Johnson Space Center
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Interview Transcript
ORAL HISTORY 7 TRANSCRIPT GLYNN S. LUNNEY INTERVIEWED BY CAROL BUTLER HOUSTON, TX – 18 OCTOBER 1999 BUTLER: Today is October 18, 1999. This oral history with Glynn Lunney is being conducted in the offices of the Signal Corporation in Houston, Texas, for the Johnson Space Center Oral History Project. Carol Butler is the interviewer and is assisted by Kevin Rusnak and Jason Abbey. Thank you for joining us today, again. LUNNEY: You're welcome. Glad to be here. BUTLER: We began talking the last time about Apollo-Soyuz [Test Project (ASTP)], and you told us a little bit about how you got involved with it and how Chris [Christopher C.] Kraft [Jr.] had called you up and asked you to become a part of this program, and how that was a little bit of a surprise, but you jumped into it. What did you think about working with the Soviet Union and people that had for so long been considered enemies, who you'd been in competition with on the space program, but were also enemies of the nation, to say? LUNNEY: Especially on the front end, it's a fairly foreboding and intimidating kind of an idea. Of course, I was raised and came of age in the fifties and sixties, and we went through a great deal of scare with respect to the Soviet Union. The newsreels had the marches through Red Square, you know, with the missiles and so on, tanks. A lot of things happened to reinforce that. There was, of course, the Cuban Missile Crisis early in [President] John [F.] Kennedy's administration. -
Issue 106, May 2006
37 th Lunar and Planetary Science Conference THE CONFERENCE IN REVIEW Attendance at the 37th Lunar and Planetary Science Conference (LPSC) set yet another record for this conference, with 1546 participants from 24 countries attending the meeting held at the South Shore Harbour Resort and Conference Center in League City, Texas, on March 13–17, 2006 (see inset for attendance statistics). Rearrangement of the confi guration of the meeting rooms, along with additional overfl ow seating, allowed conference organizers and staff to accommodate the marked increase in attendance, thereby being able to maintain the current meeting venue and hence the low registration fee, which enables the high number of student attendees. LPSC continues to be recognized among the international science community as the most important planetary conference in the world, and this year’s meeting substantiated the merit of that reputation. More than 1400 abstracts were submitted in consideration for presentation at the conference, and hundreds of planetary scientists and students attended both oral and poster sessions focusing on such diverse topics as the Moon, Mars, Mercury, and Venus; outer planets and satellites; meteorites; comets, asteroids, and other small bodies; Limpacts; interplanetary dust particles and presolar grains; origins of planetary systems; planetary formation and early evolution; and astrobiology. Sunday night’s registration and reception were again held at the Center for Advanced Space Studies, which houses the Lunar and Planetary Institute. Featured on Sunday night was an open house for the display of education and public outreach activities and programs. Highlights of the conference program, established by the program committee under the guidance of co-chairs Dr. -
Telephone Directory October 1962
TELEPHONE DIRECTORY . MANNED SPACECRAFT CENTER HOUSTON 1, TEXAS I OCTOBER 1962 INTERNAL USE ONl Y INDEX HOUSTON MANNED SPACECRAFT CENTER TELEPHONE • DIRECTORY ALPHABETICAL .....................................................•................................. INDEX .......................................................................................................... I GENERAL INFORMATION ...................................................................... 11 SPECIAL INSTRUCTIONS ........................................................................ m NASA STATIONS .................................................................................... m GOVERNMENT INTERDEPARTMENTAL CODES .•........................... IV ORGANIZATIONAL LISTINGS ................................................................ VI MSC BUILDING ADDRESSES ................................................................ XIV SITE LOCATIONS MAP ......................................................................... XV CONTRACTOR REPRESENTATIVES .................................................. 33 EMERGENCY NUMBERS FIRE (Houston Site) .............................................................. CA 7-2323 Ellington ...................................................................... HU 7-1400 ext 117 ACCIDENT ...................................................................................... 3781 AMBULANCE .......................................................................... CA 5-5534 ELLINGTON OPERATOR ............................................................. -
Screenplay by Josh Singer Based on the Book by James R. Hansen
Screenplay By Josh Singer Based on the Book By James R. Hansen © 2018 UNIVERSAL STUDIOS and STORYTELLER DISTRIBUTION CO., LLC ALL RIGHTS RESERVED OVER BLACK: We hear a LOW RUMBLE. It gets louder as we hear... a SCREAMING ENGINE... HOWLING WIND... BURSTS of STATIC... and FAINT COMMS. It SURROUNDS us, filling us with dread, POUNDING US INTO -- 1 INT. X-15 COCKPIT, HIGH RANGE, ABOVE EDWARDS AFB - DAY 1 A pair of BLUE EYES. TICKING back and forth. Rapidly. Ignoring the FRIGHTENING WALL OF SOUND all around us. JOE (COMMS) Data check? NEIL (O.C.) 2 APU on. Cabin pressure is good, 3500 on #1, 3355 on #2. Platform internal power. PULL BACK TO NEIL ARMSTRONG, 31, in a silver pressure suit. Neil is INTENSELY FOCUSED, impressive in the SEVERE TURBULENCE. JOE (COMMS) What’s your mixing chambers? NEIL (INTO COMMS) -44 and -45. BUTCH (COMMS) Two minute point. NEIL (INTO COMMS) MH circuit breakers on, opening nitrogren valve. Neil opens the nitrogen valve on the low tech console. As the nitrogen creates a THIN WHITE FOG in the cabin, Neil looks out the window. The plane looks like a ROCKET... because it is. This is the X-15... the FASTEST FUCKING AIRCRAFT EVER MADE. Hence the nitrogen. Neil shivers a bit. NEIL JOE WALKER (COMMS) Chilly. Won’t be for long. We note the X-15 isn’t flying exactly, it’s under the wing of a B-52, an EIGHT ENGINE BEHEMOTH shaking more than the X-15. TERRIFYING, but Neil’s calm as he’s KNOCKED about the cockpit. -
PSAD-81-2 Support Service Contracting at Johnson Space
BY THEU.S. GENERAL ACCOUNTli’JG OFFICE Report To The Administrator, National Aeronautics And Space Administration S@pportService Contracting At Johnson Space Center Needs Strengthening T National Aeronautics and S ace Administration Sl about $175 million annual Py on support service Cl at Johnson Space Center. GAO tested the way si of these contracts are administered and found --a contractor was working without approved llllllllllllllll113606 work orders, --Government-furnished equipment was unac- counted for, --questionable reimbursements occurred for con- tractor costs, I --contract funds increased before the need was justified, I --contracting officers were unaware of their re- sponsibilitres and unfamiliar with contract terms, and I --some contracting officers had a general attitude that small dollar value contracts are not worthy of adequate attention. I ‘/A0 believes overreliance on cost-type contracts which quire greater administration efforts than fixed-price )ntracts contributes to these contracting weaknesses recommends that the National Aeronautics and ace Administration take corrective actions. mp81s2 OCTOBER 21,1900 + Request for copies of GAO reports should be sent to: U.S. General Accounting Office Document Handling and Information Services Facility P.O. Box 6015 Gaithersburg, Md. 20760 Telephone (202) 275-6241 The first five copies of individual reports are free of charge. Additional copies of bound audit reports are $3.25 each. Additional copies of unbound report (i.e., letter reports) and most other publications are $1.00 each. There will be a 25% discount on all orders for 100 or more copies mailed to a single address. Sales orders must be prepaid on a cash, check, or money order basis. -
Apollo Soyuz Test Project
https://ntrs.nasa.gov/search.jsp?R=20190025708 2019-08-31T11:45:11+00:00Z Karol J. Bobko Background • Soviet –American cooperation in space had been discussed as early as 1962 by NASA’s Hugh Dryden and Academician Blagonrovov. • The major objectives for a cooperative space mission were: – 1) Demonstration in space of the new androgynous docking system, and – 2) Improvement of communication and reduction of Cold War tensions between East and West • In October 1970 R. Gilruth headed a small NASA delegation for a visit to Moscow to promote space cooperation. That visit was successful. • Following additional meetings, when President Nixon visited Moscow in May 1972, he and Alexei Kosygin signed an agreement providing for cooperation and the peaceful uses of space – The leaders specifically approved the Apollo-Soyuz flight being planned and they agreed on a 1975 launch. • Dr. Glynn Lunney was appointed as the U.S. technical director of the project • The US crew was announced in January; the USSR crew in May of 1973 • The first training visit was cosmonauts visiting JSC in July of 1973 System Changes • A Docking Module was developed to: – Act as an airlock between the two spacecraft • The Apollo operated with a 100% oxygen but at .34 atmospheres • The Soyuz normally operated at 1.0 atmospheres but for this flight it operated at .68 atmospheres • Since the difference between the modules was only .34 atmospheres it was felt the danger of going from one pressure to the other, without pre-breathe, was minimal. – The Docking Module had extra oxygen and nitrogen and executed the change in pressures to allow passage back and forth between the modules – The docking module had no capability to remove CO2 Docking Module (Cont.) • The front end of the Docking Module had the APDS, which was used to dock with the Soyuz • The rear part of the Docking Module had the probe and drogue system which was used to dock with the Apollo Command Module. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
Apollo 13 Mission Review
APOLLO 13 MISSION REVIEW HEAR& BEFORE THE COMMITTEE ON AERONAUTICAL AND SPACE SCIENCES UNITED STATES SENATE NINETY-FIRST CONGRESS SECOR’D SESSION JUR’E 30, 1970 Printed for the use of the Committee on Aeronautical and Space Sciences U.S. GOVERNMENT PRINTING OFFICE 47476 0 WASHINGTON : 1970 COMMITTEE ON AEROKAUTICAL AND SPACE SCIENCES CLINTON P. ANDERSON, New Mexico, Chairman RICHARD B. RUSSELL, Georgia MARGARET CHASE SMITH, Maine WARREN G. MAGNUSON, Washington CARL T. CURTIS, Nebraska STUART SYMINGTON, bfissouri MARK 0. HATFIELD, Oregon JOHN STENNIS, Mississippi BARRY GOLDWATER, Arizona STEPHEN M.YOUNG, Ohio WILLIAM B. SAXBE, Ohio THOJfAS J. DODD, Connecticut RALPH T. SMITH, Illinois HOWARD W. CANNON, Nevada SPESSARD L. HOLLAND, Florida J4MES J. GEHRIG,Stad Director EVERARDH. SMITH, Jr., Professional staffMember Dr. GLENP. WILSOS,Professional #tad Member CRAIGVOORHEES, Professional Staff Nember WILLIAMPARKER, Professional Staff Member SAMBOUCHARD, Assistant Chief Clerk DONALDH. BRESNAS,Research Assistant (11) CONTENTS Tuesday, June 30, 1970 : Page Opening statement by the chairman, Senator Clinton P. Anderson-__- 1 Review Board Findings, Determinations and Recommendations-----_ 2 Testimony of- Dr. Thomas 0. Paine, Administrator of NASA, accompanied by Edgar M. Cortright, Director, Langley Research Center and Chairman of the dpollo 13 Review Board ; Dr. Charles D. Har- rington, Chairman, Aerospace Safety Advisory Panel ; Dr. Dale D. Myers, Associate Administrator for Manned Space Flight, and Dr. Rocco A. Petrone, hpollo Director -___________ 21, 30 Edgar 11. Cortright, Chairman, hpollo 13 Review Board-------- 21,27 Dr. Dale D. Mvers. Associate Administrator for Manned SDace 68 69 105 109 LIST OF ILLUSTRATIOSS 1. Internal coinponents of oxygen tank So. 2 ---_____-_________________ 22 2. -
EXPLORING the MOON in the 21St CENTURY
CosmoELEMENTS EXPLORING THE MOON IN THE 21st CENTURY Samuel J. Lawrence1 and Clive R. Neal2 DOI: 10.2138/gselements.15.5.360 INTRODUCTION In 2019, we are celebrating the 50th anniversary of NASA’s momentous Apollo expedi- tions to the Moon. The samples brought back by the astronauts, and the fieldwork those astro- The South Pole of the Moon, pictured here in an oblique view from FIGURE 1 NASA’s Lunar Reconnaissance Orbiter, is the landing site for the nauts performed on the lunar surface, cemented the Moon’s status as seventh human lunar landing. IMAGE COURTESY OF NAC M1195011983LR (NASA/ the cornerstone of the solar system. It is not an exaggeration to say GSFC/ARIZONA STATE UniVERSITY). that the Apollo expeditions transformed our understanding of our solar system, and, in fact, most of the discoveries made in planetary science since the 1960s can trace directly, or indirectly, from the scientific of the Sun’s evolution and history. Finally, this is another area where results of those Apollo expeditions. the Apollo expeditions represent a strength: there are five decades worth of planetary science hypotheses that lunar geological fieldwork Although some erroneously proclaim that the Moon is “Been there, will address. The lunar surface could also provide a unique and stable done that”, nothing could be further from the truth. After a long long-term platform for astronomy. In particular, manned radio obser- st hiatus, beginning in the first years of the 21 century, there has vatories or optical interferometers on the far side of the Moon could been a resurgence of interest in the Moon, including the Kaguya produce dramatic advances in astrophysics. -
Project Mercury Fact Sheet
NASA Facts National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-0001 April 1996 FS-1996-04-29-LaRC ___________________________________________________________________________ Langley’s Role in Project Mercury Project Mercury Thirty-five years ago on May 5, 1961, Alan Shepard was propelled into space aboard the Mercury capsule Freedom 7. His 15-minute suborbital flight was part of Project Mercury, the United States’ first man-in-space program. The objectives of the Mer- cury program, eight unmanned flights and six manned flights from 1961 to 1963, were quite specific: To orbit a manned spacecraft around the Earth, investigate man’s ability to function in space, and to recover both man and spacecraft safely. Project Mercury included the first Earth orbital flight made by an American, John Glenn in February 1962. The five-year program was a modest first step. Shepard’s flight had been overshadowed by Russian Yuri Gagarin’s orbital mission just three weeks earlier. President Kennedy and the Congress were NASA Langley Research Center photo #59-8027 concerned that America catch up with the Soviets. Langley researchers conduct an impact study test of the Seizing the moment created by Shepard’s success, on Mercury capsule in the Back River in Hampton, Va. May 25, 1961, the President made his stirring chal- lenge to the nation –– that the United States commit Langley Research Center, established in 1917 itself to landing a man on the moon and returning as the National Advisory Committee for Aeronautics him to Earth before the end of the decade. Apollo (NACA) Langley Memorial Aeronautical Labora- was to be a massive undertaking –– the nation’s tory, was the first U.S. -
The John Glenn Story – 1963
Video Transcript for Archival Research Catalog (ARC) Identifier 45022 The John Glenn Story – 1963 President Kennedy: There are milestones in human progress that mark recorded history. From my judgment, this nation’s orbital pioneering in space is of such historic stature, representing as it does, a vast advancement that will profoundly influence the progress of all mankind. It signals also a call for alertness to our national opportunities and responsibilities. It requires physical and moral stamina to equal the stresses of these times and a willingness to meet the dangers and the challenges of the future. John Glenn throughout his life has eloquently portrayed these great qualities and is an inspiration to all Americans. This film, in paying tribute to John Glenn, also pays tribute to the best in American life. [Introductory Music] Narrator: New Concord, Ohio wasn’t on many maps until February 20, 1962. It came to fame in a single day with an American adventure that history will call the John Glenn Story. Fashioned in the American image, this pleasant little city typifies a nation’s ideal way of life. A man might make a good life here in the circle of family and friends. And a boy might let his imagination soar. [Music] He might explore the wonders of the wide world all about him, life’s simple mysteries. With bright discovery daily opening doors to knowledge, he can look away to distant places, to exciting adventures, hidden only by the horizon and the future. Like this boy, like boys everywhere, young John Glenn dreamed of the future as he looked to far away new frontiers – why he might even learn to fly. -
Gateway Avionics Concept of Operations for Command and Data
Gateway Avionics Concept of Operations for Command and Data Handling Architecture Paul Muri, PhD Svetlana Hanson Martin Sonnier NASA Johnson Space Center NASA Johnson Space Center NASA Johnson Space Center 2101 NASA Parkway 2101 NASA Parkway 2101 NASA Parkway Houston, TX 77058 Houston, TX 77058 Houston, TX 77058 [email protected] [email protected] [email protected] Abstract—By harnessing data handling lessons learned from the International Space Station, Gateway has adopted a highly 1. INTRODUCTION reliable, deterministic, and redundant three-plane Time- Triggered Ethernet network implementation that is capable of With NASA, international partners, and commercial partners handling three distinct types of traffic: Time-Triggered (TT), preparing to establish a human presence in lunar orbit, a Rate Constrained (RC) and Best Effort (BE). This paper will robust implementation of avionics is of the utmost offer an overview of the operational capabilities of the Gateway importance to the Gateway Program’s success. Without Network defined in the Network Concept of Operations, technological advances in C&DH, previous missions would focusing on the initial architecture of the Gateway Spacecraft not have been possible. Previous lessons-learned with ISS Inter-Element Network. The initial Gateway modules include Habitation, Power & Propulsion, Logistics, Human Lunar will help shape the design philosophy of the network Lander, and Orion Crew Capsule. The Gateway Inter-Element architecture used in the Gateway Program. Network Concept