Claude Mydorge Reader and Interpreter of Apollonius' Conics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Brief Information on the Surfaces Not Included in the Basic Content of the Encyclopedia
Brief Information on the Surfaces Not Included in the Basic Content of the Encyclopedia Brief information on some classes of the surfaces which cylinders, cones and ortoid ruled surfaces with a constant were not picked out into the special section in the encyclo- distribution parameter possess this property. Other properties pedia is presented at the part “Surfaces”, where rather known of these surfaces are considered as well. groups of the surfaces are given. It is known, that the Plücker conoid carries two-para- At this section, the less known surfaces are noted. For metrical family of ellipses. The straight lines, perpendicular some reason or other, the authors could not look through to the planes of these ellipses and passing through their some primary sources and that is why these surfaces were centers, form the right congruence which is an algebraic not included in the basic contents of the encyclopedia. In the congruence of the4th order of the 2nd class. This congru- basis contents of the book, the authors did not include the ence attracted attention of D. Palman [8] who studied its surfaces that are very interesting with mathematical point of properties. Taking into account, that on the Plücker conoid, view but having pure cognitive interest and imagined with ∞2 of conic cross-sections are disposed, O. Bottema [9] difficultly in real engineering and architectural structures. examined the congruence of the normals to the planes of Non-orientable surfaces may be represented as kinematics these conic cross-sections passed through their centers and surfaces with ruled or curvilinear generatrixes and may be prescribed a number of the properties of a congruence of given on a picture. -
Exploding the Ellipse Arnold Good
Exploding the Ellipse Arnold Good Mathematics Teacher, March 1999, Volume 92, Number 3, pp. 186–188 Mathematics Teacher is a publication of the National Council of Teachers of Mathematics (NCTM). More than 200 books, videos, software, posters, and research reports are available through NCTM’S publication program. Individual members receive a 20% reduction off the list price. For more information on membership in the NCTM, please call or write: NCTM Headquarters Office 1906 Association Drive Reston, Virginia 20191-9988 Phone: (703) 620-9840 Fax: (703) 476-2970 Internet: http://www.nctm.org E-mail: [email protected] Article reprinted with permission from Mathematics Teacher, copyright May 1991 by the National Council of Teachers of Mathematics. All rights reserved. Arnold Good, Framingham State College, Framingham, MA 01701, is experimenting with a new approach to teaching second-year calculus that stresses sequences and series over integration techniques. eaders are advised to proceed with caution. Those with a weak heart may wish to consult a physician first. What we are about to do is explode an ellipse. This Rrisky business is not often undertaken by the professional mathematician, whose polytechnic endeavors are usually limited to encounters with administrators. Ellipses of the standard form of x2 y2 1 5 1, a2 b2 where a > b, are not suitable for exploding because they just move out of view as they explode. Hence, before the ellipse explodes, we must secure it in the neighborhood of the origin by translating the left vertex to the origin and anchoring the left focus to a point on the x-axis. -
Extension of Eigenvalue Problems on Gauss Map of Ruled Surfaces
S S symmetry Article Extension of Eigenvalue Problems on Gauss Map of Ruled Surfaces Miekyung Choi 1 and Young Ho Kim 2,* 1 Department of Mathematics Education and RINS, Gyeongsang National University, Jinju 52828, Korea; [email protected] 2 Department of Mathematics, Kyungpook National University, Daegu 41566, Korea * Correspondence: [email protected]; Tel.: +82-53-950-5888 Received: 20 September 2018; Accepted: 12 October 2018; Published: 16 October 2018 Abstract: A finite-type immersion or smooth map is a nice tool to classify submanifolds of Euclidean space, which comes from the eigenvalue problem of immersion. The notion of generalized 1-type is a natural generalization of 1-type in the usual sense and pointwise 1-type. We classify ruled surfaces with a generalized 1-type Gauss map as part of a plane, a circular cylinder, a cylinder over a base curve of an infinite type, a helicoid, a right cone and a conical surface of G-type. Keywords: ruled surface; pointwise 1-type Gauss map; generalized 1-type Gauss map; conical surface of G-type 1. Introduction Nash’s embedding theorem enables us to study Riemannian manifolds extensively by regarding a Riemannian manifold as a submanifold of Euclidean space with sufficiently high codimension. By means of such a setting, we can have rich geometric information from the intrinsic and extrinsic properties of submanifolds of Euclidean space. Inspired by the degree of algebraic varieties, B.-Y. Chen introduced the notion of order and type of submanifolds of Euclidean space. Furthermore, he developed the theory of finite-type submanifolds and estimated the total mean curvature of compact submanifolds of Euclidean space in the late 1970s ([1]). -
A Cochleoid Cone Udc 514.1=111
FACTA UNIVERSITATIS Series: Architecture and Civil Engineering Vol. 9, No 3, 2011, pp. 501 - 509 DOI: 10.2298/FUACE1103501N CONE WHOSE DIRECTRIX IS A CYLINDRICAL HELIX AND THE VERTEX OF THE DIRECTRIX IS – A COCHLEOID CONE UDC 514.1=111 Vladan Nikolić*, Sonja Krasić, Olivera Nikolić University of Niš, The Faculty of Civil Engineering and Architecture, Serbia * [email protected] Abstract. The paper treated a cone with a cylindrical helix as a directrix and the vertex on it. Characteristic elements of a surface formed in such way and the basis are identified, and characteristic flat intersections of planes are classified. Also considered is the potential of practical application of such cone in architecture and design. Key words: cocleoid cones, vertex on directrix, cylindrical helix directrix. 1. INTRODUCTION Cone is a deriving singly curved rectilinear surface. A randomly chosen point A on the directrix d1 will, along with the directirx d2 determine totally defined conical surface k, figure 1. If directirx d3 penetrates through this conical surface in the point P, then the connection line AP, regarding that it intersects all three directrices (d1, d2 and d3), will be the generatrix of rectilinear surface. If the directrix d3 penetrates through the men- tioned conical surface in two, three or more points, then through point A will pass two, three or more generatrices of the rectilinear surface.[7] Directrix of a rectilinear surface can be any planar or spatial curve. By changing the form and mutual position of the directrices, various type of rectilinear surfaces can be obtained. If the directrices d1 and d2 intersect, and the intersection point is designated with A, then the top of the created surface will occur on the directrix d2, figure 2. -
Section 3.7 Notes
Section 3.7 Notes Rational Functions 1 Introduction Definition • A rational function is fraction of two polynomials. 2x2 − 1 • For example, f(x) = is a rational function. 3x2 + 2x − 5 Properties of Rational Graphs • The graph of every rational function is smooth (no sharp corners) • However, many rational functions are discontinuous . In other words, the graph might have several separate \sections" to the graph, similar to the way piecewise functions look. 1 For example, remember the graph of f(x) = x : Notice how the graph is drawn in two separate pieces. Asymptotes • An asymptote to a function is a line which the function gets closer and closer to without touching. • Rational functions have two categories of asymptote: 1. vertical asymptotes 2. asymptotes which determine the end behavior - these could be either horizontal asymp- totes or slant asymptotes Vertical Asymptote Horizontal Slant Asymptote Asymptote 1 2 Vertical Asymptotes Description • A vertical asymptote of a rational function is a vertical line which the graph never crosses, but does get closer and closer to. • Rational functions can have any number of vertical asymptotes • The number of vertical asymptotes determines the number of \pieces" the graph has. Since the graph will never cross any vertical asymptotes, there will be separate pieces between and on the sides of all the vertical asymptotes. Finding Vertical Asymptotes 1. Factor the denominator. 2. Set each factor equal to zero and solve. The locations of the vertical asymptotes are nothing more than the x-values where the function is undefined. Behavior Near Vertical Asymptotes The multiplicity of the vertical asymptote determines the behavior of the graph near the asymptote: Multiplicity Behavior even The two sides of the asymptote match - they both go up or both go down. -
Vertical Tangents and Cusps
Section 4.7 Lecture 15 Section 4.7 Vertical and Horizontal Asymptotes; Vertical Tangents and Cusps Jiwen He Department of Mathematics, University of Houston [email protected] math.uh.edu/∼jiwenhe/Math1431 Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 15 October 21, 2008 1 / 34 Section 4.7 Test 2 Test 2: November 1-4 in CASA Loggin to CourseWare to reserve your time to take the exam. Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 15 October 21, 2008 2 / 34 Section 4.7 Review for Test 2 Review for Test 2 by the College Success Program. Friday, October 24 2:30–3:30pm in the basement of the library by the C-site. Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 15 October 21, 2008 3 / 34 Section 4.7 Grade Information 300 points determined by exams 1, 2 and 3 100 points determined by lab work, written quizzes, homework, daily grades and online quizzes. 200 points determined by the final exam 600 points total Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 15 October 21, 2008 4 / 34 Section 4.7 More Grade Information 90% and above - A at least 80% and below 90%- B at least 70% and below 80% - C at least 60% and below 70% - D below 60% - F Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 15 October 21, 2008 5 / 34 Section 4.7 Online Quizzes Online Quizzes are available on CourseWare. If you fail to reach 70% during three weeks of the semester, I have the option to drop you from the course!!!. -
Chapter 10 Analytic Geometry
Chapter 10 Analytic Geometry Section 10.1 13. (e); the graph has vertex ()()hk,1,1= and opens to the right. Therefore, the equation of the graph Not applicable has the form ()yax−=142 () − 1. Section 10.2 14. (d); the graph has vertex ()()hk,0,0= and ()()−+−22 1. xx21 yy 21 opens down. Therefore, the equation of the graph has the form xay2 =−4 . The graph passes 2 −4 through the point ()−−2, 1 so we have 2. = 4 2 2 ()−=−−241a () 2 = 3. ()x +=49 44a = x +=±43 a 1 2 xx+=43 or +=− 4 3 Thus, the equation of the graph is xy=−4 . xx=−1 or =− 7 15. (h); the graph has vertex ()(hk,1,1=− − ) and The solution set is {7,1}−−. opens down. Therefore, the equation of the graph 2 4. (2,5)−− has the form ()xay+=−+141 (). 5. 3, up 16. (a); the graph has vertex ()()hk,0,0= and 6. parabola opens to the right. Therefore, the equation of the graph has the form yax2 = 4 . The graph passes 7. c through the point ()1, 2 so we have 8. (3, 2) ()2412 = a () 44= a 9. (3,6) 1 = a 2 10. y =−2 Thus, the equation of the graph is yx= 4 . 11. (b); the graph has a vertex ()()hk,0,0= and 17. (c); the graph has vertex ()()hk,0,0= and opens up. Therefore, the equation of the graph opens to the left. Therefore, the equation of the 2 has the form xay2 = 4 . The graph passes graph has the form yax=−4 . -
Magyar Könyvszemle 97. Évf. 1981. 3. Szám
BARLAY, Ö. SZABOLCS Thomas Seget's (from Edinborough) Middle European connections in reflection of Cod. Vat. Lat. 9385 Thomas Seget from Edinborough is worthto be discussed by the special litera- ture because of several reasons. He was travelling not only in England but in Netherlands, Germany, visited the Bohemian and Polish intellectual centers, and supposed to travel through Hungary too. There were hundreds of human- ists like he was, but few of them kept their relations so consciously to the con- temporary intellectual leaders as the Scot Seget. This is proved not only by his correspondence, but also by the Album Amicorum (Codice Vat. Lat. 9385) which will be analysed here. Because he was travelling thoroughly Europe, his activity is studied by the Dutch renaissance researchers as well as the Italian, Germán, Czechoslovakian, Polish ones too. But the research work (which is various and refers to several language areas) needs to summarize — with the help of the available data— those results, which are to make clear Seget's life-work and its numerous question-marks. The reason, what makes it necessary, is:that—up to now—he was studied by the researchers only in connection with one special subject. E.g. Antonio Favaro (connected to Galileo Galilei), Florio Banfi (because of Marino Ghetaldi), Otakar Odlozilik (because of his friendship to the Polish Szymon Szymonowicz). The studies of the above-mentioned researchers are indispensable, because they reveal — in spite of their special respects — a number of informations about the most différent periods of Seget's life.1 We are going to study especially the Album Amicorum — which would deserve a fascimile édition — because of its hidden values. -
Calculus Terminology
AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential -
Bernardino Baldi's in Mechanica Aristotelis Problemata Exercitationes
Bernardino Baldi’s In mechanica Aristotelis problemata exercitationes ii Max Planck Research Library for the History and Development of Knowledge Series Editors Jürgen Renn, Robert Schlögl, Bernard F. Schutz. Edition Open Access Development Team Lindy Divarci, Beatrice Gabriel, Jörg Kantel, Matthias Schemmel, and Kai Surendorf, headed by Peter Damerow. Scientific Board Markus Antonietti, Ian Baldwin, Antonio Becchi, Fabio Bevilacqua, William G. Boltz, Jens Braarvik, Horst Bredekamp, Jed Z. Buchwald, Olivier Darrigol, Thomas Duve, Mike Edmunds, Yehuda Elkana, Fynn Ole Engler, Robert K. Englund, Mordechai Feingold, Rivka Feldhay, Gideon Freudenthal, Paolo Galluzzi, Kostas Gavroglu, Mark Geller, Domenico Giulini, Günther Görz, Gerd Graßhoff, James Hough, Manfred Laubich- ler, Glenn Most, Pier Daniele Napolitani, Alessandro Nova, Hermann Parzinger, Dan Potts, Circe Silva da Silva, Ana Simões, Richard Stephen- son, Mark Stitt, Noel M. Swerdlow, Liba Taub, Martin Vingron, Scott Walter, Norton Wise, Gerhard Wolf, Rüdiger Wolfrum, Zhang Baichun. Sources 3 Edition Open Access 2011 Bernardino Baldi’s In mechanica Aristotelis problemata exercitationes Elio Nenci Communicated by Jürgen Renn and Antonio Becchi Edition Open Access 2011 Max Planck Research Library for the History and Development of Knowledge Sources 3 Communicated by Jürgen Renn and Antonio Becchi Translated from Italian into English by Adriano Carugo Copyedited by Lindy Divarci ISBN 978-3-86931-961-2 First published 2011 Printed in Germany by epubli, Oranienstraße 183, 10999 Berlin http://www.epubli.de Edition Open Access http://www.edition-open-access.de Published under Creative Commons by-nc-sa 3.0 Germany Licence http://creativecommons.org/licenses/by-nc-sa/3.0/de/ The Deutsche Nationalbibliothek lists this publication in the Deutsche Na- tionalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. -
Apollonius of Pergaconics. Books One - Seven
APOLLONIUS OF PERGACONICS. BOOKS ONE - SEVEN INTRODUCTION A. Apollonius at Perga Apollonius was born at Perga (Περγα) on the Southern coast of Asia Mi- nor, near the modern Turkish city of Bursa. Little is known about his life before he arrived in Alexandria, where he studied. Certain information about Apollonius’ life in Asia Minor can be obtained from his preface to Book 2 of Conics. The name “Apollonius”(Apollonius) means “devoted to Apollo”, similarly to “Artemius” or “Demetrius” meaning “devoted to Artemis or Demeter”. In the mentioned preface Apollonius writes to Eudemus of Pergamum that he sends him one of the books of Conics via his son also named Apollonius. The coincidence shows that this name was traditional in the family, and in all prob- ability Apollonius’ ancestors were priests of Apollo. Asia Minor during many centuries was for Indo-European tribes a bridge to Europe from their pre-fatherland south of the Caspian Sea. The Indo-European nation living in Asia Minor in 2nd and the beginning of the 1st millennia B.C. was usually called Hittites. Hittites are mentioned in the Bible and in Egyptian papyri. A military leader serving under the Biblical king David was the Hittite Uriah. His wife Bath- sheba, after his death, became the wife of king David and the mother of king Solomon. Hittites had a cuneiform writing analogous to the Babylonian one and hi- eroglyphs analogous to Egyptian ones. The Czech historian Bedrich Hrozny (1879-1952) who has deciphered Hittite cuneiform writing had established that the Hittite language belonged to the Western group of Indo-European languages [Hro]. -
On Some Borrowed and Misunderstood Problems in Greek Catoptrics
On Some Borrowed and Misunderstood Problems in Greek Catoptrics by ALEXANDERJONES Optics was one of the first sciences to which ancient Greek mathe- maticians attempted to apply the apparatus of geometry. They were most successful in describing geometrically certain phenomena of per- spective (as in Euclid’s Optics and parts of Pappus’s Collection, Book 6),less so in catoljtrics, the study of mirrors.’ The problems typically encountered in the surviving writings on catoptrics fall into two classes: those dealing with the reflection of rays cast from a luminous source such as the sun upon minors of plane or curved surface, and those involving the projection of lines of sight from the eye by way of a minor to an object. The most basic problem of the first class, to make a burning mirror, is solved correctly in Diocles’s On Burning Mirrors (ca. 200 B.C.) with both spherical and parabolic mirrors; other prob- lems were investigated by Diocles, by Anthemius (ca. A.D. 620) in his On Paradoxical Devices, and doubtless by other authors in the cen- turies between.2 In general these problems were amenable to geo- metrical treatment in antiquity because Hellenistic geometers were equipped to study the tangent lines to a wide range of curves (or the tangent planes to analogous surfaces) and the behaviour of straight lines in a given direction or through a given point .and inflected at the curve or surface at equal angles to the tangent at the point of in- cidence. Problems of the other class, in which it was required to make an ar- rangement of mirrors or a mirror with a special curvature, such that a *Institute for the History and Philosophy of Science and Technology, Victoria College, Univer- sity of Toronto, Toronto, Canada MSS 1K7.