The Solar System

Total Page:16

File Type:pdf, Size:1020Kb

The Solar System The Solar System Dana Desonie, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) AUTHOR Dana Desonie, Ph.D. To access a customizable version of this book, as well as other interactive content, visit www.ck12.org CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the FlexBook®, CK-12 intends to pioneer the generation and distribution of high-quality educational content that will serve both as core text as well as provide an adaptive environment for learning, powered through the FlexBook Platform®. Copyright © 2014 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Com- mons from time to time (the “CC License”), which is incorporated herein by this reference. Complete terms can be found at http://www.ck12.org/terms. Printed: October 29, 2014 www.ck12.org Chapter 1. The Solar System CHAPTER 1 The Solar System CHAPTER OUTLINE 1.1 Sun 1.2 Interior of the Sun 1.3 Outer Layers of the Sun 1.4 Surface Features of the Sun 1.5 Planets of the Solar System 1.6 Inner versus Outer Planets 1.7 Mercury 1.8 Venus 1.9 Moon 1.10 Mars 1.11 Jupiter 1.12 Saturn 1.13 Uranus 1.14 Neptune 1.15 Exoplanets 1.16 Asteroids 1.17 Comets 1.18 Meteors 1.19 Dwarf Planets 1.20 References 1 www.ck12.org Introduction How well do humans know the solar system? Humans have been exploring the solar system for centuries. Mostly we have used telescopes or simply our eyes. But the Sun, all of the planets, and many dwarf planets, asteroids and comets have been studied more closely. Spaceships have taken rovers, probes or other technologies to study these bodies. Sometimes a spacecraft just flies by to take a look. So while it’s very difficult to get humans very far from Earth, our spacecraft have become our eyes. We know an incredible amount about the solar system compared with even a few decades ago. This is because of the tremendous spacecraft and the instruments they carry. In this concept, we will explore a small fraction of what scientists have learned about our solar system. 2 www.ck12.org Chapter 1. The Solar System 1.1 Sun • Describe the basic properties of the Sun. How can we learn about something as hot as the Sun? Humans have sent spacecraft up to study our star. The SOHO spacecraft has been in operation since 1996. The craft orbits the Sun in step with Earth but closer to it. SOHO has sent back amazing images. Onboard instruments have also sent back mountains of data. The data is mostly about the Sun’s outer layers. The Sun Our Sun is a star, a sphere of plasma held together by gravity. It is an ordinary star that is extraordinarily important. The Sun provides light and heat to our planet. This star supports almost all life on Earth. The Sun is the center of the solar system, which includes all of the planets and other bodies that orbit it. It is by far the largest part of the solar system ( Figure 1.1). Added together, all of the planets make up just 0.2 percent of the solar system’s mass. The Sun makes up the remaining 99.8 percent of all the mass in the solar system! 3 1.1. Sun www.ck12.org FIGURE 1.1 The sizes of the planets relative to the Sun, if the Sun were the size of a bas- ketball. Vocabulary • solar system: The Sun and all of the bodies that orbit it. • star: A massive sphere of plasma held together by gravity Summary • The Sun is an ordinary star. It supports nearly all life on Earth. • The Sun is at the center of the solar system. • The Sun makes up almost all of the mass of the solar system. Explore More Use the resource below to answer the questions that follow. • Introduction to the Sun and Solar System at http://www.youtube.com/watch?v=VXRczjxteFc (3:00) MEDIA Click image to the left for use the URL below. URL: http://gamma.ck12.org/flx/render/embeddedobject/118819 1. Why is it that you can’t see the star closest to Earth in the night sky? 2. Where is the Sun located? 3. Why is our Sun special? Is it a special type of star? 4. What is the structure of the solar system from the center to the farthest reaches? 5. Which type of solar system bodies come from the farthest part of the solar system? 4 www.ck12.org Chapter 1. The Solar System Explore More Answers 1. The Sun is the star closest to the Earth. It is only visible in the daytime because it’s light makes the day. 2. The Sun is located at the center of the solar system. 3. The Sun is an ordinary star. Without it, however, Earth would be cold, dark, and uninhabitable, so it is special to life on our planet. 4. The Sun is at the center of the solar system. Surrounding it first are the inner planets: Mercury, Venus, Earth, and Mars. They are followed by the asteroid belt and then the outer planets, also called the gas giants: Jupiter, Saturn, Uranus, and Neptune. Next are the dwarf planets, including Pluto, and finally, there is the Oort cloud. 5. comets Review 1. What are the major properties of the Sun? 2. Where is the Sun located? 3. Why is the Sun important to life on Earth? Review Answers 1. The Sun is plasma held together by gravity; it emits light and heat. 2. The Sun is located at the center of the solar system. 3. The Sun is the source of all the planet’s light and nearly all of its heat. Without the Sun, there would be no life on Earth. 5 1.2. Interior of the Sun www.ck12.org 1.2 Interior of the Sun • Describe the internal layers of the Sun. What does the Sun look like? Different instruments pick up different features of the Sun. None can show us the Sun’s interior. But studies from the SOHO spacecraft and other craft allow us to study the interior. We know a surprising amount about a body that is so hot and so far away. Layers of the Sun The Sun is made almost entirely of the elements hydrogen and helium. The Sun has no solid material. Most atoms in the Sun exist as plasma. Plasma is superheated gas with an electrical charge. Because the Sun is made of gases, it does not have a defined outer boundary. Like Earth, the Sun has an internal structure. The inner three layers make up what we would actually call “the Sun.” Internal Structure Because the Sun is not solid, it does not have a defined outer boundary. It does, however, have a definite internal structure with identifiable layers ( Figure 1.2). Since the layers are not solid, the boundaries are fuzzy and indistinct. From inward to outward, the layers are: the core, the radiative zone, and the convection zone. 6 www.ck12.org Chapter 1. The Solar System FIGURE 1.2 The layers of the Sun. The Core The core is the Sun’s innermost layer. The core is plasma. It has a temperature of around 15 million degrees Celsius (°C). Nuclear fusion reactions create the immense temperature. In these reactions, hydrogen atoms fuse to form helium. This releases vast amounts of energy. The energy moves toward the outer layers of the Sun. Energy from the Sun’s core powers most of the solar system. Radiative Zone The radiative zone is the next layer out. It has a temperature of about 4 million °C. Energy from the core travels through the radiative zone. The energy travels at an extremely slow rate. Light particles are called photons. In the radiative zone, photons can only travel a few millimeters before they hit another particle. The particles are absorbed and then released again. It may take 50 million years for a photon to travel all the way through the radiative zone. The Convection Zone The convection zone surrounds the radiative zone. In the convection zone, hot material from near the Sun’s center rises. This material cools at the surface and then plunges back downward. The material then receives more heat from the radiative zone. The first video describes the basics of our Sun, including how it is powered by nuclear reactions: http://www.youtube.com/watch?v=JHf3dG0Bx7I (8:34). 7 1.2. Interior of the Sun www.ck12.org MEDIA Click image to the left for use the URL below.
Recommended publications
  • The Rings and Inner Moons of Uranus and Neptune: Recent Advances and Open Questions
    Workshop on the Study of the Ice Giant Planets (2014) 2031.pdf THE RINGS AND INNER MOONS OF URANUS AND NEPTUNE: RECENT ADVANCES AND OPEN QUESTIONS. Mark R. Showalter1, 1SETI Institute (189 Bernardo Avenue, Mountain View, CA 94043, mshowal- [email protected]! ). The legacy of the Voyager mission still dominates patterns or “modes” seem to require ongoing perturba- our knowledge of the Uranus and Neptune ring-moon tions. It has long been hypothesized that numerous systems. That legacy includes the first clear images of small, unseen ring-moons are responsible, just as the nine narrow, dense Uranian rings and of the ring- Ophelia and Cordelia “shepherd” ring ε. However, arcs of Neptune. Voyager’s cameras also first revealed none of the missing moons were seen by Voyager, sug- eleven small, inner moons at Uranus and six at Nep- gesting that they must be quite small. Furthermore, the tune. The interplay between these rings and moons absence of moons in most of the gaps of Saturn’s rings, continues to raise fundamental dynamical questions; after a decade-long search by Cassini’s cameras, sug- each moon and each ring contributes a piece of the gests that confinement mechanisms other than shep- story of how these systems formed and evolved. herding might be viable. However, the details of these Nevertheless, Earth-based observations have pro- processes are unknown. vided and continue to provide invaluable new insights The outermost µ ring of Uranus shares its orbit into the behavior of these systems. Our most detailed with the tiny moon Mab. Keck and Hubble images knowledge of the rings’ geometry has come from spanning the visual and near-infrared reveal that this Earth-based stellar occultations; one fortuitous stellar ring is distinctly blue, unlike any other ring in the solar alignment revealed the moon Larissa well before Voy- system except one—Saturn’s E ring.
    [Show full text]
  • Pheres Giant Planets
    15 pheres Giant Planets Andrew P. Ingersoll H E GIANT PLANETS - Jupiter, Saturn, Uranus, and Nep­ tune - are fluid objects. They have no solid surfaces 201 because the light elements constituting them do not condense at solar-system temperatures. Instead, their deep atmospheres grade downward until the distinction Tbetween gas and liquid becomes meaningless. The preceding chapter delved into the hot, dark interiors of the Jovian planets. This one focuses on their atmospheres, especially the observable layers from the base of the clouds to the edge of space. These veneers are only a few hundred kilometers thick, less than one percent of each planet's radius, but they exhibit an incredible variety of dynamic phenomena. The mixtures of elements in these outer layers resemble a cooled-down piece of the Sun. Clouds precipitate out of this gaseous soup in a variety of colors. The cloud patterns are orga­ nized by winds, which are powered by heat derived from sun­ light (as on Earth) and by internal heat left over from planetary formation. Thus the atmospheres of the Jovian planets are dis­ tinctly different both compositionally and dynamically from those of the terrestrial planets. Such differences make them fas­ cinating objects for study, providing clues about the origin and evolution of the planets and the formation oftl1e solar system. aturally, atmospheric scientists are interested to see how well the principles of our field apply beyond the Earth. For Neptune and its Great Dark Spot, as recorded by Voyager 2 example, the Jovian planets are ringed by multiple cloud bands in 1989.
    [Show full text]
  • Our Solar System
    Reader Moons of Our Solar System by Mick Roszel Genre Build Background Access Content Extend Language Expository • The Solar • Diagrams • Word Nonfi ction System • Captions Meanings • Planets and and Labels Moons • Glossary • Moon • Fact Box Geography Scott Foresman Reading Street 4.5.5 ì<(sk$m)=becbbi<ISBN 0-328-14211-5 +^-Ä-U-Ä-U 114211_CVR.indd4211_CVR.indd CCover1over1 33/8/05/8/05 99:26:20:26:20 PPMM Talk About It 1. What is a moon? 2. Look at the diagram on page 4. Describe three things itMoons shows about our of solar Oursystem. Write About It 3. How manySolar moons does S eachystem planet have? Make a graph on a separateby Micksheet Roszel of paper. Put one dot in the graph for each moon. 10 5 0 Mercury Venus Earth Mars Jupiter Extend Language A sphere is a round object, shaped like a ball or a planet. In sphere, pronounce the ph like f. Which of the following things can be called a sphere? the Earth’s moon a crater a soccer ball a coin Photographs Cover ©Omni-Photo Communications, Inc.; 1 ©Photo Researchers, Inc.; 2 ©Omni-Photo Communications, Inc.; 3 ©Bettmann/Corbis; 4 ©Luciano Corbella/DK Images; 5 (CR, BR) ©Corbis; 6 (CL) ©Photo Researchers, Inc., (BR) ©Tom Stack & Associates, Inc.; 7 ©Getty Images; 8 ©Digital Vision; 9 ©Jet Propulsion Laboratory/NASA; 10 ©Roger Ressmeyer/ NASA/Corbis. ISBN: 0-328-14211-5 Copyright © Pearson Education, Inc. All Rights Reserved. Printed in the United States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form by any means, electronic, mechanical, photocopying, recording, or likewise.
    [Show full text]
  • Research in Germany
    About us Newsletter Social media English Search ... Spotlight Research Research Jobs & Plan your Infoservice Events and landscape funding careers stay activities Home News Uranian moons in new light 15 Sep 2020 | Source: Max Planck Society (MPG) - Press Releases According to observations by the Herschel Space Observatory, the five largest satellites resemble dwarf planets More than 230 years ago astronomer William Herschel discovered the planet Uranus and two of its moons. Using the Herschel Space Observatory, a group of astronomers led by Örs H. Detre of the Max Planck Institute for Astronomy now has succeeded in determining physical properties of the five main moons of Uranus. The measured infrared radiation, which is generated by the Sun heating their surfaces, suggests that these moons resemble dwarf planets like Pluto. The team developed a new analysis technique that extracted the faint signals from the moons next to Uranus, which is more than a thousand times brighter. The study was published today in the journal Astronomy & Astrophysics. To explore the outer regions of the Solar System, space probes such as Voyager 1 and 2, Cassini-Huygens and New Horizons were sent on long expeditions. Now a German-Hungarian research group, led by Örs H. Detre of the Max Planck Institute for Astronomy (MPIA) in Heidelberg, shows that with the appropriate technology and ingenuity, interesting results can also be achieved with observations from far away. The scientists used data from the Herschel Space Observatory, which was deployed between 2009 and 2013 and in whose development and operation MPIA was also significantly involved. Compared to its predecessors that covered a similar spectral range, the observations of this telescope were significantly sharper.
    [Show full text]
  • Astronomy Astrophysics
    A&A 641, A76 (2020) https://doi.org/10.1051/0004-6361/202037625 Astronomy & © Ö. H. Detre et al. 2020 Astrophysics Herschel-PACS photometry of the five major moons of Uranus? Ö. H. Detre1, T. G. Müller2, U. Klaas1, G. Marton3,4, H. Linz1, and Z. Balog1,5 1 Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, 69117 Heidelberg, Germany e-mail: [email protected] 2 Max-Planck-Institut für extraterrestrische Physik (MPE), PO Box 1312, Giessenbachstraße, 85741 Garching, Germany 3 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Konkoly Thege-Miklós 15-17, 1121 Budapest, Hungary 4 ELTE Eötvös Loránd University, Institute of Physics, Pázmány Péter 1/A, 1171 Budapest, Hungary 5 Astronomisches Recheninstitut des Zentrums für Astronomie, Mönchhofstrasse 12–14, 69120 Heidelberg, Germany Received 30 January 2020 / Accepted 9 June 2020 ABSTRACT Aims. We aim to determine far-infrared fluxes at 70, 100, and 160 µm for the five major Uranus satellites, Titania, Oberon, Umbriel, Ariel, and Miranda. Our study is based on the available calibration observations at wavelengths taken with the PACS photometer aboard the Herschel Space Observatory. Methods. The bright image of Uranus was subtracted using a scaled Uranus point spread function (PSF) reference established from all maps of each wavelength in an iterative process removing the superimposed moons. The photometry of the satellites was performed using PSF photometry. Thermophysical models of the icy moons were fitted to the photometry of each measurement epoch and auxiliary data at shorter wavelengths. Results. The best-fit thermophysical models provide constraints for important properties of the moons, such as surface roughness and thermal inertia.
    [Show full text]
  • Uranus and Neptune Distinctly Blue-Ish! Uranus
    The Outermost Planets • The 7 ‘Wanderers’ known since Antiquity. • Uranus and Neptune distinctly Blue-ish! Uranus Uranus and 3 of its moons, barely visible from Earth. • Discovered by William Herschel 1781. (Accidentally!) First new planet for > 3000 years! • Featureless planet, just a few wispy clouds! View from Voyager 2 1986. Neptune • Elliptical Orbit of Uranus is perturbed: There must be another planet! • Adams 1845 and Le Verrier 1846 predicted Neptune's position. • First Seen by Galle in 1846. Property Uranus Neptune Radius 25559km (4.0 RE) 24766km (3.88 RE) Mass 14.54 ME 17.15 ME Average 3 3 Density 1271kg/m (0.23) 1638kg/m (0.297) Gravity 0.91 Earth’s 1.14 Earth’s Escape Speed 21.3km/s 23.5km/s Temperature 56K / -217C 59K / -214C (at Cloud tops) Eccentricity 0.047 0.009 Property Uranus Neptune Sidereal 83.75 years 163.7 years Orbital Period Sidereal -0.72 days 0.67 days Rotation Period Retrograde! Axial Tilt 97.92° 29.6° # Moons 27…. 13… Magnetic 58.6° 46° axis tilt Similar – but with significant differences! Uranus’ Peculiar Rotation • Axis of rotation nearly in the orbital plane! • Extreme seasons and weird days! Reason for such a strange tilt not known. Consequences • In Winter: Darkness for 42 years! • In Summer: No night, sun moves in circles, with altering radii. Other Rotational Features • Differential Rotation (~17.2 hours) • Atmosphere moves faster at Poles (~14.2 hrs) than at Equator (16.5hrs) . • No zones or belts: Wind in same direction. The Atmospheres Composition of Uranus and Neptune • H2 ~84% • Helium ~14% • Methane ~2% (Uranus); 3% Neptune x10 more than on Jupiter and Saturn.
    [Show full text]
  • Scientific Goals for Exploration of the Outer Solar System
    Scientific Goals for Exploration of the Outer Solar System Explore Outer Planet Systems and Ocean Worlds OPAG Report v. 28 August 2019 This is a living document and new revisions will be posted with the appropriate date stamp. Outline August 2019 Letter of Response to Dr. Glaze Request for Pre Decadal Big Questions............i, ii EXECUTIVE SUMMARY ......................................................................................................... 3 1.0 INTRODUCTION ................................................................................................................ 4 1.1 The Outer Solar System in Vision and Voyages ................................................................ 5 1.2 New Emphasis since the Decadal Survey: Exploring Ocean Worlds .................................. 8 2.0 GIANT PLANETS ............................................................................................................... 9 2.1 Jupiter and Saturn ........................................................................................................... 11 2.2 Uranus and Neptune ……………………………………………………………………… 15 3.0 GIANT PLANET MAGNETOSPHERES ........................................................................... 18 4.0 GIANT PLANET RING SYSTEMS ................................................................................... 22 5.0 GIANT PLANETS’ MOONS ............................................................................................. 25 5.1 Pristine/Primitive (Less Evolved?) Satellites’ Objectives ...............................................
    [Show full text]
  • Essays Essay on Museum in Modern Era, Museum
    Essays Essay on museum In modern era, Museum approach as a prominent aspect of education and entertainment. It contributes to the attraction of country and beneficial for the enhancement of educational knowledge. There is a tendency to believe that museums must be utilized for entertainment as well as for education. Lets delve deeper into the topic to seek more clarification. To begin with, One of the main arguments in favor of that museums are meant for entertainment because museums are tourists attraction and their aim to exhibit the collection of things which majority of people wish to see. It is favorable to enhance economical growth of a particular country and raise the standard of living due to numerous visitors from various countries. It sounds as adventurous activity and more enjoyable for visitors.Moreover,visitors can get information about history and biography of country. On the other hand, Some people argued that museums should focus on education because its a huge source of knowledge which they did not previously know.Usually this means history behind the museum exhibits need to explained and this can be done in various ways. Some museums employ special guides to give information, while other museums offer headsets so that people can listen to detailed commentary about the exhibition. In this way, museums play an important role in teaching people about history,culture, science and many other aspects of life. In an ultimate analysis, the above argument would indicate that museum must be utilize for both purposes entertainment and education. These both aspects beneficial in different ways.
    [Show full text]
  • 19650022424.Pdf
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) NEW MEXICO S'K'ATE UNIVERSiT`f q OBSERVATORY TE^EPMONE; UN VERSITY PARK ► LAS CRUCES, N. NEW MEXICO JACKSON 6-6611 d807G ' TN-701-66-9 A RAPIDLY MOVING SPOT ON JUPITER`S NORTH TEMPERATE BELT Elmer J, Reese and Bradford A. Smith - $ ------ - CFSTI PRICE(S) $ Hard copy INC) ^^ July 1965 Microfiche (MF) f-5 ff 653 July 65 Supported by NASA Grant Nst;-142 -61 _l n b5 3211) 25 (ACCESSION NUMBER) (TNRU) E /0 s -- A^G EL^S) (COD r X^ / ^^^ (NASA CR OR TMX OR AD NUMBER) (CATEGORY) A RAPIDLY MOVING SPOT ON JUPITER°S NORTH TEMPERATE BELT Elmer J. Reese and Bradford A. Smith New Mexico State University Observatory University Park, New-Mexico A very rapid ch-i f t in the longi tude o f a smal l dai* spot on the south Edge c-e Jupiter's I'forth Temperate Belt (I Bs.
    [Show full text]
  • Rest of the Solar System” As We Have Covered It in MMM Through the Years
    As The Moon, Mars, and Asteroids each have their own dedicated theme issues, this one is about the “rest of the Solar System” as we have covered it in MMM through the years. Not yet having ventured beyond the Moon, and not yet having begun to develop and use space resources, these articles are speculative, but we trust, well-grounded and eventually feasible. Included are articles about the inner “terrestrial” planets: Mercury and Venus. As the gas giants Jupiter, Saturn, Uranus, and Neptune are not in general human targets in themselves, most articles about destinations in the outer system deal with major satellites: Jupiter’s Io, Europa, Ganymede, and Callisto. Saturn’s Titan and Iapetus, Neptune’s Triton. We also include past articles on “Space Settlements.” Europa with its ice-covered global ocean has fascinated many - will we one day have a base there? Will some of our descendants one day live in space, not on planetary surfaces? Or, above Venus’ clouds? CHRONOLOGICAL INDEX; MMM THEMES: OUR SOLAR SYSTEM MMM # 11 - Space Oases & Lunar Culture: Space Settlement Quiz Space Oases: Part 1 First Locations; Part 2: Internal Bearings Part 3: the Moon, and Diferent Drums MMM #12 Space Oases Pioneers Quiz; Space Oases Part 4: Static Design Traps Space Oases Part 5: A Biodynamic Masterplan: The Triple Helix MMM #13 Space Oases Artificial Gravity Quiz Space Oases Part 6: Baby Steps with Artificial Gravity MMM #37 Should the Sun have a Name? MMM #56 Naming the Seas of Space MMM #57 Space Colonies: Re-dreaming and Redrafting the Vision: Xities in
    [Show full text]
  • Astronomy Online Flexbook
    8: Astronomy Laura Enama Colleen Haag Julie Sandeen Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) www.ck12.org AUTHORS Laura Enama To access a customizable version of this book, as well as other Colleen Haag interactive content, visit www.ck12.org Julie Sandeen CONTRIBUTORS David Bethel Mary Lusk CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-source, collaborative, and web-based compilation model, CK-12 pioneers and promotes the creation and distribution of high-quality, adaptive online textbooks that can be mixed, modified and printed (i.e., the FlexBook® textbooks). Copyright © 2015 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Com- mons from time to time (the “CC License”), which is incorporated herein by this reference.
    [Show full text]
  • 4 the Solar System 69 4.1 Introduction to the Solar System
    8: Astronomy Laura Enama Colleen Haag Julie Sandeen Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) www.ck12.org AUTHORS Laura Enama To access a customizable version of this book, as well as other Colleen Haag interactive content, visit www.ck12.org Julie Sandeen CONTRIBUTORS David Bethel Mary Lusk CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-source, collaborative, and web-based compilation model, CK-12 pioneers and promotes the creation and distribution of high-quality, adaptive online textbooks that can be mixed, modified and printed (i.e., the FlexBook® textbooks). Copyright © 2016 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Com- mons from time to time (the “CC License”), which is incorporated herein by this reference.
    [Show full text]