A Brief History of English Bird Names and the American
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Revision of the Mexican Piculus (Picidae) Complex
THE WILSON BULLETIN A QUARTERLY MAGAZINE OF ORNITHOLOGY Published by the Wilson Ornithological Society VOL. 90, No. 2 JUNE 1978 PAGES 159-334 WilsonBdl., 90(Z), 1978, pp. 159-181 A REVISION OF THE MEXICAN PZCULUS (PICIDAE) COMPLEX LUIS F. BAPTISTA The neotropical woodpeckers of the genus Piculus are closely related to the flickers (Colaptes) (Short 1972). P icu 1us species range from Mexico to southern Brazil, Paraguay, Peru (Ridgway 1914) and Argentina (Salvin and Godman 1892). Peters (1948) lists 46 taxa (9 species and their sub- species) of which 20 are subspecies of Piculus rubiginosus, the most widely distributed species. The latter ranges from southern Veracruz to the north- western provinces of Jujuy, Salta, and Tucuman in Argentina (Peters 1948). Compared with other picids, this genus is generally poorly represented in museum collections. It is possible that they are not as rare as they seem, but being rather silent and secretive birds and difficult to distinguish from the associated vegetation due to their cryptic green coloration, are easily passed unnoticed by collectors in the field. A difference of opinion exists among taxonomists regarding the status of several of the Mexican forms. Two species complexes are recognized in the Mexican check-list (Miller et al. 1957). The Piculus auricularti complex is reported by these authors as consisting of 2 subspecies: sonoriensis known only from the type series of 3 birds taken at Ranch0 Santa Barbara, Sonora, and the nominate race auricularis recorded as ranging from Sinaloa south to Guerrero. They point out the uncertain status of the form sonorien- sis, stating that additional material is needed to substantiate it. -
Plasticity by Migrant Yellow-Rumped Warblers: Foraging Indoors During Unseasonable Cold Weather
GENERAL NOTES NORTHWESTERN NATURALIST 97:139–143 AUTUMN 2016 PLASTICITY BY MIGRANT YELLOW-RUMPED WARBLERS: FORAGING INDOORS DURING UNSEASONABLE COLD WEATHER KRISTIN JBONDO AND RMARK BRIGHAM ABSTRACT—From 11 to 15 October 2009, we ob- siding, and several unscreened vents near the served Yellow-rumped Warblers (Setophaga coronata roof. Other observations were made in an older coranata) foraging inside an unheated barn on 4 d, and wooden barn 450 m from the milking parlor. The inside a heated modern milking parlor on 2 d at a dairy older barn had wooden slat floors and large farm in southeastern Saskatchewan, Canada. Warblers doors which were usually left open for ventila- fed on dormant flies that were huddled on the walls tion during the day, and was dimly lit inside inside of the barn and sallied for flies in mid-air and gleaned them from the window screens inside of the unless the barn doors were wide open. The milking parlor. These observations were preceded by 2 inside of the milking parlor was only lit during d of unseasonable cold weather on 9 and 10 October, milking, which usually occurred between 6:00 to when maximum temperatures were below 08C. Yel- 10:30 (CST) and 16:30 to 20:00. Although the low-rumped Warblers fed indoors until 15 October daily temperature of the barn and the milking after which the days became warmer, and we observed parlor is unknown, the barn was considerably them only outside. Yellow-rumped Warblers most colder than the milking parlor, and it was likely entered buildings to feed because unseasonable common in the barn for drinking water, kept in weather conditions increased their energetic demands 4.7-L pails for the calves, to freeze on a daily and provided incentive for them to exploit shelter and basis during winter months; whereas the parlor food in novel places. -
Patterns of Co-Occurrence in Woodpeckers and Nocturnal Cavity-Nesting Owls Within an Idaho Forest
VOLUME 13, ISSUE 1, ARTICLE 18 Scholer, M. N., M. Leu, and J. R. Belthoff. 2018. Patterns of co-occurrence in woodpeckers and nocturnal cavity-nesting owls within an Idaho forest. Avian Conservation and Ecology 13(1):18. https://doi.org/10.5751/ACE-01209-130118 Copyright © 2018 by the author(s). Published here under license by the Resilience Alliance. Research Paper Patterns of co-occurrence in woodpeckers and nocturnal cavity- nesting owls within an Idaho forest Micah N. Scholer 1, Matthias Leu 2 and James R. Belthoff 1 1Department of Biological Sciences and Raptor Research Center, Boise State University, Boise, Idaho, USA, 2Biology Department, College of William and Mary, Williamsburg, Virginia, USA ABSTRACT. Few studies have examined the patterns of co-occurrence between diurnal birds such as woodpeckers and nocturnal birds such as owls, which they may facilitate. Flammulated Owls (Psiloscops flammeolus) and Northern Saw-whet Owls (Aegolius acadicus) are nocturnal, secondary cavity-nesting birds that inhabit forests. For nesting and roosting, both species require natural cavities or, more commonly, those that woodpeckers create. Using day and nighttime broadcast surveys (n = 150 locations) in the Rocky Mountain biogeographic region of Idaho, USA, we surveyed for owls and woodpeckers to assess patterns of co-occurrence and evaluated the hypothesis that forest owls and woodpeckers co-occurred more frequently than expected by chance because of the facilitative nature of their biological interaction. We also examined co-occurrence patterns between owl species to understand their possible competitive interactions. Finally, to assess whether co-occurrence patterns arose because of species interactions or selection of similar habitat types, we used canonical correspondence analysis (CCA) to examine habitat associations within this cavity-nesting bird community. -
Belize), and Distribution in Yucatan
University of Neuchâtel, Switzerland Institut of Zoology Ecology of the Black Catbird, Melanoptila glabrirostris, at Shipstern Nature Reserve (Belize), and distribution in Yucatan. J.Laesser Annick Morgenthaler May 2003 Master thesis supervised by Prof. Claude Mermod and Dr. Louis-Félix Bersier CONTENTS INTRODUCTION 1. Aim and description of the study 2. Geographic setting 2.1. Yucatan peninsula 2.2. Belize 2.3. Shipstern Nature Reserve 2.3.1. History and previous studies 2.3.2. Climate 2.3.3. Geology and soils 2.3.4. Vegetation 2.3.5. Fauna 3. The Black Catbird 3.1. Taxonomy 3.2. Description 3.3. Breeding 3.4. Ecology and biology 3.5. Distribution and threats 3.6. Current protection measures FIRST PART: BIOLOGY, HABITAT AND DENSITY AT SHIPSTERN 4. Materials and methods 4.1. Census 4.1.1. Territory mapping 4.1.2. Transect point-count 4.2. Sizing and ringing 4.3. Nest survey (from hide) 5. Results 5.1. Biology 5.1.1. Morphometry 5.1.2. Nesting 5.1.3. Diet 5.1.4. Competition and predation 5.2. Habitat use and population density 5.2.1. Population density 5.2.2. Habitat use 5.2.3. Banded individuals monitoring 5.2.4. Distribution through the Reserve 6. Discussion 6.1. Biology 6.2. Habitat use and population density SECOND PART: DISTRIBUTION AND HABITATS THROUGHOUT THE RANGE 7. Materials and methods 7.1. Data collection 7.2. Visit to others sites 8. Results 8.1. Data compilation 8.2. Visited places 8.2.1. Corozalito (south of Shipstern lagoon) 8.2.2. -
Proposal 2017-C-15 Below)
AOS Classification Committee – North and Middle America Proposal Set 2017-C 15 March 2017 No. Page Title 01 02 Revise the linear sequence of genera in Fringillidae, and transfer Serinus mozambicus to Crithagra 02 09 Split Brown Creeper (Certhia americana) into two species 03 16 Transfer Violet-bellied Hummingbird from Damophila to Juliamyia 04 18 Elevate Colaptes auratus mexicanoides to species rank 05 23 Split Nashville Warbler (Oreothlypis ruficapilla) into two species 06 26 Adopt new English names for Melozone biarcuata and Melozone cabanisi 07 29 Lump Thayer’s Gull (Larus thayeri) with Iceland Gull (Larus glaucoides) 08 43 Change the spelling of the English names of Le Conte’s Thrasher (Toxostoma lecontei) and Le Conte’s Sparrow (Ammodramus leconteii) 09 46 Add Common Scoter (Melanitta nigra) to the Main List 10 49 Add Blyth’s Reed Warbler (Acrocephalus dumetorum) to the Main List 11 52 Add Chatham Albatross (Thalassarche eremita) to the Main List 12 55 Add Red-legged Honeycreeper (Cyanerpes cyaneus) to the U.S. list 13 57 Add nine species recorded from Greenland to the Main List 14 68 Split Bell’s Vireo (Vireo bellii) into two species 1 2017-C-1 N&MA Classification Committee pp. 658-679 Revise the linear sequence of genera in Fringillidae, and transfer Serinus mozambicus to Crithagra Background: In the past decade, several phylogenetic papers have elucidated relationships within the Fringillidae (Arnaiz-Villena et al. 2007, 2008, Nguembock et al. 2009, Lerner et al. 2011, Zuccon et al. 2012). NACC already has taken a series of actions (reviewed below) based on this research. -
Birds of the East Texas Baptist University Campus with Birds Observed Off-Campus During BIOL3400 Field Course
Birds of the East Texas Baptist University Campus with birds observed off-campus during BIOL3400 Field course Photo Credit: Talton Cooper Species Descriptions and Photos by students of BIOL3400 Edited by Troy A. Ladine Photo Credit: Kenneth Anding Links to Tables, Figures, and Species accounts for birds observed during May-term course or winter bird counts. Figure 1. Location of Environmental Studies Area Table. 1. Number of species and number of days observing birds during the field course from 2005 to 2016 and annual statistics. Table 2. Compilation of species observed during May 2005 - 2016 on campus and off-campus. Table 3. Number of days, by year, species have been observed on the campus of ETBU. Table 4. Number of days, by year, species have been observed during the off-campus trips. Table 5. Number of days, by year, species have been observed during a winter count of birds on the Environmental Studies Area of ETBU. Table 6. Species observed from 1 September to 1 October 2009 on the Environmental Studies Area of ETBU. Alphabetical Listing of Birds with authors of accounts and photographers . A Acadian Flycatcher B Anhinga B Belted Kingfisher Alder Flycatcher Bald Eagle Travis W. Sammons American Bittern Shane Kelehan Bewick's Wren Lynlea Hansen Rusty Collier Black Phoebe American Coot Leslie Fletcher Black-throated Blue Warbler Jordan Bartlett Jovana Nieto Jacob Stone American Crow Baltimore Oriole Black Vulture Zane Gruznina Pete Fitzsimmons Jeremy Alexander Darius Roberts George Plumlee Blair Brown Rachel Hastie Janae Wineland Brent Lewis American Goldfinch Barn Swallow Keely Schlabs Kathleen Santanello Katy Gifford Black-and-white Warbler Matthew Armendarez Jordan Brewer Sheridan A. -
A Classification of the Rallidae
A CLASSIFICATION OF THE RALLIDAE STARRY L. OLSON HE family Rallidae, containing over 150 living or recently extinct species T and having one of the widest distributions of any family of terrestrial vertebrates, has, in proportion to its size and interest, received less study than perhaps any other major group of birds. The only two attempts at a classifi- cation of all of the recent rallid genera are those of Sharpe (1894) and Peters (1934). Although each of these lists has some merit, neither is satisfactory in reflecting relationships between the genera and both often separate closely related groups. In the past, no attempt has been made to identify the more primitive members of the Rallidae or to illuminate evolutionary trends in the family. Lists almost invariably begin with the genus Rdus which is actually one of the most specialized genera of the family and does not represent an ancestral or primitive stock. One of the difficulties of rallid taxonomy arises from the relative homo- geneity of the family, rails for the most part being rather generalized birds with few groups having morphological modifications that clearly define them. As a consequence, particularly well-marked genera have been elevated to subfamily rank on the basis of characters that in more diverse families would not be considered as significant. Another weakness of former classifications of the family arose from what Mayr (194933) referred to as the “instability of the morphology of rails.” This “instability of morphology,” while seeming to belie what I have just said about homogeneity, refers only to the characteristics associated with flightlessness-a condition that appears with great regularity in island rails and which has evolved many times. -
Programs and Field Trips
CONTENTS Welcome from Kathy Martin, NAOC-V Conference Chair ………………………….………………..…...…..………………..….…… 2 Conference Organizers & Committees …………………………………………………………………..…...…………..……………….. 3 - 6 NAOC-V General Information ……………………………………………………………………………………………….…..………….. 6 - 11 Registration & Information .. Council & Business Meetings ……………………………………….……………………..……….………………………………………………………………………………………………………………….…………………………………..…..……...….. 11 6 Workshops ……………………….………….……...………………………………………………………………………………..………..………... 12 Symposia ………………………………….……...……………………………………………………………………………………………………..... 13 Abstracts – Online login information …………………………..……...………….………………………………………….……..……... 13 Presentation Guidelines for Oral and Poster Presentations …...………...………………………………………...……….…... 14 Instructions for Session Chairs .. 15 Additional Social & Special Events…………… ……………………………..………………….………...………………………...…………………………………………………..…………………………………………………….……….……... 15 Student Travel Awards …………………………………………..………...……………….………………………………..…...………... 18 - 20 Postdoctoral Travel Awardees …………………………………..………...………………………………..……………………….………... 20 Student Presentation Award Information ……………………...………...……………………………………..……………………..... 20 Function Schedule …………………………………………………………………………………………..……………………..…………. 22 – 26 Sunday, 12 August Tuesday, 14 August .. .. .. 22 Wednesday, 15 August– ………………………………...…… ………………………………………… ……………..... Thursday, 16 August ……………………………………….…………..………………………………………………………………… …... 23 Friday, 17 August ………………………………………….…………...………………………………………………………………………..... 24 Saturday, -
Genomic Variation Across the Yellow-Rumped Warbler Species Complex
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2016 Genomic variation across the Yellow-rumped Warbler species complex Toews, David P L ; Brelsford, Alan ; Grossen, Christine ; Milá, Borja ; Irwin, Darren E Abstract: Populations that have experienced long periods of geographic isolation will diverge over time. The application of highthroughput sequencing technologies to study the genomes of related taxa now allows us to quantify, at a fine scale, the consequences of this divergence across the genome. Throughout a number of studies, a notable pattern has emerged. In many cases, estimates of differentiation across the genome are strongly heterogeneous; however, the evolutionary processes driving this striking pattern are still unclear. Here we quantified genomic variation across several groups within the Yellow-rumped Warbler species complex (Setophaga spp.), a group of North and Central American wood warblers. We showed that genomic variation is highly heterogeneous between some taxa and that these regions of high differentiation are relatively small compared to those in other study systems. We found that theclusters of highly differentiated markers between taxa occur in gene-rich regions of the genome and exhibitlow within-population diversity. We suggest these patterns are consistent with selection, shaping genomic divergence in similar genomic regions across the different populations. Our study also confirms previous results relying on fewergenetic markers that several of the phenotypically distinct groups in the system are also genomically highly differentiated, likely to the point of full species status. DOI: https://doi.org/10.1642/AUK-16-61.1 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-127199 Journal Article Published Version Originally published at: Toews, David P L; Brelsford, Alan; Grossen, Christine; Milá, Borja; Irwin, Darren E (2016). -
Ecology, Morphology, and Behavior in the New World Wood Warblers
Ecology, Morphology, and Behavior in the New World Wood Warblers A dissertation presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Brandan L. Gray August 2019 © 2019 Brandan L. Gray. All Rights Reserved. 2 This dissertation titled Ecology, Morphology, and Behavior in the New World Wood Warblers by BRANDAN L. GRAY has been approved for the Department of Biological Sciences and the College of Arts and Sciences by Donald B. Miles Professor of Biological Sciences Florenz Plassmann Dean, College of Arts and Sciences 3 ABSTRACT GRAY, BRANDAN L., Ph.D., August 2019, Biological Sciences Ecology, Morphology, and Behavior in the New World Wood Warblers Director of Dissertation: Donald B. Miles In a rapidly changing world, species are faced with habitat alteration, changing climate and weather patterns, changing community interactions, novel resources, novel dangers, and a host of other natural and anthropogenic challenges. Conservationists endeavor to understand how changing ecology will impact local populations and local communities so efforts and funds can be allocated to those taxa/ecosystems exhibiting the greatest need. Ecological morphological and functional morphological research form the foundation of our understanding of selection-driven morphological evolution. Studies which identify and describe ecomorphological or functional morphological relationships will improve our fundamental understanding of how taxa respond to ecological selective pressures and will improve our ability to identify and conserve those aspects of nature unable to cope with rapid change. The New World wood warblers (family Parulidae) exhibit extensive taxonomic, behavioral, ecological, and morphological variation. -
AOS) Committee on Classification and Nomenclature: North and Middle America (NACC) 3 June 2020
American Ornithological Society (AOS) Committee on Classification and Nomenclature: North and Middle America (NACC) 3 June 2020 Guidelines for English bird names The American Ornithological Society’s North American Classification Committee (NACC) has long held responsibility for arbitrating the official names of birds that occur within its area of geographic coverage. Scientific names used are in accordance with the International Code of Zoological Nomenclature (ICZN 1999); the committee has no discretion to modify scientific names that adhere to ICZN rules. English names for species are developed and maintained in keeping with the following guidelines, which are used when forming English names for new or recently split species and when considering proposals to change established names for previously known species: A. Principles and Procedures 1. Stability of English names. The NACC recognizes that there are substantial benefits to nomenclatural stability and that long-established English names should only be changed after careful deliberation and for good cause. As detailed in AOU (1983), NACC policy is to “retain well established names for well-known and widely distributed species, even if the group name or a modifier is not precisely accurate, universally appropriate, or descriptively the best possible.” The NACC has long interpreted this policy as a caution against the ever-present temptation to ‘improve’ well-established English names and this remains an important principle. In practice, this means that proposals to the NACC advocating a change to a long-established English name must present a strongly compelling, well-researched, and balanced rationale. 2. Name change procedures. The NACC process of considering an English name change is the same as for other nomenclatural topics. -
Caye Caulker Forest and Marine Reserve
Caye Caulker Forest and Marine Reserve- Integrated Management Plan 2004-2009 *** Prepared For Belize Coastal Zone Management Institute/Authority and Belize Fisheries Department By Ellen M McRae, Consultant, CZMA/I ACKNOWLEDGEMENTS 7 LIST OF TABLES 8 LIST OF MAPS 9 LIST OF ACRONYMS 10 1. INTRODUCTION 12 1.1 BACKGROUND INFORMATION 12 1.1.1 Habitat Suitability—Rationale for Area’s Selection 12 1.1.2 History of Caye Caulker’s Protected Areas 14 1.1.3 Current Status 15 1.1.4 Legislative Authority 15 1.1.5 Context 17 1.2 GENERAL INFORMATION 17 1.2.1 Purpose and Scope of Plan 17 1.2.2 Location 18 1.2.3 Access 19 1.2.4 Land Tenure and Seabed Use 19 1.2.5 Graphic Representation 20 1.2.5.1 Mapping 20 1.2.5.2 Aerial Photographic and Satellite Imagery 20 1.2.5.3 Other Remote Imagery 21 2 PHYSICAL ENVIRONMENT 21 2.1 GEOLOGY, SUBSTRATE AND BATHYMETRY 21 2.2 HYDROLOGY 22 2.3 TIDES AND CURRENTS 23 2.4 WATER QUALITY 23 2.4.1 Seawater 23 2.4.2 Groundwater and Surface Waters on the Caye 24 2.5 CLIMATE AND WEATHER 25 2.5.1 General Climate Regime 26 2.5.2 Rainfall 26 2.5.3 Extreme Weather Events 26 3 BIOLOGICAL ENVIRONMENT 29 3.1 EMERGENT SYSTEMS 29 3.1.1 Littoral Forest 29 3.1.1.1 Flora 31 3.1.1.2 Fauna 33 3.1.1.3 Commercially Harvested Species 36 3.1.1.4 Rare, Threatened and Endangered Species 37 3.1.1.5 Threats to Systems 38 3.1.2 Mangroves 39 3.1.2.1 Flora 40 3.1.2.2 Fauna 40 3.1.2.3 Commercially Harvested Species 42 3.1.2.4 Rare, Threatened and Endangered Species 43 3.1.2.5 Threats to System 44 3.2 SUBMERGED SYSTEMS 45 3.2.1 Seagrass and Other Lagoon