View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PDXScholar Portland State University PDXScholar Biology Faculty Publications and Presentations Biology 11-1-2005 Contributions of Heterosis and Epistasis to Hybrid Fitness Mitchell B. Cruzan Portland State University Let us know how access to this document benefits ouy . Follow this and additional works at: https://pdxscholar.library.pdx.edu/bio_fac Part of the Biology Commons, and the Plant Breeding and Genetics Commons Citation Details Rhode, J. M., and Cruzan, M. B. (2005). Contributions of Heterosis and Epistasis to Hybrid Fitness. American Naturalist, 166(5), E124-E139. This Article is brought to you for free and open access. It has been accepted for inclusion in Biology Faculty Publications and Presentations by an authorized administrator of PDXScholar. For more information, please contact
[email protected]. vol. 166, no. 5 the american naturalist november 2005 E-Article Contributions of Heterosis and Epistasis to Hybrid Fitness Jennifer M. Rhode* and Mitchell B. Cruzan† Department of Biology, Portland State University, Portland, Stebbins 1959; Grant 1963; Rieseberg et al. 1999). How- Oregon 97207 ever, genomic integration among taxa via hybridization is a complex process because offspring from crosses between Submitted October 24, 2004; Accepted June 7, 2005; Electronically published August 30, 2005 divergent lineages often express diminished viability and fertility (Muller 1942; Templeton 1981; Orr 1996; Arnold 1997; Dowling and Secor 1997). Reductions in hybrid fit- ness (hereafter “hybrid breakdown”) may be a conse- quence of chromosomal rearrangements (Grant 1981; abstract: Early-generation hybrid fitness is difficult to interpret Fishman and Willis 2001), maladaptive trait combinations because heterosis can obscure the effects of hybrid breakdown.