Toxicological Profile for Lead
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
HISTORY of LEAD POISONING in the WORLD Dr. Herbert L. Needleman Introduction the Center for Disease Control Classified the Cause
HISTORY OF LEAD POISONING IN THE WORLD Dr. Herbert L. Needleman Introduction The Center for Disease Control classified the causes of disease and death as follows: 50 % due to unhealthy life styles 25 % due to environment 25% due to innate biology and 25% due to inadequate health care. Lead poisoning is an environmental disease, but it is also a disease of life style. Lead is one of the best-studied toxic substances, and as a result we know more about the adverse health effects of lead than virtually any other chemical. The health problems caused by lead have been well documented over a wide range of exposures on every continent. The advancements in technology have made it possible to research lead exposure down to very low levels approaching the limits of detection. We clearly know how it gets into the body and the harm it causes once it is ingested, and most importantly, how to prevent it! Using advanced technology, we can trace the evolution of lead into our environment and discover the health damage resulting from its exposure. Early History Lead is a normal constituent of the earth’s crust, with trace amounts found naturally in soil, plants, and water. If left undisturbed, lead is practically immobile. However, once mined and transformed into man-made products, which are dispersed throughout the environment, lead becomes highly toxic. Solely as a result of man’s actions, lead has become the most widely scattered toxic metal in the world. Unfortunately for people, lead has a long environmental persistence and never looses its toxic potential, if ingested. -
Explanation of Significant Differences, Residential Populated Areas, OU 9
1118478-RS SDMS <f^',,^^'°«'^^^ ^%:, UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGIONS 1595 Wynkoop Street » ^^^^^ds'^' DENVER, CO 80202-1129 %'"K., ..„>,.rt.c'-"~PRCi^^ ^ Ptione 800.227.8917 tittp://www.epa.gov/region08 Explanation of Significant Differences Residential Populated Areas, Operable Unit 9 California Gulch Superfund Site Lake County, CO September 2009 Explanation of SigniHcant Differences Residential and Commercial Populated Areas, Operable Unit 9 California Gulch Superfund Site, Lake County, CO September 2009 1. Introduction This Explanation of Significant Differences (ESD) presents the details of an addition to the remedy selected in the September 2, 1999 Record of Decision (ROD) for Residential Populated Areas, Operable Unit 9 (0U9), ofthe California Gulch Superfund Site (Site) in Lake County, CO. Operable Unit 9 includes those portions ofthe Site where the land use is residential or that are currently zoned as residential/populated areas and as low-density residential areas. Future land use of 0U9 is expected to continue to be residential. This ESD, prepared in accordance with Section 117(c) ofthe Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and with Part 300, Section 435(c)(2)(i) of Title 40 ofthe Code of Federal Regulations, 40 CFR 300.435(c)(2)(i), documents significant differences to the ROD. This ESD documents the decision to require institutional controls for 17 mine waste piles within 0U9. These mine waste piles have soils at the surface that are under the 3500 mg/Kg lead residential action level but may have lead contamination at depth that exceeds the residential lead action level. This ESD does not change or alter any element ofthe Lake County Community Health Program (LCCHP). -
Federal Register/Vol. 66, No. 99/Tuesday, May 22, 2001/Rules
28106 Federal Register / Vol. 66, No. 99 / Tuesday, May 22, 2001 / Rules and Regulations Authority: 33 U.S.C. 1321(c)(2); 42 U.S.C. DATES: This ‘‘direct final’’ action will be 1. Yak Tunnel/Water Treatment Plant. 9601–9657; E.O. 12777, 56 FR 54757, 3 CFR, effective July 23, 2001 unless EPA 2. Malta Gulch Tailing Impoundments 1991 Comp.; p. 351; E.O. 12580, 52 FR 2923, receives significant adverse or critical and Lower Malta Gulch Fluvial Tailing. 3 CFR, 1987 Comp. p. 193. comments by June 21, 2001. If adverse 3. D&RG Slag piles and Railroad Yard/ Appendix B—[Amended] comments are received, EPA will Easement. publish a timely withdrawal of the 4. Upper California Gulch. 2. Table 1 of Appendix B to part 300 direct final rule in the Federal Register 5. Asarco Smelter sites/Slag/Mill is amended under Salem Acres informing the public that the rule will sites. Superfund Site by removing the ‘‘Salem not take effect. 6. Starr Ditch/Stray Horse Gulch/ Acres Superfund Site, Salem, Lower Evans Gulch/Penrose Mine Waste Massachusetts’’. ADDRESSES: Comments may be mailed to Rebecca Thomas, Remedial Project Pile. [FR Doc. 01–12709 Filed 5–21–01; 8:45 am] Manager, Environmental Protection 7. Apache Tailing Impoundments. BILLING CODE 6560–50–P 8. Lower California Gulch. Agency, Region 8, Mail Code 8EPR-SR, 9. Residential and Commercial 999 18th Street, Suite 300, Denver, CO Populated Areas. ENVIRONMENTAL PROTECTION 80202. Telephone: (303) 312–6552. 10. Oregon Gulch. Information Repositories: AGENCY 11. Arkansas River Valley Floodplain. Comprehensive information on the 12. -
Standard Operating Procedure for the Preparation of Lead-Containing Paint Films and Lead-In-Paint Diagnostic Test Materials
EPA/600/R-10/070 August 2009 www.epa.gov/ord Standard Operating Procedure for the Preparation of Lead-Containing Paint Films and Lead-in-Paint Diagnostic Test Materials Prepared by Kristen Sorrell, David Binstock, Curtis Haas, Cynthia Salmons, and William Gutknecht Environmental and Industrial Sciences Division RTI International Research Triangle Park, NC 27709 Disclaimer The information in this document has been funded wholly or in part by the U. S. Environmental Protection Agency (EPA) under EPA Contract No. EP-D-05-065 to Alion Science and Technology, Inc., and RTI Subcontract No. SUB1174861RB. It has been subjected to the Agency’s peer and administrative review. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. ii Acknowledgments This document was prepared under the direction of the Work Assignment Contracting Officer’s Representative, Ms. Sharon L. Harper, National Environmental Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC. Special acknowledgment is given to Dr. Hunter Daughtrey, Alion Science and Technology, Inc., for his support of this effort and careful review of this document. iii iv Table of Contents List of Figures...............................................................................................................................................vii List of Appendixes........................................................................................................................................vii 1.0 PRINCIPLE AND -
Restoration Plan and Environmental Assessment for the Upper Arkansas
Chapter 2 Upper Arkansas River Watershed Restoration Plan and Environmental Purpose and Need for Restoration Assessment Th is chapter describes the purpose and need for restoration to address losses to natural resources caused by the releases of hazardous substances at and from the Site. Th e Trustees determined in their preliminary estimate of damages that groundwater, aquatic, and terrestrial resources have been injured; that the locations of injury include California Gulch, and aquatic resources of the upper Arkansas River and terrestrial resources associated with the 500-year fl oodplain of the upper Arkansas River; and that restoration is required to compensate the public for these injuries (Industrial Economics, 2006). Th is RP focuses on projects that will address injuries to natural resources through the restoration of similar resources in locations within the upper Arkansas River Basin (Figure 2.1). 2.1 Summary of Release History and Resulting Public Losses Th e Site extends over a large area including more than 15 square miles in and around the town of Leadville, Colorado. Extensive historic mining activities in and around Leadville generated more than 2,000 on-site waste rock piles and resulted in past and ongoing releases of heavy metals and acid mine drainage into California Gulch and, subsequently, to the upper Arkansas River Basin. In particular, the Yak Tunnel, which was constructed to dewater mines in the area, was a signifi cant source of contamination to California Gulch from the time of its construction in 1895 until the Yak Tunnel Water Treatment Plant began operation in 1992. Before construction of the treatment plant, more than 200 tons of metals were discharged into California Gulch each year by the Yak Tunnel (Industrial Economics, 2006). -
5 to 9 Years of Giving Marion Abrams ’77 Janet E
Donors who have given consistently to UMass Amherst are recognized as members of the Loyalty Circle. This Circle gratefully acknowledges those have made gifts for at least five years. Their generosity has provided invaluable support to all aspects of academic and student life. Following are Loyalty Circle members listed by years of giving: 5-9; 10-24; and 25+. * Deceased James & Aiche Abraham % % Parent Leonard & Kathleen Abraham > Current faculty, staff, or emeritus faculty Neal B. Abraham & Donna L. Wiley HA Honorary alumnus or alumna Allen & Pamela Abrahamson % HON Honorary degree recipient Fred and Donna Abrahamson % S Stockbridge alumnus or alumna Alan Abrams % & Laura Abrams % Arnold B. Abrams ’66 Kristin B. (Kanter) Abrams ’07 Linda J. Abrams ’76MEd 5 to 9 Years of Giving Marion Abrams ’77 Janet E. Aalfs ’79 Howard D. Abramson ’83, ’88MS % & Lisa I. Abramson % John & Sara Aalto % Rebecca A. (Crapser) Abramson ’96 Peter H. Aalto % & Margaret A. Aalto % Robert & Claudia Abramson % Ray Aaronian ’87 Jessica L. (Sciortino) Abreu ’02 Winifred R. Aaronian ’85 Paul M. Abreu ’90 Robert Abair & Mary M. Abair Matthew R. Abt ’02 Charles & Rosemary Abati % Victor H. Abularach ’79MS Janice M. Abatiello % Hayat N. Abuza Maureen (Duffy) Abber ’83 Mauro & Janet Accomazzo % Brandon R. Abbott ’93, ’09MS M. Ellen (Wilson) Accorsi ’62 Bruce J. Abbott % & Patricia Abbott % Bernardo E. Acebal ’85 & Zahira M. Acevedo-Crespo ’87 % Curtis T. Abbott % & Irene M. Fordon-Abbott % Diane C. Acerra ’89 Gordon Abbott, Jr. Dharma R. Acharya ’85MS Jessica L. Abbott ’03 Pamela Acheson Robert G. Abbott % & Sheila F. Abbott % Robert and Frances Acheson % Stephanie J. -
Surname Index to Schenectady Births 1940-1953
Grems-Doolittle Library Schenectady County Historical Society 32 Washington Ave. Schenectady, NY 12305 Surname Index to Schenectady Births 1940-1953 Abare Abele Ackley Abba Abele Ackroyd Abbale Abeles Ackroyd Abbale Abeles Ackroyd Abbale Abell (probably Abeel) Ackroyd Abbatiello Abelone (probably Acord Abbatiello Abelove) Acree Abbatiello Abelove Acree (probably Abbatiello Aberbach or Aberback Aeree) Abbato Aberback Acton Abbato Abercrombie Acton Abbato Aboudara Acucena Abbe Abraham Adack Abbott Abrahamson (not - Adack or Adach Abbott nson) Adair Abbott Abrams Adair Abbott Abrams Adair Abbott Abramson Adair Abbott Abrofsky Adair Abbott Abt Adair Abbott Aceto Adam Abbott Aceto Adamczak Abbott Aceto Adamec Abbott Aceto Adamec Abbott Acken Adamec Abbott Acker Adamec Abbott Acker Adamek Abbott Acker Adamek Abbzle = ? spelling Acker Adamkiewicz unclear Acker Adamkiewicz Abeel Ackerle Adams Abeel Ackerman Adams Abeel Ackerman Adams Abeel Ackerman Adams Abeel Ackerman Adams Abel Ackley Adams Grems-Doolittle Library Schenectady County Historical Society 32 Washington Ave. Schenectady, NY 12305 Surname Index to Schenectady Births 1940-1953 Adams Adamson Ahl Adams Adanti Ahles Adams Addis Ahman Adams Ademec or Adamec Ahnert Adams Adinolfi Ahren Adams Adinolfi Ahren Adams Adinolfi Ahrendtsen Adams Adinolfi Ahrendtsen Adams Adkins Ahrens Adams Adkins Ahrens Adams Adriance Ahrens Adams Adsit Aiken Adams Aeree Aiken Adams Aernecke Ailes = ? Adams Agans Ainsworth Adams Agans Aker (or Aeher = ?) Adams Aganz (Agans ?) Akers Adams Agare or Abare = ? Akerson Adams Agat Akin Adams Agat Akins Adams Agen Akins Adams Aggen Akland Adams Aggen Albanese Adams Aggen Alberding Adams Aggen Albert Adams Agnew Albert Adams Agnew Albert or Alberti Adams Agnew Alberti Adams Agostara Alberti Adams Agostara (not Agostra) Alberts Adamski Agree Albig Adamski Ahave ? = totally Albig Adamson unclear Albohm Adamson Ahern Albohm Adamson Ahl Albohm (not Albolm) Adamson Ahl Albrezzi Grems-Doolittle Library Schenectady County Historical Society 32 Washington Ave. -
Fall 2017 Commencement Program
TE TA UN S E ST TH AT I F E V A O O E L F A DITAT DEUS N A E R R S I O Z T S O A N Z E I A R I T G R Y A 1912 1885 ARIZONA STATE UNIVERSITY COMMENCEMENT AND CONVOCATION PROGRAM Fall 2017 December 11-13, 2017 THE NATIONAL ANTHEM THE STAR-SPANGLED BANNER O say can you see, by the dawn’s early light, What so proudly we hailed at the twilight’s last gleaming? Whose broad stripes and bright stars through the perilous fight O’er the ramparts we watched, were so gallantly streaming? And the rockets’ red glare, the bombs bursting in air Gave proof through the night that our flag was still there. O say does that Star-Spangled Banner yet wave O’er the land of the free and the home of the brave? ALMA MATER ARIZONA STATE UNIVERSITY Where the bold saguaros Raise their arms on high, Praying strength for brave tomorrows From the western sky; Where eternal mountains Kneel at sunset’s gate, Here we hail thee, Alma Mater, Arizona State. —Hopkins-Dresskell MAROON AND GOLD Fight, Devils down the field Fight with your might and don’t ever yield Long may our colors outshine all others Echo from the buttes, Give em’ hell Devils! Cheer, cheer for A-S-U! Fight for the old Maroon For it’s Hail! Hail! The gang’s all here And it’s onward to victory! Students whose names appear in this program have completed degree requirements. -
Mapping Acid-Generating Minerals at the California Gulch Supcrfund Site in L.Cadvillc, Colorado Using Imaging Spectroscopy
Mapping Acid-Generating Minerals at the California Gulch Supcrfund Site in l.cadvillc, Colorado using Imaging Spectroscopy Gregg A, Swayze, Roger N. Clark, Ronald M. Pearson*, and K. Eric 1.ivo lJ.S. Geological Survey, Box 25046 MS964 DFC Denver, CO 80225 *U.S. Bureau of Reclamation, P.O. Box 25007 D-8321 DFC, Denver, CO 80225 Introduction The Leadville mining district, located at an elevation of 3000 m in the Central Colorado Rockies, has been mined for gold, silver, lead and zinc for over 100 years. ‘l’his activity has resulted in waste rock and tailings, rich in pyrite and other sulfides, being dispersed over a 30 kn~2 area including the city of I,eadville. Oxidation of these sulfides releases lead, arsenic, cadmium, silver, and zinc into snowmelt and thunderstorm runoff, which drains into the Arkansas River, a main source of water for Front Range urban centers and agricultural communities. The U.S. Environmental Protection Agency (WA), U.S. Bureau of Reclamation (US13R), contractors, and responsible parties are remediating the mined areas to curtail further releases of heavy metals into various drainage tributaries of the Arkansas River. The USBRS’ current work is directed toward characterizing and pinpointing localized sources of acid mine drainage and contamination from waste rock piles found throughout an area of 900 hectares. Method The sulfide oxidation process is biologically driven along complex chemical pathways with feedback reactions that enhance the speed and magnitude of oxidation (Nordstron~, 1982). Release of heavy metals is facilitated by sulfide oxidation, since many of the sulfides contain the heavy metals (e.g. -
Hydrologic Characterization and Remediation of the Leadville Mine Dr
HYDROGEOLOGIC CHARACTERIZATION OF GROUND WATERS, MINE POOLS AND THE LEADVILLE MINE DRAINAGE TUNNEL, LEADVILLE, COLORADO1 Michael Wireman2 Jord Gertson2 Dr. Mark Williams2 Abstract. The 3385 meter long Leadville Mine Drain Tunnel (LMDT) was completed in 1952 to create a free-draining tunnel to dewater existing and future mine workings in the Leadville Mining District in the Sawatch Mountains of central Colorado. Since 1952 mining has been mostly discontinued in the Leadville district and the physical condition of the LMDT, which discharges approximately 82 l/s, has deteriorated. Roof falls have resulted in blockages which can cause water to pool up, increasing the hydraulic head and presenting a potential blowout problem. Using its’ authority under CERCLA, the US EPA is planning to implement a number of hydraulic and source control elements which are designed to contain and control mine pool water. To support this work the US EPA has completed a rigorous hydrogeologic characterization aimed at developing a sound conceptual understanding of the hydrologic, geologic and geochemical conditions that control inflow of ground water to the underground workings associated with the LMDT and the outflow of mine water from these workings. The investigations discussed here included hydrogeologic mapping, interpretation of water chemistry data and isotopic tracer analysis. The results of this investigation indicate that the LMDT drains only a small volume of mine pool water and a very large volume of regional bedrock and adjacent alluvial ground water. These understandings have been used to design a containment system will be used to control and manage the ground water intercepted by the LMDT and the mine pool(s) that are connected to the LMDT. -
Monitoring the Extent of Contamination from Acid Mine Drainage in the Iberian Pyrite Belt (SW Spain) Using Hyperspectral Imagery
Remote Sens. 2011, 3, 2166-2186; doi:10.3390/rs3102166 OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Monitoring the Extent of Contamination from Acid Mine Drainage in the Iberian Pyrite Belt (SW Spain) Using Hyperspectral Imagery Asuncion Riaza 1,*, Jorge Buzzi 1, Eduardo García-Meléndez 2, Veronique Carrère 3 and Andreas Müller 4 1 Geological Survey of Spain (IGME), La Calera 1, 28760 Tres Cantos, E-28003 Madrid, Spain; E-Mail: [email protected] 2 Facultad de Ciencias Ambientales, Universidad de León, Campus de Vegazana s/n, E-24071 León, Spain; E-Mail: [email protected] 3 Laboratoire de Planétologie et Géodynamique de Nantes, 2 rue de la Houssinière BP 92208, 44322 Nantes Cedex 3, France; E-Mail: [email protected] 4 Remote Sensing Data Centre, German Aerospace Research (DLR), P.O. Box 1116, D-82234 Wessling, Germany; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +34-91-728-7249; Fax: +34-91-728-7202. Received: 25 July 2011; in revised form: 6 September 2011 / Accepted: 2 October 2011 / Published: 14 October 2011 Abstract: Monitoring mine waste from sulfide deposits by hyperspectral remote sensing can be used to predict surface water quality by quantitatively estimating acid drainage and metal contamination on a yearly basis. In addition, analysis of the mineralogy of surface crusts rich in soluble salts can provide a record of annual humidity and temperature. In fact, temporal monitoring of salt efflorescence from mine wastes at a mine site in the Iberian Pyrite Belt (Huelva, Spain) has been achieved using hyperspectral airborne Hymap data. -
A STANDARD of QUALITY for MUSE PAINT January 1949
Ät1001:31TUP,E ROOT 5 A STANDARD Of QUALITY FOR MUSE PAINT January 1949 No. 1)1734 UNITED STATES DEPARTMENT OF AGRICULTURE FOREST SERVICE FORE ST PRODUCTS LABORATORY Madison 5, Wisconsin In Cooperation with the University of Wisconsin A STANDARD OF QUALITY FOR HOUSE PAINT By F. L. BROWNE, Chemist 1 Forest Products Laboratory, – Forest Service U. S. Department of Agriculture You can now buy house paint and barn paints labeled by the maker with both his trade brand and a classification recommended by the U. S. Depart- ment of Agriculture. The classification is a form of quality standard. It tells briefly what kind and grade of paint you are buying. The trade brand tells, as it always has, who made the paint and expects to be held respon- sible for it. Together, classification and trade brand supply all that is needed to buy from reputable sources with an eye to quality as well as to price. The USDA classification plan was suggested by the Forest Products Laboratory after more than 20 years of research in the painting of wood. Under the plan there is a classification for every kind of house or barn paint for wood buildings. Any maker or dealer in paint is free to use the classification on his labels. No law requires it, however, and no agency of government need be consulted about it. But when the classification is used, the paint must conform in fact to the classification claimed for it. Mis- branded paint is unlawful. The law in some States requires the composition, or formula, of paint to be printed on the label.