Rubus by Nguyen

Total Page:16

File Type:pdf, Size:1020Kb

Rubus by Nguyen Flora Malesiana ser. I, Vol. 11 (2) (1993) 227-351 Rosaceae C. Kalkman Leiden, The Netherlands) Gen. PL Gen. Flow. PI. 1 Rosaceae Juss., (1789) 196, nom. cons.; Hutch., (1964) 174-216; Vidal, Fl. Camb., Laos & Vietnam 6 (1968) 1-210 (excl. Rubus); Nguyen Van Thuan,ibid. 7 (1968) 1-83 (Rubus); Vidal, Fl. Thailand2 (1970) 31-74 (Rubus by Nguyen Van Thuan); Tirvengadum, Fl. Ceylon 3 (1981) 328-378. — Type genus: Rosa L. sometimes Woody or herbaceous plants. Leaves usually spirally arranged, distichous, rarely opposite (not in Malesia), simple or compound. Stipules on the twig or on the base of the petiole, free or adnateto petiole, rarely absent Inflorescences various. Flowers usu- ally bisexual and actinomorphic. Hypanthium (‘calyx tube’ of many authors) usually very tubular the distinct, from saucer-shaped to or campanulate, sepals, petals, and stamens inserted on its rim, its inside usually lined by a nectariferous disk. Sepals usually 5, free, in some tribes an epicalyx also present. Petals usually 5, free, from large and showy to small and not or hardly distinct from sepals, in some genera/species absent. Stamens usually numerous, but sometimes the number distinctly related to the number of perianth leaves, filaments anthers 1 free free, bilocular, dehiscing longitudinally. Pistil(s) to many, or variously connate with each other and/or with the hypanthium, ovary(ies) superior to several inferior, style(s) present, ovule(s) 1 to (often 2) per locule, anatropous, ascending or pendulous. Fruits various, fleshy or dry, dehiscent or not. Seed(s) 1 to several, with- out or with scanty endosperm, cotyledons fleshy or flat. Distribution — A large family with worldwidedistribution, including more than 3000 species in c. 100 genera. Almost all genera which are represented in Malesia have their ac- tual ofdistributionin centre temperate to subtropical regions on the Northern Hemisphere. Some of those are large or medium large genera with only one or two species in Malesia (Rosa, Alchemilla, Eriobotrya), others have a more or less distinct sub-centre in the Male- sian Prunus, is region ( Rubus, Potentilla). Exceptional Acaena, a genus with a Southern Hemisphere distribution, of which one species also occurs in New Guinea. Kalkman [Bot. J. Linn. Soc. 98 (1988) 37-59] postulated a Southern (Gondwanan) origin for the family and migration via three routes. Malesia in this view was reached mainly from the Asian continent (Laurasia), which in turn was reached by way of South, Central, and North America and via Beringia. Partly maybe the continent was also reached from Gondwana the Indian 'raft' A third directly by transport on (Alchemillal). route was via Australia (Acaena). Most authors, however, favour a Laurasian origin for the family. Habitat— The majority of Malesian Rosaceae belongs to the mountainflora and occurs only above 1000it 1500 m altitude, in montane forest types, thickets or (sub)alpine grass- the Rubus lands. Only in genus (a dozen species) and in Prunus (more than 20 species) an appreciable proportion ofthe species are (also) found in the lowlands. 227 228 Flora Malesiana ser. I, Vol. 11 (2) (1993) Ecology — As is true for almost all Malesian higher plant families, no autecological research has been carried out for members ofRosaceae. From the habitats where the spe- cies have been collected, some superficial conclusions may be drawn about preferences or the tolerances for light, temperatureand soil conditions and wherever possible, paragraphs this kind of information. on Habitat and Ecology contain Pollinationis undoubtedly normally by (unspecified) insects, as in the European rela- tives. Apart from the formationof a good quantity of pollen and the secretion of nectar by in the flowers related kinds the disc, there are no specializations to pollination by specific of insects. Only for Acaena wind-pollination might be inferred, but experimental orobser- labels. vational evidence is lacking in literature or on animals. foundin For dispersal most Rosaceae rely heavily on Exceptions are genera with multi-seeded follicles with dry seeds (in Malesia only Neillia) where dispersal is by of the Potentilla that have the ballistochory. The same is true for most species dry achenes and Some have in the cups formedby the hypanthium, sepals epicalyx. genera dry achenes, imbedded in or surrounded by a fleshy spurious fruit (Rosa and also the not indigenous the the functions Fragaria and Potentillaindica). In these cases hypanthium, resp. torus as the attractant for endozoochory by snails, birds, or other animals. Many Rosaceae of dif- ferent tribes have gone the way to fruits with a fleshy or juicy layer in their walls (drupes, either single or as collective, or pomes) and obviously these are also endozoochorous. Epizoochory is only exercised by Acaena and Agrimonia which possess spines on their hypanthium in which the fruit is included. Taxonomy and Phylogeny — In modern systems the Neuradaceae and the Chryso- balanaceae [for the latter, see Flora Malesiana 1,10 (1989) 635-678] are mostly not in- cluded inRosaceae, as in earlierclassifications, but recognized as families in their own right. In the family Rosaceae as implied in the previous paragraph usually four subfamilies are distinguished: Spiraeoideae, Rosoideae, Maloideae(Pomoideae), and Prunoideae (Amygdaloideae). The last-mentioned two groups are undoubtedly two end-branches in the phylogenetic tree, well recognizable, distinct, and natural (holophyletic) taxa. This cannot be said for the two other subfamilies. The group Spiraeoideae contains the genera follicles is with dry, dehiscent fruits. Dehiscent a plesiomorphic (primitive) character in the this character shouldbetter included family and the generapossessing be in a taxon with the generathat have been derived from them. Considering the likeness of the flowers of some Spiraeoideae and those of some Maloideae like Cotoneaster and Pyracantha, I would be inclined the Maloideaewith least of to enlarge subfamily at part the Spiraeoid genera. The Rosoideae are quite heterogeneous and they have probably to be unitedwithother, branch, in which 'Spiraeoid', genera to form another holophyletic maybe some subdivision is possible. A phylogenetic analysis, only considering morphological characters [Kalkman, Bot. J. Linn. Soc. 98 (1988) 37-59] was not successful and should be repeated with an augmented set of characters, also anatomical and chemical ones. Awaiting this, the recognition of the four classical subfamiliesis hardly justified. Kalkman Rosaceae 229 divided the The next lower levelof classification was used by Hutchinson, I.e., who tribes. Some of these others contain family in some twenty are heterogeneous, some only 'difficult' that have found with their rela- one or two genera not yet a good place nearest tives in the phylogenetical sense. The firm core of a tribal classification consists of the following tribes: S Spiraeeae (see p. 244) S Neillieae (see p. 245) S Gillenieae(maybe to be split into two tribes) (not in Malesia) R Rubeae (see p. 247) Potentilleae R (see p. 285) R Dryadeae (probably to be divided into two tribes) (not in Malesia) R Poterieae (see p. 297) R Alchemilleae (usually includedin Potentilleaeor Poterieae) (see p. 301) R Roseae (see p. 303) M Maleae (Pomeae) (see p. 306) P Pruneae (including Osmaronia?) (see p. 319) in the classical = M = Maloi- S = tribes belonging to Spiraeoideae sense; R Rosoideae; deae; P = Prunoideae. have found natural in of the eleven thirteen The following genera not a place one (or after dividing two of them) tribes mentionedabove: in Hutchinson's classification, a rather the generacomposing the tribeQuillajeae hetero- geneous assemblage of Spiraeoid problem cases: Quillaja, Kageneckia, Exochorda, Lindleya, Vauquelinia, Lyonothamnus; a number of lone generaof uncertain disposition as to tribe and often also subfamily: Holodiscus, Rhodotypos, Kerria, Neviusia, Cercocarpus, Coleogyne, Filipendula, Potaninia, Adenostoma. None of the genera mentionedabove occur in Malesia. Morphology — As apparent from the family description, there is variation in many characters of and fruits. The of leaves, flowers, presence a well-developed hypanthium, a probably axial outgrowth from the top of the pedicel surrounding the pistil(s), is about the is all The elaborationof this only character that common to Rosaceae. hypanthium causes much of the variation in flowers and fruits. The plesiomorphic (original) situation is still present in Spiraeoid genera that have a small number (up to 5) multi-ovulateovaries on the bottom of a cupular hypanthium, the ovaries developing into ventrally dehiscent, dry- walled follicles containing several seeds. Adnation of the ovaries to the inside of the hypanthium, accompanied by a more or less complete fusion of the ovaries with each other, creates the possibility for the evolu- tion of the fleshy, (semi-)inferior fruits that are typical for Maloideae. In this group the exocarp of the inferior fruit is certainly hypanthial, the endocarp (membranous to woody) is certainly carpellary, the more or less fleshy mesocarp may be either or both. In the descriptions in this treatment the terms exocarp, mesocarp, and endocarp are used in 230 Flora Malesiana ser.l, Vol. 11 (2) (1993) their topographical sense, for superior as well as inferior fruits and thus not implying a carpellary origin. Anotherline ofevolution is the change of dry, multi-seeded follicles into dry, 1-seeded fruitwall and become are achenes, that later may develop a fleshy drupaceous. Examples Rubus
Recommended publications
  • An Annotated Checklist of the Angiospermic Flora of Rajkandi Reserve Forest of Moulvibazar, Bangladesh
    Bangladesh J. Plant Taxon. 25(2): 187-207, 2018 (December) © 2018 Bangladesh Association of Plant Taxonomists AN ANNOTATED CHECKLIST OF THE ANGIOSPERMIC FLORA OF RAJKANDI RESERVE FOREST OF MOULVIBAZAR, BANGLADESH 1 2 A.K.M. KAMRUL HAQUE , SALEH AHAMMAD KHAN, SARDER NASIR UDDIN AND SHAYLA SHARMIN SHETU Department of Botany, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh Keywords: Checklist; Angiosperms; Rajkandi Reserve Forest; Moulvibazar. Abstract This study was carried out to provide the baseline data on the composition and distribution of the angiosperms and to assess their current status in Rajkandi Reserve Forest of Moulvibazar, Bangladesh. The study reports a total of 549 angiosperm species belonging to 123 families, 98 (79.67%) of which consisting of 418 species under 316 genera belong to Magnoliopsida (dicotyledons), and the remaining 25 (20.33%) comprising 132 species of 96 genera to Liliopsida (monocotyledons). Rubiaceae with 30 species is recognized as the largest family in Magnoliopsida followed by Euphorbiaceae with 24 and Fabaceae with 22 species; whereas, in Lilliopsida Poaceae with 32 species is found to be the largest family followed by Cyperaceae and Araceae with 17 and 15 species, respectively. Ficus is found to be the largest genus with 12 species followed by Ipomoea, Cyperus and Dioscorea with five species each. Rajkandi Reserve Forest is dominated by the herbs (284 species) followed by trees (130 species), shrubs (125 species), and lianas (10 species). Woodlands are found to be the most common habitat of angiosperms. A total of 387 species growing in this area are found to be economically useful. 25 species listed in Red Data Book of Bangladesh under different threatened categories are found under Lower Risk (LR) category in this study area.
    [Show full text]
  • Five Hundred Plant Species in Gunung Halimun Salak National Park, West Java a Checklist Including Sundanese Names, Distribution and Use
    Five hundred plant species in Gunung Halimun Salak National Park, West Java A checklist including Sundanese names, distribution and use Hari Priyadi Gen Takao Irma Rahmawati Bambang Supriyanto Wim Ikbal Nursal Ismail Rahman Five hundred plant species in Gunung Halimun Salak National Park, West Java A checklist including Sundanese names, distribution and use Hari Priyadi Gen Takao Irma Rahmawati Bambang Supriyanto Wim Ikbal Nursal Ismail Rahman © 2010 Center for International Forestry Research. All rights reserved. Printed in Indonesia ISBN: 978-602-8693-22-6 Priyadi, H., Takao, G., Rahmawati, I., Supriyanto, B., Ikbal Nursal, W. and Rahman, I. 2010 Five hundred plant species in Gunung Halimun Salak National Park, West Java: a checklist including Sundanese names, distribution and use. CIFOR, Bogor, Indonesia. Photo credit: Hari Priyadi Layout: Rahadian Danil CIFOR Jl. CIFOR, Situ Gede Bogor Barat 16115 Indonesia T +62 (251) 8622-622 F +62 (251) 8622-100 E [email protected] www.cifor.cgiar.org Center for International Forestry Research (CIFOR) CIFOR advances human wellbeing, environmental conservation and equity by conducting research to inform policies and practices that affect forests in developing countries. CIFOR is one of 15 centres within the Consultative Group on International Agricultural Research (CGIAR). CIFOR’s headquarters are in Bogor, Indonesia. It also has offices in Asia, Africa and South America. | iii Contents Author biographies iv Background v How to use this guide vii Species checklist 1 Index of Sundanese names 159 Index of Latin names 166 References 179 iv | Author biographies Hari Priyadi is a research officer at CIFOR and a doctoral candidate funded by the Fonaso Erasmus Mundus programme of the European Union at Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences.
    [Show full text]
  • Antiproliferative Activity of Pyracantha and Paullinia Plant Extracts on Aggressive Breast and Hepatocellular Carcinoma Cells
    applied sciences Article Antiproliferative Activity of Pyracantha and Paullinia Plant Extracts on Aggressive Breast and Hepatocellular Carcinoma Cells Neha Kaushik 1,* , Hyeonyeong Yang 1, SungRyong Jeong 1, Nagendra Kumar Kaushik 2 , Pradeep Bhartiya 2, Linh Nhat Nguyen 2, Eun Ha Choi 2 and June Hyun Kim 1,* 1 College of Engineering, Department of Biotechnology, University of Suwon, Hwaseong 18323, Korea; [email protected] (H.Y.); [email protected] (S.R.J.) 2 Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; [email protected] (N.K.K); [email protected] (P.B.); [email protected] (L.N.N.); [email protected] (E.H.C.) * Correspondence: [email protected] (N.K.); [email protected] (J.H.K.) Received: 9 September 2020; Accepted: 23 October 2020; Published: 26 October 2020 Abstract: In recent decades, the use of plants as a natural remedy has been widely applied in traditional medicine and the treatment of various diseases, including cancer. However, in order to confirm the potential benefits of anticancer drug development from natural sources, in-depth screening assessments are necessary. In the present study, we aimed to evaluate the cytotoxic effects of eight medicinal plants against breast carcinoma and hepatocellular carcinoma cell lines. Remarkably, among all the tested plant extracts, Pyracantha angustifolia and Paullinia cupana extracts showed maximum inhibition in the two cancer cell line models, as detected by cell viability assays, but not in normal mammary epithelial cells. Moreover, induction of cell cycle arrest was seen in both cancer cell models after treatment with extracts derived from the fruits of P.
    [Show full text]
  • Open As a Single Document
    Cercis: The Redbuds by KENNETH R. ROBERTSON One of the few woody plants native to eastern North America that is widely planted as an ornamental is the eastern redbud, Cercis canadensis. This plant belongs to a genus of about eight species that is of interest to plant geographers because of its occurrence in four widely separated areas - the eastern United States southwestward to Mexico; western North America; south- ern and eastern Europe and western Asia; and eastern Asia. Cercis is a very distinctive genus in the Caesalpinia subfamily of the legume family (Leguminosae subfamily Caesalpinioi- - deae). Because the apparently simple heart-shaped leaves are actually derived from the fusion of two leaflets of an evenly pinnately compound leaf, Cercis is thought to be related to -~auhinic~, which includes the so-called orchid-trees c$~~ cultivated in tropical regions. The leaves of Bauhinia are usu- ally two-lobed with an apical notch and are made up of clearly ~ two partly fused leaflets. The eastern redbud is more important in the garden than most other spring flowering trees because the flower buds, as well as the open flowers, are colorful, and the total ornamental season continues for two to three weeks. In winter a small bud is found just above each of the leaf scars that occur along the twigs of the previous year’s growth; there are also clusters of winter buds on older branches and on the tree trunks (Figure 3). In early spring these winter buds enlarge (with the excep- tion of those at the tips of the branches) and soon open to re- veal clusters of flower buds.
    [Show full text]
  • Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
    Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade.
    [Show full text]
  • The Framework Species Approach to Forest Restoration: Using Functional Traits As Predictors of Species Performance
    - 1 - The Framework Species Approach to forest restoration: using functional traits as predictors of species performance. Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Hannah Betts July 2013 - 2 - - 3 - Abstract Due to forest degradation and loss, the use of ecological restoration techniques has become of particular interest in recent years. One such method is the Framework Species Approach (FSA), which was developed in Queensland, Australia. The Framework Species Approach involves a single planting (approximately 30 species) of both early and late successional species. Species planted must survive in the harsh conditions of an open site as well as fulfilling the functions of; (a) fast growth of a broad dense canopy to shade out weeds and reduce the chance of forest fire, (b) early production of flowers or fleshy fruits to attract seed dispersers and kick start animal-mediated seed distribution to the degraded site. The Framework Species Approach has recently been used as part of a restoration project in Doi Suthep-Pui National Park in northern Thailand by the Forest Restoration Research Unit (FORRU) of Chiang Mai University. FORRU have undertaken a number of trials on species performance in the nursery and the field to select appropriate species. However, this has been time-consuming and labour- intensive. It has been suggested that the need for such trials may be reduced by the pre-selection of species using their functional traits as predictors of future performance. Here, seed, leaf and wood functional traits were analysed against predictions from ecological models such as the CSR Triangle and the pioneer concept to assess the extent to which such models described the ecological strategies exhibited by woody species in the seasonally-dry tropical forests of northern Thailand.
    [Show full text]
  • Ornamental Garden Plants of the Guianas Pt. 2
    Surinam (Pulle, 1906). 8. Gliricidia Kunth & Endlicher Unarmed, deciduous trees and shrubs. Leaves alternate, petiolate, odd-pinnate, 1- pinnate. Inflorescence an axillary, many-flowered raceme. Flowers papilionaceous; sepals united in a cupuliform, weakly 5-toothed tube; standard petal reflexed; keel incurved, the petals united. Stamens 10; 9 united by the filaments in a tube, 1 free. Fruit dehiscent, flat, narrow; seeds numerous. 1. Gliricidia sepium (Jacquin) Kunth ex Grisebach, Abhandlungen der Akademie der Wissenschaften, Gottingen 7: 52 (1857). MADRE DE CACAO (Surinam); ACACIA DES ANTILLES (French Guiana). Tree to 9 m; branches hairy when young; poisonous. Leaves with 4-8 pairs of leaflets; leaflets elliptical, acuminate, often dark-spotted or -blotched beneath, to 7 x 3 (-4) cm. Inflorescence to 15 cm. Petals pale purplish-pink, c.1.2 cm; standard petal marked with yellow from middle to base. Fruit narrowly oblong, somewhat woody, to 15 x 1.2 cm; seeds up to 11 per fruit. Range: Mexico to South America. Grown as an ornamental in the Botanic Gardens, Georgetown, Guyana (Index Seminum, 1982) and in French Guiana (de Granville, 1985). Grown as a shade tree in Surinam (Ostendorf, 1962). In tropical America this species is often interplanted with coffee and cacao trees to shade them; it is recommended for intensified utilization as a fuelwood for the humid tropics (National Academy of Sciences, 1980; Little, 1983). 9. Pterocarpus Jacquin Unarmed, nearly evergreen trees, sometimes lianas. Leaves alternate, petiolate, odd- pinnate, 1-pinnate; leaflets alternate. Inflorescence an axillary or terminal panicle or raceme. Flowers papilionaceous; sepals united in an unequally 5-toothed tube; standard and wing petals crisped (wavy); keel petals free or nearly so.
    [Show full text]
  • Post-Wildfire Response of Shasta Snow-Wreath
    California Fish and Wildlife, Fire Special Issue; 92-98; 2020 RESEARCH NOTE Post-wildfire response of Shasta snow-wreath LEN LINDSTRAND III1*, JULIE A. KIERSTEAD2, AND DEAN W. TAYLOR3 † 1Sierra Pacific Industries,P .O. Box 496014, Redding, CA 96049-6014, USA 2P. O. Box 491536, Redding CA, 96049, USA 33212 Redwood Drive, Aptos, CA, 95003, USA † Deceased *Corresponding Author: [email protected] Key words: Hirz fire, Neviusia cliftonii, post-wildfire response, Shasta snow-wreath, vegetative reproduction __________________________________________________________________________ Shasta snow-wreath (Neviusia cliftonii) is a rare shrub of the Rosaceae: tribe Kerrieae endemic to the southeastern Klamath Mountains in the general vicinity of Shasta Lake, Shasta County, California. The species was discovered less than 30 years ago (Shevock et al. 1992; Taylor 1993) and initially considered a limestone obligate. Subsequent occurrences have also been found on various non-limestone substrates (Lindstrand and Nelson 2005a, b, 2006; DeWoody et al. 2012; Jules et al. 2017). The only congener, Alabama snow-wreath (Neviusia alabamensis), also has a limited range restricted to several disjunct populations in the southeastern United States and occurs on limestone and non-limestone sedimentary substrates (Long 1989; Freiley 1994). Shasta snow-wreath is deciduous and produces flowers with showy white stamens, five toothed green sepals, and rarely, one to three narrow white petals. Based on our observations since its discovery, the species reproduces vegetatively, forming thickets of stems from the root system. Despite observations of developing achenes, no viable seed nor seedlings have been collected or observed. We are not aware of any pollinators and the blooms lack detect- able scent.
    [Show full text]
  • Patterns of Flammability Across the Vascular Plant Phylogeny, with Special Emphasis on the Genus Dracophyllum
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy at Lincoln University by Xinglei Cui Lincoln University 2020 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy. Abstract Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum by Xinglei Cui Fire has been part of the environment for the entire history of terrestrial plants and is a common disturbance agent in many ecosystems across the world. Fire has a significant role in influencing the structure, pattern and function of many ecosystems. Plant flammability, which is the ability of a plant to burn and sustain a flame, is an important driver of fire in terrestrial ecosystems and thus has a fundamental role in ecosystem dynamics and species evolution. However, the factors that have influenced the evolution of flammability remain unclear.
    [Show full text]
  • Biology of Invasive Plants 1. Pyracantha Angustifolia (Franch.) C.K. Schneid
    Invasive Plant Science and Biology of Invasive Plants 1. Pyracantha Management angustifolia (Franch.) C.K. Schneid www.cambridge.org/inp Lenin Dzibakwe Chari1,* , Grant Douglas Martin2,* , Sandy-Lynn Steenhuisen3 , Lehlohonolo Donald Adams4 andVincentRalphClark5 Biology of Invasive Plants 1Postdoctoral Researcher, Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, Makhanda, South Africa; 2Deputy Director, Centre for Biological Control, Department of Zoology and Cite this article: Chari LD, Martin GD, Entomology, Rhodes University, Makhanda, South Africa; 3Senior Lecturer, Department of Plant Sciences, and Steenhuisen S-L, Adams LD, and Clark VR (2020) Afromontane Research Unit, University of the Free State, Qwaqwa Campus, Phuthaditjhaba, South Africa; 4PhD Biology of Invasive Plants 1. Pyracantha Candidate, Department of Plant Sciences, and Afromontane Research Unit, University of the Free State, angustifolia (Franch.) C.K. Schneid. Invasive Qwaqwa Campus, Phuthaditjhaba, South Africa and 5Director, Afromontane Research Unit, and Department of Plant Sci. Manag 13: 120–142. doi: 10.1017/ Geography, University of the Free State, Qwaqwa Campus, Phuthaditjhaba, South Africa inp.2020.24 Received: 2 September 2020 Accepted: 4 September 2020 Scientific Classification *Co-lead authors. Domain: Eukaryota Kingdom: Plantae Series Editors: Phylum: Spermatophyta Darren J. Kriticos, CSIRO Ecosystem Sciences & David R. Clements, Trinity Western University Subphylum: Angiospermae Class: Dicotyledonae Key words: Order: Rosales Bird dispersed, firethorn, introduced species, Family: Rosaceae management, potential distribution, seed load. Genus: Pyracantha Author for correspondence: Grant Douglas Species: angustifolia (Franch.) C.K. Schneid Martin, Centre for Biological Control, Synonym: Cotoneaster angustifolius Franch. Department of Zoology and Entomology, EPPO code: PYEAN Rhodes University, P.O. Box 94, Makhanda, 6140 South Africa.
    [Show full text]
  • They Come in Teams
    GBE Frankia-Enriched Metagenomes from the Earliest Diverging Symbiotic Frankia Cluster: They Come in Teams Thanh Van Nguyen1, Daniel Wibberg2, Theoden Vigil-Stenman1,FedeBerckx1, Kai Battenberg3, Kirill N. Demchenko4,5, Jochen Blom6, Maria P. Fernandez7, Takashi Yamanaka8, Alison M. Berry3, Jo¨ rn Kalinowski2, Andreas Brachmann9, and Katharina Pawlowski 1,* 1Department of Ecology, Environment and Plant Sciences, Stockholm University, Sweden 2Center for Biotechnology (CeBiTec), Bielefeld University, Germany 3Department of Plant Sciences, University of California, Davis 4Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia 5Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia 6Bioinformatics and Systems Biology, Justus Liebig University, Gießen, Germany 7Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Universite Lyon I, Villeurbanne Cedex, France 8Forest and Forestry Products Research Institute, Ibaraki, Japan 9Biocenter, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany *Corresponding author: E-mail: [email protected]. Accepted: July 10, 2019 Data deposition: This project has been deposited at EMBL/GenBank/DDBJ under the accession PRJEB19438 - PRJEB19449. Abstract Frankia strains induce the formation of nitrogen-fixing nodules on roots of actinorhizal plants. Phylogenetically, Frankia strains can be grouped in four clusters. The earliest divergent cluster, cluster-2, has a particularly wide host range. The analysis of cluster-2 strains has been hampered by the fact that with two exceptions, they could never be cultured. In this study, 12 Frankia-enriched meta- genomes of Frankia cluster-2 strains or strain assemblages were sequenced based on seven inoculum sources. Sequences obtained via DNA isolated from whole nodules were compared with those of DNA isolated from fractionated preparations enhanced in the Frankia symbiotic structures.
    [Show full text]
  • How Does Genome Size Affect the Evolution of Pollen Tube Growth Rate, a Haploid Performance Trait?
    Manuscript bioRxiv preprint doi: https://doi.org/10.1101/462663; this version postedClick April here18, 2019. to The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv aaccess/download;Manuscript;PTGR.genome.evolution.15April20 license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Effects of genome size on pollen performance 2 3 4 5 How does genome size affect the evolution of pollen tube growth rate, a haploid 6 performance trait? 7 8 9 10 11 John B. Reese1,2 and Joseph H. Williams2 12 Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 13 37996, U.S.A. 14 15 16 17 1Author for correspondence: 18 John B. Reese 19 Tel: 865 974 9371 20 Email: [email protected] 21 1 bioRxiv preprint doi: https://doi.org/10.1101/462663; this version posted April 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 ABSTRACT 23 Premise of the Study – Male gametophytes of most seed plants deliver sperm to eggs via a 24 pollen tube. Pollen tube growth rates (PTGRs) of angiosperms are exceptionally rapid, a pattern 25 attributed to more effective haploid selection under stronger pollen competition. Paradoxically, 26 whole genome duplication (WGD) has been common in angiosperms but rare in gymnosperms.
    [Show full text]