ℵ and so on. Cantor then propounded a basic prin- but where is 2 0 in the aleph sequence? ciple in the Grundlagen: CH was thus embedded in the very interstices of the beginnings of set theory. The structures that “It is always possible to bring any well- Cantor built, while now of great intrinsic interest, defined set into the form of a well- emerged largely out of efforts to articulate and es- ordered set.” tablish it. The continuum problem was made the Sets are to be well-ordered and thus to be gauged very first in David Hilbert’s famous list of problems by his numbers and number classes. With this at the 1900 International Congress of Mathemati- framework Cantor had transformed CH into the cians; Hilbert drew out Cantor’s difficulty by sug- positive assertion that (II) and R have the same gesting the desirability of “actually giving” a well- power. However, an emerging problem for Cantor ordering of R. was that he could not even define a well-ordering Bertrand Russell (1872–1970), a main architect of R; the continuum, at the heart of mathematics, of the analytic tradition in philosophy, focused in could not be easily brought into the fold of the 1900 on Cantor’s work. Russell was pivoting from transfinite numbers. idealism toward a realism about propositions and Almost two decades after his initial 1873 proof, with it logicism, the thesis that mathematics can Cantor in 1891 came to his celebrated diagonal ar- be founded in logic. Taking a universalist approach gument. In various guises the argument would be- to logic with all-encompassing categories, Russell come fundamental in mathematical logic. Cantor took the class of all classes to have the largest car- himself proceeded in terms of functions, ushering dinal number but saw that Cantor’s 1891 result collections of arbitrary functions into mathemat- leading to higher cardinal numbers presented a ics, but we cast his result as is done nowadays in problem. Analyzing that argument, by the spring terms of the power set P(x)={y | y ⊆ x} of a set of 1901 he came to the famous Russell’s Paradox, x. For any set x, P(x) has a higher power than x. a surprisingly simple counterexample to full com- First, the function associating each a ∈ x with prehension, the assertion that for every property {a} is an injection: x →P(x). Suppose now that F A(x) the collection of objects having that prop- is any function: x →P(x). Consider the “diagonal” erty, the class {x | A(x)}, is also an object. Consider set d = {a ∈ x | a/∈ F(a)}. If d itself were a value Russell’s {x | x/∈ x}. If this were an object r, then of F, say d = F(b), then we would have the contra- we would have the contradiction r ∈ r if and only diction: b ∈ d if and only if b/∈ d. Hence, F cannot if r/∈ r. Gottlob Frege (1848-1925) was the first to be surjective. systematize quantificational logic in a formalized Cantor had been shifting his notion of set to a language, and he aimed to establish a purely logi- level of abstraction beyond sets of real numbers cal foundation for arithmetic. Russell famously and the like; the diagonal argument can be drawn communicated his paradox to Frege in 1902, who out of the earlier argument, and the new result gen- immediately saw that it revealed a contradiction P eralized the old since (N) and R have the same within his mature logical system. power. The new result showed for the first time that Russell’s own reaction was to build a complex P P there is a set of a higher power than R, e.g., ( (N)). logical structure, one used later to develop math- Cantor’s Beiträge of 1895 and 1897 presented ematics in Whitehead and Russell’s 1910-3 Principia his mature theory of the transfinite. Cantor re- Mathematica. Russell’s ramified theory of types is construed power as cardinal number, now an au- a scheme of logical definitions based on orders tonomous concept beyond une façon de parler and types indexed by the natural numbers. Russell about bijective correspondence. He defined the ad- proceeded “intensionally”; he conceived this dition, multiplication, and exponentiation of car- scheme as a classification of propositions based on dinal numbers primordially in terms of set- the notion of propositional function, a notion not theoretic operations and functions. As befits the reducible to membership (extensionality). Pro- introduction of new numbers Cantor then intro- ceeding in modern fashion, we may say that the uni- duced a new notation, one using the Hebrew letter verse of the Principia consists of objects stratified aleph, ℵ. ℵ is to be the cardinal number of N and 0 into disjoint types T , where T consists of the in- the successive alephs n 0 dividuals, Tn+1 ⊆{Y | Y ⊆ Tn}, and the types Tn for ℵ ℵ ℵ ℵ i 0, 1, 2,..., α,... n>0 are further ramified into orders On with 420 NOTICES OF THE AMS VOLUME 53, NUMBER 4 i i Tn = i On. An object in On is to be defined either positive use of an arbitrary function operating on in terms of individuals or of objects in some fixed arbitrary subsets of a set having been made explicit, j Om for some j<iand m ≤ n, the definitions al- there was open controversy after the appearance j lowing for quantification only over Om.
Recommended publications
  • Does the Category of Multisets Require a Larger Universe Than
    Pure Mathematical Sciences, Vol. 2, 2013, no. 3, 133 - 146 HIKARI Ltd, www.m-hikari.com Does the Category of Multisets Require a Larger Universe than that of the Category of Sets? Dasharath Singh (Former affiliation: Indian Institute of Technology Bombay) Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria [email protected] Ahmed Ibrahim Isah Department of Mathematics Ahmadu Bello University, Zaria, Nigeria [email protected] Alhaji Jibril Alkali Department of Mathematics Ahmadu Bello University, Zaria, Nigeria [email protected] Copyright © 2013 Dasharath Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In section 1, the concept of a category is briefly described. In section 2, it is elaborated how the concept of category is naturally intertwined with the existence of a universe of discourse much larger than what is otherwise sufficient for a large part of mathematics. It is also remarked that the extended universe for the category of sets is adequate for the category of multisets as well. In section 3, fundamentals required for adequately describing a category are extended to defining a multiset category, and some of its distinctive features are outlined. Mathematics Subject Classification: 18A05, 18A20, 18B99 134 Dasharath Singh et al. Keywords: Category, Universe, Multiset Category, objects. 1. Introduction to categories The history of science and that of mathematics, in particular, records that at times, a by- product may turn out to be of greater significance than the main objective of a research.
    [Show full text]
  • Cantor, God, and Inconsistent Multiplicities*
    STUDIES IN LOGIC, GRAMMAR AND RHETORIC 44 (57) 2016 DOI: 10.1515/slgr-2016-0008 Aaron R. Thomas-Bolduc University of Calgary CANTOR, GOD, AND INCONSISTENT MULTIPLICITIES* Abstract. The importance of Georg Cantor’s religious convictions is often ne- glected in discussions of his mathematics and metaphysics. Herein I argue, pace Jan´e(1995), that due to the importance of Christianity to Cantor, he would have never thought of absolutely infinite collections/inconsistent multiplicities, as being merely potential, or as being purely mathematical entities. I begin by considering and rejecting two arguments due to Ignacio Jan´e based on letters to Hilbert and the generating principles for ordinals, respectively, showing that my reading of Cantor is consistent with that evidence. I then argue that evidence from Cantor’s later writings shows that he was still very religious later in his career, and thus would not have given up on the reality of the absolute, as that would imply an imperfection on the part of God. The theological acceptance of his set theory was very important to Can- tor. Despite this, the influence of theology on his conception of absolutely infinite collections, or inconsistent multiplicities, is often ignored in contem- porary literature.1 I will be arguing that due in part to his religious convic- tions, and despite an apparent tension between his earlier and later writings, Cantor would never have considered inconsistent multiplicities (similar to what we now call proper classes) as completed in a mathematical sense, though they are completed in Intellectus Divino. Before delving into the issue of the actuality or otherwise of certain infinite collections, it will be informative to give an explanation of Cantor’s terminology, as well a sketch of Cantor’s relationship with religion and reli- gious figures.
    [Show full text]
  • The Iterative Conception of Set
    The Iterative Conception of Set Thomas Forster Centre for Mathematical Sciences Wilberforce Road Cambridge, CB3 0WB, U.K. September 4, 2009 Contents 1 The Cumulative Hierarchy 2 2 The Two-Constructor case 5 2.1 Set Equality in the Two-Constructor Case . 6 3 More Wands 9 3.1 Second-order categoricity .................... 9 3.2 Equality . 10 3.3 Restricted quantifiers . 10 3.4 Forcing . 11 4 Objections 11 4.1 Sets Constituted by their Members . 12 4.2 The End of Time . 12 4.2.1 What is it an argument against? . 13 4.3 How Many Wands? . 13 5 Church-Oswald models 14 5.1 The Significance of the Church-Oswald Interpretation . 16 5.2 Forti-Honsell Antifoundation . 16 6 Envoi: Why considering the two-wand construction might be helpful 17 1 Abstract The two expressions “The cumulative hierarchy” and “The iterative con- ception of sets” are usually taken to be synonymous. However the second is more general than the first, in that there are recursive procedures that generate some illfounded sets in addition to wellfounded sets. The inter- esting question is whether or not the arguments in favour of the more restrictive version—the cumulative hierarchy—were all along arguments for the more general version. The phrase “The iterative conception of sets” conjures up a picture of a particular set-theoretic universe—the cumulative hierarchy—and the constant conjunction of phrase-with-picture is so reliable that people tend to think that the cumulative hierarchy is all there is to the iterative conception of sets: if you conceive sets iteratively then the result is the cumulative hierarchy.
    [Show full text]
  • Sets - June 24 Chapter 1 - Sets and Functions
    Math 300 - Introduction to Mathematical reasoning Summer 2013 Lecture 1: Sets - June 24 Chapter 1 - Sets and Functions Definition and Examples Sets are a \well-defined” collection of objects. We shall not say what we mean by \well-defined” in this course. At an introductory level, it suffices to think of a Set as a collection of objects. Some examples of sets are - • Collection of students taking Math 300, • Collection of all possible speeds that your car can attain, • Collection of all matrices with real entries (Math 308). Examples We mention some mathematical examples which we shall use throughout the course. Keep these examples in mind. • N - the set of natural numbers. Here, N = f1; 2; 3;:::; g • Z - the set of integers. Here, Z = f;:::; −3; −2; −1; 0; 1; 2; 3;:::; g • Q - the set of rational numbers. The set of rational numbers can described as fractions, where the numerator and denominator of the fraction are both integers and the denominator is not equal to zero. • R - the set of real numbers. • R+ - the set of positive real numbers. The objects of the set are called elements, members or points of the set. Usually a set is denoted by a capital letter. The elements of the set are denoted by lowercase letters. The symbol 2 denotes the phrase \belongs to". Let A be a set and let x be an element of the set A. The statement x 2 A should be read as x belongs to the set A. For example, the statement \1 2 N" should be read as \1 belongs to the set of natural numbers".
    [Show full text]
  • Review of Set-Theoretic Notations and Terminology A.J
    Math 347 Review of Set-theoretic Notations and Terminology A.J. Hildebrand Review of Set-theoretic Notations and Terminology • Sets: A set is an unordered collection of objects, called the elements of the set. The standard notation for a set is the brace notation f::: g, with the elements of the set listed inside the pair of braces. • Set builder notation: Notation of the form f::: : ::: g, where the colon (:) has the meaning of \such that", the dots to the left of the colon indicate the generic form of the element in the set and the dots to 2 the right of the colon denote any constraints on the element. E.g., fx 2 R : x < 4g stands for \the set of 2 all x 2 R such that x < 4"; this is the same as the interval (−2; 2). Other examples of this notation are f2k : k 2 Zg (set of all even integers), fx : x 2 A and x 2 Bg (intersection of A and B, A \ B). 2 Note: Instead of a colon (:), one can also use a vertical bar (j) as a separator; e.g., fx 2 R j x < 4g. Both notations are equally acceptable. • Equality of sets: Two sets are equal if they contain the same elements. E.g., the sets f3; 4; 7g, f4; 3; 7g, f3; 3; 4; 7g are all equal since they contain the same three elements, namely 3, 4, 7. • Some special sets: • Empty set: ; (or fg) • \Double bar" sets: 1 ∗ Natural numbers: N = f1; 2;::: g (note that 0 is not an element of N) ∗ Integers: Z = f:::; −2; −1; 0; 1; 2;::: g ∗ Rational numbers: Q = fp=q : p; q 2 Z; q 6= 0g ∗ Real numbers: R • Intervals: ∗ Open interval: (a; b) = fx 2 R : a < x < bg ∗ Closed interval: [a; b] = fx 2 R : a ≤ x ≤ bg ∗ Half-open interval: [a; b) = fx 2 R : a ≤ x < bg • Universe: U (\universe", a \superset" of which all sets under consideration are assumed to be a subset).
    [Show full text]
  • A Multiverse Perspective in Mathematics and Set Theory: Does Every Mathematical Statement Have a Definite Truth Value?
    The universe view The multiverse view Dream Solution of CH is unattainable Further topics Multiverse Mathematics A multiverse perspective in mathematics and set theory: does every mathematical statement have a definite truth value? Joel David Hamkins The City University of New York Mathematics, Philosophy, Computer Science College of Staten Island of CUNY The CUNY Graduate Center Meta-Meta Workshop: Metamathematics and Metaphysics Fudan University, Shanghai June 15, 2013 Meta-Meta Workshop, Shanghai June 15, 2013 Joel David Hamkins, New York The universe view The multiverse view Dream Solution of CH is unattainable Further topics Multiverse Mathematics The theme The theme of this talk is the question: Does every mathematical problem have a definite answer? I shall be particularly interested in this question as it arises in the case of set theory: Does every set-theoretic assertion have a definite truth value? Meta-Meta Workshop, Shanghai June 15, 2013 Joel David Hamkins, New York The universe view The multiverse view Dream Solution of CH is unattainable Further topics Multiverse Mathematics Set theory as Ontological Foundation A traditional view in set theory is that it serves as an ontological foundation for the rest of mathematics, in the sense that other abstract mathematical objects can be construed fundamentally as sets. On this view, mathematical objects—functions, real numbers, spaces—are sets. Being precise in mathematics amounts to specifying an object in set theory. In this way, the set-theoretic universe becomes the realm of all mathematics. Having a common foundation was important for the unity of mathematics. A weaker position remains compatible with structuralism.
    [Show full text]
  • Set Notation and Concepts
    Appendix Set Notation and Concepts “In mathematics you don’t understand things. You just get used to them.” John von Neumann (1903–1957) This appendix is primarily a brief run-through of basic concepts from set theory, but it also in Sect. A.4 mentions set equations, which are not always covered when introducing set theory. A.1 Basic Concepts and Notation A set is a collection of items. You can write a set by listing its elements (the items it contains) inside curly braces. For example, the set that contains the numbers 1, 2 and 3 can be written as {1, 2, 3}. The order of elements do not matter in a set, so the same set can be written as {2, 1, 3}, {2, 3, 1} or using any permutation of the elements. The number of occurrences also does not matter, so we could also write the set as {2, 1, 2, 3, 1, 1} or in an infinity of other ways. All of these describe the same set. We will normally write sets without repetition, but the fact that repetitions do not matter is important to understand the operations on sets. We will typically use uppercase letters to denote sets and lowercase letters to denote elements in a set, so we could write M ={2, 1, 3} and x = 2 as an element of M. The empty set can be written either as an empty list of elements ({})orusing the special symbol ∅. The latter is more common in mathematical texts. A.1.1 Operations and Predicates We will often need to check if an element belongs to a set or select an element from a set.
    [Show full text]
  • Warren Goldfarb, Notes on Metamathematics
    Notes on Metamathematics Warren Goldfarb W.B. Pearson Professor of Modern Mathematics and Mathematical Logic Department of Philosophy Harvard University DRAFT: January 1, 2018 In Memory of Burton Dreben (1927{1999), whose spirited teaching on G¨odeliantopics provided the original inspiration for these Notes. Contents 1 Axiomatics 1 1.1 Formal languages . 1 1.2 Axioms and rules of inference . 5 1.3 Natural numbers: the successor function . 9 1.4 General notions . 13 1.5 Peano Arithmetic. 15 1.6 Basic laws of arithmetic . 18 2 G¨odel'sProof 23 2.1 G¨odelnumbering . 23 2.2 Primitive recursive functions and relations . 25 2.3 Arithmetization of syntax . 30 2.4 Numeralwise representability . 35 2.5 Proof of incompleteness . 37 2.6 `I am not derivable' . 40 3 Formalized Metamathematics 43 3.1 The Fixed Point Lemma . 43 3.2 G¨odel'sSecond Incompleteness Theorem . 47 3.3 The First Incompleteness Theorem Sharpened . 52 3.4 L¨ob'sTheorem . 55 4 Formalizing Primitive Recursion 59 4.1 ∆0,Σ1, and Π1 formulas . 59 4.2 Σ1-completeness and Σ1-soundness . 61 4.3 Proof of Representability . 63 3 5 Formalized Semantics 69 5.1 Tarski's Theorem . 69 5.2 Defining truth for LPA .......................... 72 5.3 Uses of the truth-definition . 74 5.4 Second-order Arithmetic . 76 5.5 Partial truth predicates . 79 5.6 Truth for other languages . 81 6 Computability 85 6.1 Computability . 85 6.2 Recursive and partial recursive functions . 87 6.3 The Normal Form Theorem and the Halting Problem . 91 6.4 Turing Machines .
    [Show full text]
  • 2.5. INFINITE SETS Now That We Have Covered the Basics of Elementary
    2.5. INFINITE SETS Now that we have covered the basics of elementary set theory in the previous sections, we are ready to turn to infinite sets and some more advanced concepts in this area. Shortly after Georg Cantor laid out the core principles of his new theory of sets in the late 19th century, his work led him to a trove of controversial and groundbreaking results related to the cardinalities of infinite sets. We will explore some of these extraordinary findings, including Cantor’s eponymous theorem on power sets and his famous diagonal argument, both of which imply that infinite sets come in different “sizes.” We also present one of the grandest problems in all of mathematics – the Continuum Hypothesis, which posits that the cardinality of the continuum (i.e. the set of all points on a line) is equal to that of the power set of the set of natural numbers. Lastly, we conclude this section with a foray into transfinite arithmetic, an extension of the usual arithmetic with finite numbers that includes operations with so-called aleph numbers – the cardinal numbers of infinite sets. If all of this sounds rather outlandish at the moment, don’t be surprised. The properties of infinite sets can be highly counter-intuitive and you may likely be in total disbelief after encountering some of Cantor’s theorems for the first time. Cantor himself said it best: after deducing that there are just as many points on the unit interval (0,1) as there are in n-dimensional space1, he wrote to his friend and colleague Richard Dedekind: “I see it, but I don’t believe it!” The Tricky Nature of Infinity Throughout the ages, human beings have always wondered about infinity and the notion of uncountability.
    [Show full text]
  • Black Hole Math Is Designed to Be Used As a Supplement for Teaching Mathematical Topics
    National Aeronautics and Space Administration andSpace Aeronautics National ole M a th B lack H i This collection of activities, updated in February, 2019, is based on a weekly series of space science problems distributed to thousands of teachers during the 2004-2013 school years. They were intended as supplementary problems for students looking for additional challenges in the math and physical science curriculum in grades 10 through 12. The problems are designed to be ‘one-pagers’ consisting of a Student Page, and Teacher’s Answer Key. This compact form was deemed very popular by participating teachers. The topic for this collection is Black Holes, which is a very popular, and mysterious subject among students hearing about astronomy. Students have endless questions about these exciting and exotic objects as many of you may realize! Amazingly enough, many aspects of black holes can be understood by using simple algebra and pre-algebra mathematical skills. This booklet fills the gap by presenting black hole concepts in their simplest mathematical form. General Approach: The activities are organized according to progressive difficulty in mathematics. Students need to be familiar with scientific notation, and it is assumed that they can perform simple algebraic computations involving exponentiation, square-roots, and have some facility with calculators. The assumed level is that of Grade 10-12 Algebra II, although some problems can be worked by Algebra I students. Some of the issues of energy, force, space and time may be appropriate for students taking high school Physics. For more weekly classroom activities about astronomy and space visit the NASA website, http://spacemath.gsfc.nasa.gov Add your email address to our mailing list by contacting Dr.
    [Show full text]
  • Universe Design Tool User Guide Content
    SAP BusinessObjects Business Intelligence platform Document Version: 4.2 – 2015-11-12 Universe Design Tool User Guide Content 1 Document History.............................................................13 2 Introducing the universe design tool...............................................14 2.1 Overview.....................................................................14 2.2 Universe design tool and universe fundamentals.........................................14 What is a universe?...........................................................14 What is the role of a universe?...................................................15 What does a universe contain?...................................................15 About the universe window..................................................... 17 Universe design tool install root path...............................................17 2.3 How do you use the universe design tool to create universes?...............................18 How do objects generate SQL?...................................................18 What types of database schema are supported?......................................19 How are universes used?.......................................................19 2.4 Who is the universe designer?..................................................... 20 Required skills and knowledge...................................................20 What are the tasks of the universe designer?.........................................21 2.5 The basic steps to create a universe................................................
    [Show full text]
  • On the Necessary Use of Abstract Set Theory
    ADVANCES IN MATHEMATICS 41, 209-280 (1981) On the Necessary Use of Abstract Set Theory HARVEY FRIEDMAN* Department of Mathematics, Ohio State University, Columbus, Ohio 43210 In this paper we present some independence results from the Zermelo-Frankel axioms of set theory with the axiom of choice (ZFC) which differ from earlier such independence results in three major respects. Firstly, these new propositions that are shown to be independent of ZFC (i.e., neither provable nor refutable from ZFC) form mathematically natural assertions about Bore1 functions of several variables from the Hilbert cube I” into the unit interval, or back into the Hilbert cube. As such, they are of a level of abstraction significantly below that of the earlier independence results. Secondly, these propositions are not only independent of ZFC, but also of ZFC together with the axiom of constructibility (V = L). The only earlier examples of intelligible statements independent of ZFC + V= L either express properties of formal systems such as ZFC (e.g., the consistency of ZFC), or assert the existence of very large cardinalities (e.g., inaccessible cardinals). The great bulk of independence results from ZFCLthe ones that involve standard mathematical concepts and constructions-are about sets of limited cardinality (most commonly, that of at most the continuum), and are obtained using the forcing method introduced by Paul J. Cohen (see [2]). It is now known in virtually every such case, that these independence results are eliminated if V= L is added to ZFC. Finally, some of our propositions can be proved in the theory of classes, as formalized by the Morse-Kelley class theory with the axiom of choice for sets (MKC), but not in ZFC.
    [Show full text]